1
|
Cui S, Lv J, Hough R, Fu Q, Zhang Z, Dong X, Fan X, Li YF. Imidacloprid removal by modified graphitic biochar with Fe/Zn bimetallic oxides. ENVIRONMENTAL RESEARCH 2024; 258:119444. [PMID: 38914251 DOI: 10.1016/j.envres.2024.119444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/01/2024] [Accepted: 06/18/2024] [Indexed: 06/26/2024]
Abstract
Coping with the critical challenge of imidacloprid (IMI) contamination in sewage treatment and farmland drainage purification, this study presents a pioneering development of an advanced modified graphitic white melon seed shells biochar (Fe/Zn@WBC). The Fe/Zn@WBC demonstrates a substantial enhancement in adsorption efficiency for IMI, achieving a remarkable removal rate of 87.69% within 30 min and a significantly higher initial adsorption rate parameter h = 4.176 mg g-1·min-1. This significant improvement outperforms WBC (12.22%, h = 0.115 mg g-1·min-1) and highlights the influence of optimized adsorption conditions at 900 °C and the graphitization degree resulting from Fe/Zn bimetallic oxide modification. Characterization analysis and batch sorption experiments including kinetics, isotherms, thermodynamics and pH factors illustrate that chemical adsorption is the main type of adsorption mechanism responsible for this superior ability to remove IMI through pore filling, hydrogen bonding, hydrophobic interaction, electrostatics interaction, π-π interactions as well as complexation processes. Furthermore, we demonstrate exceptional stability of Fe/Zn@WBC across a broad pH range (pH = 3-11), co-existing ions presence along with humic acid under various real water conditions while maintaining high removal efficiency. This study presents an advanced biochar adsorbent, Fe/Zn@WBC, with efficient adsorption capacity and easy preparation. Through three regeneration cycles via pyrolysis method, it demonstrates excellent pyrolysis regeneration capabilities with an average removal efficiency of 92.02%. The magnetic properties enable rapid separation facilitated by magnetic analysis. By elucidating the efficacy and mechanistic foundations of Fe/Zn@WBC, this research significantly contributes to the field of environmental remediation by providing a scalable solution for IMI removal and enhancing scientific understanding of bimetallic oxides-hydrophilic organic pollutant interactions.
Collapse
Affiliation(s)
- Song Cui
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Jialin Lv
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Rupert Hough
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Qiang Fu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Zulin Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Xiaolong Dong
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Xiaohu Fan
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| |
Collapse
|
2
|
Prakash S, Radha, Sharma K, Dhumal S, Senapathy M, Deshmukh VP, Kumar S, Madhu, Anitha T, Balamurugan V, Pandiselvam R, Kumar M. Unlocking the potential of cotton stalk as a renewable source of cellulose: A review on advancements and emerging applications. Int J Biol Macromol 2024; 261:129456. [PMID: 38237828 DOI: 10.1016/j.ijbiomac.2024.129456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/25/2023] [Accepted: 01/11/2024] [Indexed: 02/12/2024]
Abstract
Cotton stalk (CS) is a global agricultural residue, with an annual production of approximately 50 million tons, albeit with limited economic significance. The utilization of cellulose derived from CS has gained significant attention in green nanomaterial technologies. This interest stems from its unique properties, including biocompatibility, low density, minimal thermal expansion, eco-friendliness, renewability, and its potential as an alternative source for chemicals, petroleum, and biofuels. In this review, we delve into various extraction and characterization methods, the physicochemical attributes, recent advancements, and the applications of cellulose extracted from CS. Notably, the steam explosion method has proven to yield the highest cellulose content (82 %) from CS. Moreover, diverse physicochemical properties of cellulose can be obtained through different extraction techniques. Sulfuric acid hydrolysis, for instance, yields nanocrystalline cellulose fibers measuring 10-100 nm in width and 100-850 nm in length. Conversely, the steam explosion method yields cellulose fibers with dimensions of 10.7 μm in width and 1.2 mm in length. CS-derived products, including biochar, aerogel, dye adsorbents, and reinforcement fillers, find applications in various industries, such as environmental remediation and biodegradable packaging. This is primarily due to their ready availability, cost-effectiveness, and sustainable nature.
Collapse
Affiliation(s)
- Suraj Prakash
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India.
| | - Kanika Sharma
- Chemical and Biochemical Processing Division, ICAR- Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Sangram Dhumal
- Division of Horticulture, RCSM College of Agriculture, Kolhapur 416004, India
| | - Marisennayya Senapathy
- Department of Rural Development and Agricultural Extension, College of Agriculture, Wolaita Sodo University, Wolaita Sodo, SNNPR, Ethiopia
| | - Vishal P Deshmukh
- Bharati Vidyapeeth (Deemed to be University), Yashwantrao Mohite Institute of Management, Karad, India
| | - Sunil Kumar
- ICAR - Indian Institute of Farming Systems Research, Division of Computer Applications, Meerut, India
| | - Madhu
- ICAR - Indian Agricultural Statistics Research Institute, New Delhi, India
| | - T Anitha
- Department of Postharvest Technology, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Periyakulam 625604, India
| | - V Balamurugan
- Department of Agricultural Economics, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, India
| | - Ravi Pandiselvam
- Division of Physiology, Biochemistry and Post-Harvest Technology, ICAR - Central Plantation Crops Research Institute (CPCRI), Kasaragod 671 124, Kerala, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR- Central Institute for Research on Cotton Technology, Mumbai 400019, India.
| |
Collapse
|
3
|
Li S, Zhang Z, Zhang C, He Y, Yi X, Chen Z, Hassaan MA, Nemr AE, Huang M. Novel hydrophilic straw biochar for the adsorption of neonicotinoids: kinetics, thermodynamics, influencing factors, and reuse performance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:29143-29153. [PMID: 36414889 DOI: 10.1007/s11356-022-24131-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Nitenpyram (NIT) is the most water-soluble neonicotinoid (NEO). It has been shown to pose a serious threat to human health and the environment but was always ignored due to its limited market share. There were few experts who studied NIT's transport behavior on biochar. In this study, two types of biochar were co-activated separately using zinc chloride combined with phosphoric acid and potassium hydroxide combined with acetic acid, marked as ZBC and KBC. Characterizations suggested that hydrophilic ZBC and KBC had more surface functional groups than unmodified biochar (BC), and specific surface areas of ZBC (456.406 m2·g-1) and KBC (750.588 m2·g-1) were significantly higher than of BC (67.181 m2·g-1). The pore structures of KBC and ZBC were hierarchical porous structures with different pore sizes and typical microporous structure, respectively. The adsorption performance of either NIT or IMI on KBC was better than that on ZBC. Only 0.4 g·L-1 of KBC can absorb 89.62% of NIT in just 5 min. The equilibrium adsorption amounts of NIT on ZBC and KBC were 17.995 mg·g-1 and 82.910 mg·g-1. Elovich and Langmuir models were used to evaluate the whole adsorption process, which was attributed to the chemisorption mechanism. In addition, removal rates of NIT were negatively correlated to NIT's initial concentration and positively correlated to the dose of biochar. pH had almost no effect on adsorption, but the presence of salt ions can inhibit the removal of NIT. Long-term stabilities of biochars were also acceptable. These findings will promote the development in the preparation of biochar fields and provide a positive reference value for NEO removal.
Collapse
Affiliation(s)
- Shangzhen Li
- School of Civil & Architecture Engineering, Xi'an Technological University, Xi'an, Shaanxi, 710021, People's Republic of China
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Zhihong Zhang
- School of Civil & Architecture Engineering, Xi'an Technological University, Xi'an, Shaanxi, 710021, People's Republic of China
| | - Chao Zhang
- School of Civil Engineering & Transportation, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Yutian He
- BASIS International School, Guangzhou, 510663, People's Republic of China
| | - Xiaohui Yi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Zhenguo Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Mohamed A Hassaan
- National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, P.O. 21556, Alexandria, Egypt
| | - Ahmed El Nemr
- National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, P.O. 21556, Alexandria, Egypt
| | - Mingzhi Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China.
- SCNU Qingyuan Institute of Science and Technology Innovation Co, Ltd, Qingyuan, 511517, People's Republic of China.
| |
Collapse
|
4
|
Neolaka YA, Riwu AA, Aigbe UO, Ukhurebor KE, Onyancha RB, Darmokoesoemo H, Kusuma HS. Potential of activated carbon from various sources as a low-cost adsorbent to remove heavy metals and synthetic dyes. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2022.100711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
5
|
Zheng Y, Li S, Jiang B, Yu G, Ren B, Zheng H. One-Step Preparation of Activated Carbon for Coal Bed Methane Separation/Storage and Its Methane Adsorption Characteristics. ACS OMEGA 2022; 7:45107-45119. [PMID: 36530286 PMCID: PMC9753216 DOI: 10.1021/acsomega.2c05557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/26/2022] [Indexed: 05/30/2023]
Abstract
Different coals were used as raw material for the preparation of carbonization precursors and coal-based activated carbons. The physicochemical structure and adsorption performance of the samples were tested. Results show that the carbonization and activation process greatly changed the molecular structure of raw coal, and a large number of organic functional groups disappeared. The carbonization process has enriched the pore structure of coal by thermal ablation, and it has a pore expansion effect on all the pores in coal, while the activation process is more conducive to micropore generation. The calculated mean isosteric heat of adsorption showed that the activated carbon needs to release more heat in the adsorption process as the same equilibrium pressure increased due to the adsorption capacity of the prepared activated carbon being far more than that of the raw coal. Adsorption processes of activated carbons are more sensitive to temperature changes, providing a certain guiding significance for the temperature swing adsorption and pressure swing adsorption.
Collapse
Affiliation(s)
- Yuannan Zheng
- Joint
National-Local Engineering Research Centre for Safe and Precise Coal
Mining, Anhui University of Science and
Technology, Huainan, Anhui232001, China
- Key
Laboratory of Industrial Dust Prevention and Control & Occupational
Health and Safety, Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui232001, China
- School
of Safety Science and Engineering, Anhui
University of Science and Technology, Huainan, Anhui232001, China
- State
Key Laboratory of Deep Coal Mining & Environment Protection, Huainan Mining (Group) Co., Ltd., Huainan, Anhui232000, China
| | - Shanshan Li
- Joint
National-Local Engineering Research Centre for Safe and Precise Coal
Mining, Anhui University of Science and
Technology, Huainan, Anhui232001, China
- Key
Laboratory of Industrial Dust Prevention and Control & Occupational
Health and Safety, Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui232001, China
- School
of Economics and Management, Anhui University
of Science and Technology, Huainan, Anhui232001, China
- Institute
of Energy, Hefei Comprehensive National Science Center, Anhui, Hefei230031, China
| | - Bingyou Jiang
- Joint
National-Local Engineering Research Centre for Safe and Precise Coal
Mining, Anhui University of Science and
Technology, Huainan, Anhui232001, China
- Key
Laboratory of Industrial Dust Prevention and Control & Occupational
Health and Safety, Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui232001, China
- School
of Safety Science and Engineering, Anhui
University of Science and Technology, Huainan, Anhui232001, China
| | - Guofeng Yu
- State
Key Laboratory of Deep Coal Mining & Environment Protection, Huainan Mining (Group) Co., Ltd., Huainan, Anhui232000, China
- Key Laboratory
of Coupled Hazards Prevention and Control in Deep Coal Mining, National
Mine Safety Administration, Huaihe Energy
Holding Group Co., Ltd., Huainan, Anhui232000, China
| | - Bo Ren
- State
Key Laboratory of Deep Coal Mining & Environment Protection, Huainan Mining (Group) Co., Ltd., Huainan, Anhui232000, China
- Key Laboratory
of Coupled Hazards Prevention and Control in Deep Coal Mining, National
Mine Safety Administration, Huaihe Energy
Holding Group Co., Ltd., Huainan, Anhui232000, China
| | - Haotian Zheng
- School
of Safety Science and Engineering, Anhui
University of Science and Technology, Huainan, Anhui232001, China
| |
Collapse
|
6
|
Neskoromnaya EA, Khamizov RK, Melezhyk AV, Memetova AE, Mkrtchan ES, Babkin AV. Adsorption of lead ions (Pb2+) from wastewater using effective nanocomposite GO/CMC/FeNPs: Kinetic, isotherm, and desorption studies. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Boulika H, El Hajam M, Hajji Nabih M, Idrissi Kandri N, Zerouale A. Activated carbon from almond shells using an eco-compatible method: screening, optimization, characterization, and adsorption performance testing. RSC Adv 2022; 12:34393-34403. [PMID: 36545611 PMCID: PMC9709775 DOI: 10.1039/d2ra06220h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022] Open
Abstract
Activated carbon as a low-cost adsorbent prepared from almond shells using H3PO4 as a chemical activator and room vacuum pyrolysis as a physical activator, which is considered to be an eco-compatible preparation process. Experimental design methodology was used to study and optimize the effects of eight preparation parameters on I2 adsorption expressed by the iodine index (mg g-1). It was found that optimum activated carbon was obtained by chemical activation with H3PO4 at first, followed by physical treatment at 420 °C under a vacuum pressure of -0.8 bar. The obtained activated carbon was characterized by a thermogravimetric analyzer, scanning electron microscopy coupled to EDX, X-ray diffraction, and Fourier transform infrared absorption spectroscopy. The zero-charge pH and the characteristics of surface chemistry by Boehm titration were determined to predict the acid-base properties of the prepared material. An adsorption efficiency study of crystal violet dye on the optimally produced activated carbon was carried out. The obtained results of physicochemical characterization showed interesting properties of our activated carbon in comparison with those produced by other methods. Among these properties, an important porous surface, high thermal stability, and a disorganized graphitic crystalline structure were revealed. In addition to the carbon and oxygen elements, EDX analysis revealed the presence of phosphorus element, and the FTIR analysis indicated the existence of phosphonate groups and an acidic character, which resulted from chemical activation by H3PO4. An iodine index of 824.85 mg g-1 was achieved for optimal preparation. Crystal violet adsorption studies show a pseudo-first-order kinetic process and fit well with the Freundlich isotherm model, and thus, the predicted adsorption capacity was 364.27 mg g-1.
Collapse
Affiliation(s)
- H Boulika
- Signals, Systems and Components Laboratory (SSCL), Faculty of Sciences and Techniques, Sidi Mohammed Ben Abdellah University Road Imouzzer BP 2202, Atlas Fez Morocco
| | - M El Hajam
- Signals, Systems and Components Laboratory (SSCL), Faculty of Sciences and Techniques, Sidi Mohammed Ben Abdellah University Road Imouzzer BP 2202, Atlas Fez Morocco
- Processes, Materials and Environment Laboratory (PMEL), Faculty of Sciences and Techniques, Sidi Mohammed Ben Abdellah University Road Imouzzer, BP 2202, Atlas Fez Morocco
| | - M Hajji Nabih
- Signals, Systems and Components Laboratory (SSCL), Faculty of Sciences and Techniques, Sidi Mohammed Ben Abdellah University Road Imouzzer BP 2202, Atlas Fez Morocco
| | - N Idrissi Kandri
- Signals, Systems and Components Laboratory (SSCL), Faculty of Sciences and Techniques, Sidi Mohammed Ben Abdellah University Road Imouzzer BP 2202, Atlas Fez Morocco
| | - A Zerouale
- Processes, Materials and Environment Laboratory (PMEL), Faculty of Sciences and Techniques, Sidi Mohammed Ben Abdellah University Road Imouzzer, BP 2202, Atlas Fez Morocco
| |
Collapse
|
8
|
The investigation of the structure of biocarbon synthesized from wheat straw after weakly concentrated phosphoric acid pretreatment. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02641-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Hasan MS, Karmakar AK. Removal of car battery heavy metals from wastewater by activated carbons: a brief review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:73675-73717. [PMID: 36085225 DOI: 10.1007/s11356-022-22715-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Spent automobile batteries are one of the most significant secondary sources of harmful heavy metals for the environment. After being incorporated into the aquatic ecosystems, these metals disseminate to various plants, microorganisms, and the human body and cause multiple adverse effects. Activated carbons (ACs) have long been used as an effective adsorbent for different heavy metals in wastewater treatment processes. Although numerous research works have been published to date on this topic, they are scattered in the literature. In this review, we have assembled these works and provided an extensive overview of the application of ACs for treating spent car battery heavy metals (CBHMs) from aquatic systems. The preparation of ACs from different precursor materials, their application in the adsorption of CBHMs, the adsorption mechanism, kinetics, adsorption isotherms and various parameters that may affect the adsorption processes have been discussed in detail. A brief comparative analysis of the adsorption performances of ACs prepared from different precursor materials is also provided. Finally, recommendations for future research works are also offered.
Collapse
Affiliation(s)
- Md Saif Hasan
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Aneek Krishna Karmakar
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
10
|
Memetova A, Tyagi I, Singh L, Karri RR, Tyagi K, Kumar V, Memetov N, Zelenin A, Tkachev A, Bogoslovskiy V, Shigabaeva G, Galunin E, Mubarak NM, Agarwal S. Nanoporous carbon materials as a sustainable alternative for the remediation of toxic impurities and environmental contaminants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155943. [PMID: 35577088 DOI: 10.1016/j.scitotenv.2022.155943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Due to rapidly deteriorating water resources, the world is looking forward to a sustainable alternative for the remediation of noxious pollutants such as heavy metals and organic and gaseous contaminants. To address this global issue of environmental pollution, nanoporous carbon materials (NPCMs) can be used as a one-stop solution. They are widely applied as adsorbents for many toxic impurities and environmental contaminants. The present review provides a detailed overview of the role of different synthesis factors on the porous characteristics of carbon materials, activating agents, reagent-precursor ratio and their potential application in the remediation. Findings revealed that synthetic parameters result in the formation of microporous NPCMs (SBET: >4000 m3/g; VTotal (cm3/g) ≥ 2; VMicro (cm3/g) ≥ 1), micromesoporous (SBET: >2500 m3/g; VTotal (cm3/g) ≥ 1.5; VMicro (cm3/g) ≥ 0.7) and mesoporous (SBET: >2500 m3/g; VTotal (cm3/g) ≥ 1.5; VMicro (cm3/g) ≥ 0.5) NPCMs. Moreover, it was observed that a narrow pore size distribution (0.5-2.0 nm) yields excellent results in the remediation of noxious contaminants. Further, chemical activating agents such as NaOH, KOH, ZnCl2, and H3PO4 were compared. It was observed that activating agents KОН, H3PO4, and ZnCl2 were generally used and played a significant role in the possible large-scale production and commercialization of NPCMs. Thus, it can be interpreted that with a well-planned strategy for the synthesis, NPCMs with a "tuned" porosity for a specific application, in particular, microporosity for the accumulation and adsorption of energetically important gases (CO2, CH4, H2), micro-mesoporosity and mesoporosity for high adsorption capacity for towards metal ions and a large number of dyes, respectively.
Collapse
Affiliation(s)
- Anastasia Memetova
- Department of Technology and Methods of Nanoproducts Manufacturing, Tambov State Technical University, 106 Sovetskaya St., Tambov 392000, Russian Federation
| | - Inderjeet Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata 700 053, India.
| | - Lipi Singh
- Department of Environmental Engineering, Delhi Technological University, New Delhi 110042, India
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Kaomud Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata 700 053, India
| | - Vikas Kumar
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata 700 053, India
| | - Nariman Memetov
- Department of Technology and Methods of Nanoproducts Manufacturing, Tambov State Technical University, 106 Sovetskaya St., Tambov 392000, Russian Federation
| | - Andrey Zelenin
- Department of Technology and Methods of Nanoproducts Manufacturing, Tambov State Technical University, 106 Sovetskaya St., Tambov 392000, Russian Federation
| | - Alexey Tkachev
- Department of Technology and Methods of Nanoproducts Manufacturing, Tambov State Technical University, 106 Sovetskaya St., Tambov 392000, Russian Federation
| | - Vladimir Bogoslovskiy
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, 30 Lenina Ave., Tomsk 634050, Russian Federation
| | - Gulnara Shigabaeva
- Department of Organic and Ecological Chemistry, University of Tyumen, 6 Volodarskogo St., Tyumen 625003, Russian Federation
| | - Evgeny Galunin
- Department of Organic and Ecological Chemistry, University of Tyumen, 6 Volodarskogo St., Tyumen 625003, Russian Federation
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Shilpi Agarwal
- Center for Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
11
|
Resonance Rayleigh scattering method for highly sensitive detection of copper ions in water based on salicylaldeoxime-copper (Ⅱ) - 2-methylimidazole Supramolecular. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Iqbal J, Mohamed Al Hajeri B, Shah NS, Wilson K, Xavier C, Shaalan J, Al-Taani AA, Howari F, Nazzal Y. Preparation of H 3PO 4 modified Sidr biochar for the enhanced removal of ciprofloxacin from water. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 24:1231-1242. [PMID: 35075957 DOI: 10.1080/15226514.2021.2025038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, biochar was prepared from Sidr plant leaves and used for the treatment of ciprofloxacin (CIP)-contaminated water. CIP is important class of emerging water pollutants from pharmaceutical industries. The biochar showed 65% adsorption efficiency and 43.48 mg/g adsorption capacity of CIP. Adsorption efficiency as well as adsorption capacity were improved to 91% and 62.50 mg/g, respectively, by phosphoric acid (H3PO4) modified biochar. Removal of CIP by the prepared biochar was due to different surface functional groups of CIP and biochar as revealed from the study of different characterization analyses. The presence of PO43- group in modified biochar led to maximum binding of CIP. Also, the modified biochar showed higher reusability potential and less leaching of ions when compared to the raw biochar. Removal of CIP was affected by concentrations of CIP, the amount of biochar and different pH's; the maximum removal of CIP was achieved at pH 4. The Freundlich and pseudo-first-order models best fitted the removal of CIP by modified biochar. Advanced characterization techniques were applied to investigate surface and physiological characteristics of the biochar and modified biochar. The modification showed high impact on the performance and stability of biochar. The study showed significant impacts of modification on the potential of the biochar for treatment of CIP-contaminated water.
Collapse
Affiliation(s)
- Jibran Iqbal
- College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
| | | | - Noor S Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Pakistan
| | - Kenesha Wilson
- College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
| | - Cijo Xavier
- College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
| | - Jwaher Shaalan
- College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
| | - Ahmed A Al-Taani
- College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
- Department of Earth and Environmental Sciences, Yarmouk University, Irbid, Jordan
| | - Fares Howari
- College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
| | - Yousef Nazzal
- College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
13
|
Oladoye PO. Natural, low-cost adsorbents for toxic Pb(II) ion sequestration from (waste)water: A state-of-the-art review. CHEMOSPHERE 2022; 287:132130. [PMID: 34517237 DOI: 10.1016/j.chemosphere.2021.132130] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Pb(II) ions is an inorganic pollutant that is present in the environment. Its presence affects both human health and ecosystem. Economically, amongst many wastewater treatment approaches, adsorption is both cheap and environmentally friendly for removing Pb(II) ion from contaminated water. In this state of the art review, about 227 research and review based publications on adsorption-based studies between 1989 and 2021, which have used various materials as adsorbents of Pb (II) ions, were selected and reviewed for more evaluation. A number of adsorbents which have been reported in these literatures for the adsorption of Pb(II) ion are agrobased, modified agrobased, clay minerals, modified/nanocomposite clay minerals, silica-based, zeolite-based and chitosan-based adsorbents, respectively. The adsorption potential of the adsorbents is exhibited under optimum experimental conditions. The unmodified and modified agro based adsorbents were shown to exhibit the greatest Pb(II) adsorption capacity, with great potential for further exploration, compared to the others afore-listed. The effects of operating parameters such as pH, initial metal ion concentration, adsorbent dose and reaction time are discussed. Furthermore, in order to comprehend the nature of adsorption process between the adsorbent and contaminant (Pb(II)), thermodynamic analyses of adsorption systems are intensively described. All these discussions revealed the applicability of adsorption process for toxic Pb(II) ions removal with respect to wastewater treatment techniques. The review concludes by commenting on the various adsorbents' adsorption capacity and proposes some studies that should also be considered in future works.
Collapse
Affiliation(s)
- Peter Olusakin Oladoye
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th St, Miami, FL, 33199, USA; Analytical/Environmental Chemistry Unit, Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, P.M.B, 4000, Ogbomoso, Nigeria.
| |
Collapse
|
14
|
The Effect of Chemical Activating Agent on the Properties of Activated Carbon from Sago Waste. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112411640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effect of chemical activators on the properties of activated carbon from sago waste was conducted in this study by using ZnCl2, H3PO4, KOH, and KMnO4 chemical solutions. The carbonized sago waste was added to each chemical solution, boiled at 85 °C for 4 h, and heated at 600 °C for 3 h. The porosity, microstructural, proximate, and surface chemistry analyses were carried out using nitrogen adsorption with employing the Brunauer Emmett Teller (BET) method and the Barret-Joyner-Halenda (BJH) calculation, scanning electron microscopy by using energy dispersive spectroscopy, X-ray diffractometer, simultaneous thermogravimetric analysis system, and the Fourier-transform infrared spectroscopy. The results showed that the activated carbon prepared using ZnCl2 acid had the highest specific surface area of 546.61 m2/g, while the KOH activating agent surpassed other chemicals in terms of a refined structure and morphology, with the lowest ash content of 10.90%. The surface chemistry study revealed that ZnCl2 and KOH activated carbon showed phenol and carboxylate groups. Hence, ZnCl2 acid was suggested as activating agents for micropore carbon, while KOH was favorable to producing a mesopore-activated carbon from sago waste.
Collapse
|
15
|
Ali A, Alharthi S, Ahmad B, Naz A, Khan I, Mabood F. Efficient Removal of Pb(II) from Aqueous Medium Using Chemically Modified Silica Monolith. Molecules 2021; 26:molecules26226885. [PMID: 34833976 PMCID: PMC8619109 DOI: 10.3390/molecules26226885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/01/2022] Open
Abstract
The adsorptive removal of lead (II) from aqueous medium was carried out by chemically modified silica monolith particles. Porous silica monolith particles were prepared by the sol-gel method and their surface modification was carried out using trimethoxy silyl propyl urea (TSPU) to prepare inorganic–organic hybrid adsorbent. The resultant adsorbent was evaluated for the removal of lead (Pb) from aqueous medium. The effect of pH, adsorbent dose, metal ion concentration and adsorption time was determined. It was found that the optimum conditions for adsorption of lead (Pb) were pH 5, adsorbent dose of 0.4 g/L, Pb(II) ions concentration of 500 mg/L and adsorption time of 1 h. The adsorbent chemically modified SM was characterized by scanning electron microscopy (SEM), BET/BJH and thermo gravimetric analysis (TGA). The percent adsorption of Pb(II) onto chemically modified silica monolith particles was 98%. An isotherm study showed that the adsorption data of Pb(II) onto chemically modified SM was fully fitted with the Freundlich and Langmuir isotherm models. It was found from kinetic study that the adsorption of Pb(II) followed a pseudo second-order model. Moreover, thermodynamic study suggests that the adsorption of Pb(II) is spontaneous and exothermic. The adsorption capacity of chemically modified SM for Pb(II) ions was 792 mg/g which is quite high as compared to the traditional adsorbents. The adsorbent chemically modified SM was regenerated, used again three times for the adsorption of Pb(II) ions and it was found that the adsorption capacity of the regenerated adsorbent was only dropped by 7%. Due to high adsorption capacity chemically modified silica monolith particles could be used as an effective adsorbent for the removal of heavy metals from wastewater.
Collapse
Affiliation(s)
- Ashraf Ali
- Department of Chemistry, The University of Haripur, Haripur 22620, Pakistan
- Correspondence: or ; Tel.: +92-3471214422
| | - Sarah Alharthi
- Department of Chemistry, Taif University, Taif 21944, Saudi Arabia;
| | - Bashir Ahmad
- Department of Biology, The University of Haripur, Haripur 22620, Pakistan;
| | - Alia Naz
- Department of Environmental Science, The University of Haripur, Haripur 22620, Pakistan; (A.N.); (I.K.)
| | - Idrees Khan
- Department of Environmental Science, The University of Haripur, Haripur 22620, Pakistan; (A.N.); (I.K.)
| | - Fazal Mabood
- Institute of Chemical Sciences, University of Swat, Haripur 19200, Pakistan;
| |
Collapse
|
16
|
Ma Y, Wu L, Li P, Yang L, He L, Chen S, Yang Y, Gao F, Qi X, Zhang Z. A novel, efficient and sustainable magnetic sludge biochar modified by graphene oxide for environmental concentration imidacloprid removal. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124777. [PMID: 33338812 DOI: 10.1016/j.jhazmat.2020.124777] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/06/2020] [Accepted: 12/02/2020] [Indexed: 05/20/2023]
Abstract
Environmental concentration imidacloprid (IMI) has become a potential risk to ecological safety and human health, therefore an efficient, sustainable and environment friendly approach was urgently needed for its removal. In this study, a novel graphene oxide supported magnetic sludge biochar composite (GO/CoFe2O4-SBC) was first time synthesized and assessed for IMI removal at environmental concentration level. The maximum adsorption capacity of GO/CoFe2O4-SBC for IMI was 8.64 × 103 μg g-1. Physicochemical characteristics, kinetics (pseudo-second-order), isotherms (Freundlich and Temkin), thermodynamics and environmental factors analysis suggested that its outstanding adsorption performance was mainly attributed to pore filling, π-π conjugation and functional groups interaction. The mechanisms analysis indicated that intraparticle diffusion was the main rate-limiting step and its adsorption was a spontaneous, endothermic and randomness increased process. The magnetic sensitivity enabled it to be easily separated from water. The sustainable adsorption capacity (>90% of the initial adsorption capacity) of GO/CoFe2O4-SBC was well maintained by ethanol extraction even after five reuse cycles. GO/CoFe2O4-SBC also exhibited environmental security with its leaching concentrations of Fe and Co were below 0.5 mg L-1 in a wide pH range. The performance of GO/CoFe2O4-SBC suggested that it could be served as a promising adsorbent for environmental concentration IMI removal.
Collapse
Affiliation(s)
- Yongfei Ma
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Li Wu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Ping Li
- China-UK Water and Soil Resources Sustainable Utilization Joint Research Centre, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Lie Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China.
| | - Liuyang He
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Siyu Chen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Feng Gao
- China-UK Water and Soil Resources Sustainable Utilization Joint Research Centre, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Xuebin Qi
- China-UK Water and Soil Resources Sustainable Utilization Joint Research Centre, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK.
| |
Collapse
|
17
|
Viltres H, López YC, Gupta NK, Leyva C, Paz R, Gupta A, Sengupta A. Functional metal-organic frameworks for metal removal from aqueous solutions. SEPARATION & PURIFICATION REVIEWS 2020. [DOI: 10.1080/15422119.2020.1839909] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Herlys Viltres
- Centro De Investigación En Ciencia Aplicada Y Tecnología Avanzada, Instituto Politécnico Nacional, CDMX, Mexico
| | - Yeisy C. López
- Centro De Investigación En Ciencia Aplicada Y Tecnología Avanzada, Instituto Politécnico Nacional, CDMX, Mexico
- Laboratorio De Bioninorgánica, Facultad De Química, Universidad De La Habana, Havana, Cuba
| | - Nishesh Kumar Gupta
- University of Science and Technology (UST), Daejeon, Republic of Korea
- Department of Land, Water, and Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang, Republic of Korea
| | - Carolina Leyva
- Centro De Investigación En Ciencia Aplicada Y Tecnología Avanzada, Instituto Politécnico Nacional, CDMX, Mexico
| | - Roxana Paz
- Centro De Investigación En Ciencia Aplicada Y Tecnología Avanzada, Instituto Politécnico Nacional, CDMX, Mexico
| | - Anjali Gupta
- Department of Chemistry, Dayalbagh Educational Institute, Agra, India
| | - Arijit Sengupta
- Radiochemistry Division, Bhabha Atomic Research Center, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
18
|
Akpomie KG, Conradie J. Advances in application of cotton-based adsorbents for heavy metals trapping, surface modifications and future perspectives. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110825. [PMID: 32531575 DOI: 10.1016/j.ecoenv.2020.110825] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Cotton-based adsorbents (CBAs) are promising materials for combating the problem of heavy metal pollution of environmental waters. This is ascribed to the low cost, abundance, biodegradability and efficiency of CBAs. Herein we review the adsorption of heavy metals (HMs) onto CBAs. We found that several surface modifications were employed to improve the efficiency of the CBAs. These modifications were effected via thermal, physical and chemical means to obtain activated carbons, biochars, ionic liquids, aerogels, hydrogels, chitosans and nanoparticle-derived CBAs. The CBAs exhibited maximum HMs uptake as low as 0.002 mg/g to as high as 505.6 mg/g. Although, the cotton-derived activated carbons and biochars exhibited enhanced HM uptake from that of the unmodified CBAs, they were less efficient than CBAs modified by other methods. Recent chemical, ionic liquid, chitosan and nano-derived CBAs were the most efficient, with high uptake and fast kinetic removal. However, the nanoparticle-based adsorbents are preferred to the chemically modified forms, due to the possibility of secondary pollution and the noxious effect of the latter to the environment. Findings showed that chemical treatment produced CBAs most efficient for As(V), Pb(II) and Fe(III), while ionic liquid CBA was more efficient for Cu(II) and Ni(II). Nano-based treatment was suitable for the uptake of Co(II), Zn(II), Pb(II) and Cd(II), while the chitosan based adsorbent was viable for Hg(II). Isotherm and kinetic evaluation of CBAs mostly conformed to the Langmuir and pseudo-second order models, respectively. Spontaneous adsorption of HMs onto CBAs was deduced from thermodynamic analysis, with endothermic and exothermic characteristics. Over 88% desorption of HMs was obtained from the CBAs studied with good average reusability from 3 to 20 cycles. We also discussed the directions for future research.
Collapse
Affiliation(s)
- Kovo G Akpomie
- Physical Chemistry Research Laboratory, Department of Chemistry, University of the Free State, Bloemfontein, South Africa; Industrial/Physical Chemistry Unit, Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Nigeria.
| | - Jeanet Conradie
- Physical Chemistry Research Laboratory, Department of Chemistry, University of the Free State, Bloemfontein, South Africa.
| |
Collapse
|
19
|
Lei B, Xie H, Chen S, Liu B, Zhou G. Control of pore structure and surface chemistry of activated carbon derived from waste Zanthoxylum bungeanum branches for toluene removal in air. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:27072-27092. [PMID: 32388755 DOI: 10.1007/s11356-020-09115-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Activated carbon adsorption has been considered the most efficient technology toward VOC removal. The waste biomass as alternates solved the problems of high price and nonrenewable of traditional raw materials. The waste Zanthoxylum bungeanum branches were firstly selected as raw materials to prepare activated carbons. Interestingly, the pore structure and surface chemistry can be successfully controlled by adjusting the heating rate. The hierarchical porous carbons exhibited great potential for toluene adsorption. The micro-mesopore structure possessed unique spatial effect; micropores played a dominant role in adsorption process, especially narrow micropores (pore size ≤ 1.0 nm) emerged stronger adsorptive force toward toluene molecules due to overlapping attractive forces from neighboring pore walls. And mesopores not only displayed excellent transport diffusion but also provided adsorption sites. Additionally, the high graphitization degree enhanced the interaction between graphene layer equipped electron-rich regions and π-electrons on the aromatic ring by the π-π conjugated effect. The hydroxyl and carbonyl functional groups served as chemisorption sites and led to higher adsorption amounts. Fortunately, the regeneration can be achieved by thermal treatment at the low temperature (≤ 150 °C) or even gas purging at room temperature (20 °C), which avoided an explosion accident in the process of high-temperature regeneration.
Collapse
Affiliation(s)
- Bingman Lei
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Hongmei Xie
- Department of Chemical Engineering, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Shengming Chen
- Department of Chemical Engineering, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Biyan Liu
- Chongqing Feearth Environmental Technology Co., Ltd., Chongqing, 400067, China
| | - Guilin Zhou
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing, 400067, China.
- Department of Chemical Engineering, Chongqing Technology and Business University, Chongqing, 400067, China.
| |
Collapse
|
20
|
Yang Q, Wu P, Liu J, Rehman S, Ahmed Z, Ruan B, Zhu N. Batch interaction of emerging tetracycline contaminant with novel phosphoric acid activated corn straw porous carbon: Adsorption rate and nature of mechanism. ENVIRONMENTAL RESEARCH 2020; 181:108899. [PMID: 31740041 DOI: 10.1016/j.envres.2019.108899] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 05/13/2023]
Abstract
In this work, corn straw (CS) based porous carbon was prepared by one-step phosphoric acid (H3PO4) low temperature activation. The impregnation ratios (H3PO4/CS, g/g) played an important role in the pore development. ACS300-1 engineered at 300 °C and the impregnation ratio of 1.0 showed the maximal specific surface area of 463.89 m2/g with total pore volume of 0.387 cm3/g, attaining a high tetracycline (TC) uptake of 227.3 mg/g. The adsorption of TC onto ACS300-1 was found tolerant with wide pH (2.0-10.0) and high ionic strength (0 - 0.5 M). The adsorption data can be fitted well by the pseudo-second order kinetic model and Langmuir isotherm model. The endothermic and spontaneous properties of the adsorption system was implied by Thermodynamic study. The findings of the current work conclude that one-step H3PO4 activation is a green and promising method for corn straw based porous carbon that may be found with great potentials in antibiotic containing wastewater treatment.
Collapse
Affiliation(s)
- Qiliang Yang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou, 510006, China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou, 510006, China.
| | - Juan Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Saeed Rehman
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Zubair Ahmed
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Bo Ruan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Nengwu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
21
|
Othman NAF, Selambakkannu S, Ting TM, Hashim A, Tuan Abdullah TA. Integration of phosphoric acid onto radiation grafted poly (2,3-epoxypropyl methacrylate) -PP/PE non-woven fabrics aimed copper adsorbent via response surface method. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1963-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
A Review of Chemicals to Produce Activated Carbon from Agricultural Waste Biomass. SUSTAINABILITY 2019. [DOI: 10.3390/su11226204] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The choice of activating agent for the thermochemical production of high-grade activated carbon (AC) from agricultural residues and wastes, such as feedstock, requires innovative methods. Overcoming energy losses, and using the best techniques to minimise secondary contamination and improve adsorptivity, are critical. Here, we review the importance and influence of activating agents on agricultural waste: how they react and compare conventional and microwave processes. In particular, adsorbent pore characteristics, surface chemistry interactions and production modes were compared with traditional methods. It was concluded that there are no best activating agents; rather, each agent reacts uniquely with a precursor, and the optimum choice depends on the target adsorbent. Natural chemicals can also be as effective as inorganic activating agents, and offer the advantages that they are usually safe, and readily available. The use of a microwave, as an innovative pyrolysis approach, can enhance the activation process within a duration of 1–4 h and temperature of 500–1200 °C, after which the yield and efficiency decline rapidly due to molecular breakdown. This study also examines the biomass milling process requirements; the influence of the dielectric properties, along with the effect of washing; and experimental setup challenges. The microwave setup system, biomass feed rate, product delivery, inert gas flow rate, reactor design and recovery lines are all important factors in the microwave activation process, and contribute to the overall efficiency of AC preparation. However, a major issue is a lack of large-scale industrial demonstration units for microwave technology.
Collapse
|
23
|
Aber S, Tajdid Khajeh R, Khataee A. Application of immobilized ZnO nanoparticles for the photocatalytic regeneration of ultrasound pretreated-granular activated carbon. ULTRASONICS SONOCHEMISTRY 2019; 58:104685. [PMID: 31450360 DOI: 10.1016/j.ultsonch.2019.104685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/30/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
In this study, the photocatalytic regeneration by ZnO was employed for the regeneration of the granular activated carbon (GAC) which was saturated with the reactive red 43. The ultrasound was applied as a pretreatment step due to the cleanup of the adsorbent surface and providing a higher surface area and adsorption capacity. According to the nitrogen gas adsorption-desorption results, the ultrasound pretreated-GAC had the highest surface area and the total pore volume. The SEM and XRD analyses confirmed the immobilization of ZnO nanoparticles on the GAC. Response surface methodology (RSM) was used to model and optimize the preparation of the granular activated carbon/ZnO nanocomposite. The sonication time, pH, GAC/ZnO ratio, and calcination temperature were used as four effective parameters on nanocomposite preparation. Optimum amounts of pH, GAC/ZnO ratio, calcination temperature, and sonication time were found to be equal to 4, 5, 300 °C, 210 min, respectively; in these conditions, 83.98% of the capacity of the exhausted granular activated carbon was regenerated. ANOVA results, high R2, R2-adj values, and also normal and random distribution of residuals showed that application of RSM for the modeling and optimizing the preparation step of GAC/ZnO nanocomposite was successful.
Collapse
Affiliation(s)
- Soheil Aber
- Research Laboratory of Environmental Protection Technology (RLEPT), Faculty of Chemistry, Department of Applied Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran.
| | - Rana Tajdid Khajeh
- Research Laboratory of Environmental Protection Technology (RLEPT), Faculty of Chemistry, Department of Applied Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400 Gebze, Turkey
| |
Collapse
|
24
|
Zhang X, Wang W, Luo S, Lin Q. Preparation of discrete cage-like oxidized hollow carbon spheres with vertically aligned graphene-like nanosheet surface for high performance Pb2+ absorption. J Colloid Interface Sci 2019; 553:484-493. [DOI: 10.1016/j.jcis.2019.06.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/04/2019] [Accepted: 06/16/2019] [Indexed: 12/30/2022]
|
25
|
Mukherjee A, Okolie JA, Abdelrasoul A, Niu C, Dalai AK. Review of post-combustion carbon dioxide capture technologies using activated carbon. J Environ Sci (China) 2019; 83:46-63. [PMID: 31221387 DOI: 10.1016/j.jes.2019.03.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 03/04/2019] [Accepted: 03/15/2019] [Indexed: 05/24/2023]
Abstract
Carbon dioxide (CO2) is the largest anthropogenic greenhouse gas (GHG) on the planet contributing to the global warming. Currently, there are three capture technologies of trapping CO2 from the flue gas and they are pre-combustion, post-combustion and oxy-fuel combustion. Among these, the post-combustion is widely popular as it can be retrofitted for a short to medium term without encountering any significant technology risks or changes. Activated carbon is widely used as a universal separation medium with series of advantages compared to the first generation capture processes based on amine-based scrubbing which are inherently energy intensive. The goal of this review is to elucidate the three CO2 capture technologies with a focus on the use of activated carbon (AC) as an adsorbent for post-combustion anthropogenic CO2 flue gas capture prior to emission to atmosphere. Furthermore, this coherent review summarizes the recent ongoing research on the preparation of activated carbon from various sources to provide a profound understanding on the current progress to highlight the challenges of the CO2 mitigation efforts along with the mathematical modeling of CO2 capture. AC is widely seen as a universal adsorbent due to its unique properties such as high surface area and porous texture. Other applications of AC in the removal of contaminants from flue gas, heavy metal and organic compounds, as a catalyst and catalyst support and in the electronics and electroplating industry are also discussed in this study.
Collapse
Affiliation(s)
- Alivia Mukherjee
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, 57 Campus Drive, Saskatoon, Saskatchewan S7N 5A9, Canada
| | - Jude A Okolie
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, 57 Campus Drive, Saskatoon, Saskatchewan S7N 5A9, Canada
| | - Amira Abdelrasoul
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, 57 Campus Drive, Saskatoon, Saskatchewan S7N 5A9, Canada
| | - Catherine Niu
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, 57 Campus Drive, Saskatoon, Saskatchewan S7N 5A9, Canada
| | - Ajay K Dalai
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, 57 Campus Drive, Saskatoon, Saskatchewan S7N 5A9, Canada.
| |
Collapse
|
26
|
Innovative composite material for efficient and highly selective Pb(II) ion capturing from wastewater. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.157] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Novel conjugated hybrid material for efficient lead(II) capturing from contaminated wastewater. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:686-695. [PMID: 31029362 DOI: 10.1016/j.msec.2019.04.015] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/19/2019] [Accepted: 04/06/2019] [Indexed: 12/15/2022]
Abstract
An efficient material is always welcoming for the water treatment due to the need of clean water to safe the human health. The conjugate adsorbent (CJA) was fabricated by functional ligand embedded onto the highly porous silica material for selective lead (Pb(II)) ion monitoring and removal from wastewater. The study was achieved not only investigating the beginning material but also the performing extrusion as novel conjugate material, this defining the material novelty of this study considers to the modern state-of-art. The fabricated material was characterized in all aspects and then the experimental works for Pb(II) ion assessing were carried in batch mode. The CJA was exposed the color and signal intensity upon addition of Pb(II) ion from low to high concentrations. The optimum pH was considered at 5.50 based on the sensitivity, the color formation ability and high adsorption of Pb(II) ion. The determined limit of low detection was 0.18 μg/L, which was the extraordinary performance for the Pb(II) ion monitoring ability by the CJA. The adsorption efficiency, specific attention was remunerated to the influence of solution pH, reaction time, foreign ion, initial Pb(II) amounts and regeneration. The CJA was exhibited high kinetic performances and showed high adsorption Pb(II) ion compared with the different forms of material. The adsorption was completely fitted with the Langmuir adsorption as defining the monolayer coverage as expected of the homogeneous porosity of the CJA. The maximum adsorption was determined as high as 175.16 mg/g. In addition, the foreign ions were not affected in the Pb(II) adsorption by the CJA, and the adsorbent was regenerated using 0.20 M HCl for several cycles used without significant loss of the initial performance. Considering these advantages, the CJA demonstrated the potential low-cost material for competitive use in wastewater remediation, especially in the developing countries.
Collapse
|
28
|
Removal of Cu(II) ions from aqueous solutions using petroleum coke-derived microporous carbon: investigation of adsorption equilibrium and kinetics. ADSORPTION 2019. [DOI: 10.1007/s10450-019-00059-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
Aden M, Husson J, Monney S, Franchi M, Knorr M, Euvrard M. Biosorption of Pb(II) ions from aqueous solution using alginates extracted from Djiboutian seaweeds and deposited on silica particles. PURE APPL CHEM 2019. [DOI: 10.1515/pac-2018-1003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
High-molecular alginates were extracted from Djiboutian brown seaweeds, Sargassum sp. (S) and Turbinaria (T) and isolated as sodium salts in 31.0 and 42.7% yield by weight. 1H NMR analysis of the uronic acid block-structure indicates mannuronic/guluronic M/G ratios of 0.49 and 3.0 for the alginates extracts, respectively. The resulting alginates were deposited onto native Aerosil 200 silica, amine-functionalized and carboxyl-functionalized silica particles to enhance the mechanical strength providing Alg.(T/S)+SiO2) Alg.(T/S)+SiO2NH2) and Alg.(T)+SiO2CO2H) composites. Taking Pb(II) as examples for toxic heavy metal ions, the effects of the pH, adsorption kinetics, and isotherms have been studied systematically. The best uptake achieved was 585 mg Pb2+ ion/g using Alg.S+SiO2NH2. Furthermore, the Pb(II) ions were successfully desorbed in several cycles from Alg.T+SiO2 using 0.5 M hydrochloric acid. Therefore, Alg.T+SiO2 may be considered as a low-cost biosorbent that quickly adsorbs and easily desorbs analyte lead ions. A comparison of the adsorption capacity of our biopolymer-coated particles with that of other adsorbents reported in the literature reveals that our materials are among the best performing for the adsorption of Pb(II).
Collapse
Affiliation(s)
- Moumin Aden
- Institut UTINAM, UMR CNRS 6213, Université Bourgogne Franche-Comté , 16 Route de Gray , Besançon 25030 , France
- Faculté des Sciences, Université de Djibouti , Avenue Djanaleh 1904 , Djibouti
| | - Jérôme Husson
- Institut UTINAM, UMR CNRS 6213, Université Bourgogne Franche-Comté , 16 Route de Gray , Besançon 25030 , France
| | - Sandrine Monney
- Institut UTINAM, UMR CNRS 6213, Université Bourgogne Franche-Comté , 16 Route de Gray , Besançon 25030 , France
| | - Marielle Franchi
- IUT de Chimie, Université Bourgogne Franche-Comté , 30 Avenue de l’Observatoire , Besançon 25090 , France
| | - Michael Knorr
- Institut UTINAM, UMR CNRS 6213, Université Bourgogne Franche-Comté , 16 Route de Gray , Besançon 25030 , France
| | - Myriam Euvrard
- Institut UTINAM, UMR CNRS 6213, Université Bourgogne Franche-Comté , 16 Route de Gray , Besançon 25030 , France
| |
Collapse
|
30
|
Liu X, Wan Y, Liu P, Zhao L, Zou W. Optimization of sulfamethazine sodium adsorption onto activated carbon-based Salix psammophila: investigation of adsorption behavior and mechanism. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2018.1472011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Xiao Liu
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Yibei Wan
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Penglei Liu
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Lei Zhao
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Weihua Zou
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, People’s Republic of China
| |
Collapse
|
31
|
Synthesis of cross-linked sulfonated poly(ether ether ketone) and its use for Pb2+ and 137Cs removal from aqueous solution. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-018-6245-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
32
|
Tao J, Huo P, Fu Z, Zhang J, Yang Z, Zhang D. Characterization and phenol adsorption performance of activated carbon prepared from tea residue by NaOH activation. ENVIRONMENTAL TECHNOLOGY 2019; 40:171-181. [PMID: 28934911 DOI: 10.1080/09593330.2017.1384069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/14/2017] [Indexed: 05/18/2023]
Abstract
The preparation of activated carbon (AC) using tea residue was addressed in this work. The preparation process incorporated two-step pyrolysis and activation using NaOH. The influence of activation temperature between 500°C and 700°C on the properties of the AC sample was investigated. The physicochemical properties of the AC sample were characterized. The results show that the optimum temperature for the activation process is 700°C, which generates the AC sample with higher specific surface area and total pore volume, respectively, of 819 m2 g-1 and 0.443 cm3 g-1. The oxygen-containing functional groups evolve on the AC sample during the activation process. The phenol adsorption test was performed to evaluate the adsorption performance of the AC sample. The adsorption data confirm that phenol adsorption on the AC sample obtained at 700°C follows the pseudo-second-order kinetics model. Hereby, the electron donor-acceptor interaction mechanism can describe the adsorption process. The AC sample obtained at 700°C performs superior phenol adsorption performance. The maximum phenol adsorption capacity is 320 mg g-1, which is higher than that of several AC samples reported previously. Thus, the tea residue acts as a good precursor for the AC with promising adsorption capacity by the NaOH chemical activation method.
Collapse
Affiliation(s)
- Jun Tao
- a Faculty of Chemical Engineering , Kunming University of Science and Technology , Kunming , People's Republic of China
| | - Peili Huo
- a Faculty of Chemical Engineering , Kunming University of Science and Technology , Kunming , People's Republic of China
| | - Zongheng Fu
- a Faculty of Chemical Engineering , Kunming University of Science and Technology , Kunming , People's Republic of China
| | - Jin Zhang
- a Faculty of Chemical Engineering , Kunming University of Science and Technology , Kunming , People's Republic of China
| | - Zhen Yang
- a Faculty of Chemical Engineering , Kunming University of Science and Technology , Kunming , People's Republic of China
| | - Dengfeng Zhang
- a Faculty of Chemical Engineering , Kunming University of Science and Technology , Kunming , People's Republic of China
| |
Collapse
|
33
|
Boudrahem F, Aissani-Benissad F, Audonnet F, Vial C. Effects of acid-basic treatments of date stones on lead (II) adsorption. SEP SCI TECHNOL 2018. [DOI: 10.1080/01496395.2018.1538240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Farouk Boudrahem
- Laboratoire de Génie de l’Environnement (LGE), Faculté de Technologie, Université de Bejaia, Bejaia, Algérie
| | - Farida Aissani-Benissad
- Laboratoire de Génie de l’Environnement (LGE), Faculté de Technologie, Université de Bejaia, Bejaia, Algérie
| | - Fabrice Audonnet
- Axe GePEB, Istitut Pascal (UMR 6602), Université Blaise Pascal, Aubière, France
| | - Christophe Vial
- Axe GePEB, Istitut Pascal (UMR 6602), Université Blaise Pascal, Aubière, France
| |
Collapse
|
34
|
Synthesis of highly-efficient functionalized biochars from fruit industry waste biomass for the removal of chromium and lead. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.07.072] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Radwan EK, El-Wakeel ST, Gad-Allah TA. Effects of activation conditions on the structural and adsorption characteristics of pinecones derived activated carbons. J DISPER SCI TECHNOL 2018. [DOI: 10.1080/01932691.2018.1467327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Emad K. Radwan
- Water Pollution Research Department, National Research Centre, Dokki, Giza, Egypt
| | - Shaimaa T. El-Wakeel
- Water Pollution Research Department, National Research Centre, Dokki, Giza, Egypt
| | - Tarek A. Gad-Allah
- Water Pollution Research Department, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
36
|
Chu G, Zhao J, Huang Y, Zhou D, Liu Y, Wu M, Peng H, Zhao Q, Pan B, Steinberg CEW. Phosphoric acid pretreatment enhances the specific surface areas of biochars by generation of micropores. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 240:1-9. [PMID: 29729563 DOI: 10.1016/j.envpol.2018.04.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/31/2018] [Accepted: 04/01/2018] [Indexed: 06/08/2023]
Abstract
Biochars are being increasingly applied in soil for carbon sequestration, fertility improvement, as well as contamination remediation. Phosphoric acid (H3PO4) pretreatment is a method for biochar modification, but the mechanism is not yet fully understood. In this work, biochars and the raw biomass were treated by H3PO4 prior to pyrolysis. Due to an acid catalysis and crosslink, the micropores of the pretreated particles were much more than those without H3PO4 pretreatment, resulting in the dramatical enhancement of specific surface areas of the pretreated particles. Crystalline cellulose (CL) exhibited a greater advantage in the formation of micropores than of amorphous lignin (LG) with H3PO4 modification. The formation mechanisms of micropores were: (a) H+ from H3PO4 contributes to micropores generation via H+ catalysis process; (b) the organic phosphate bridge protected the carbon skeleton from micropore collapse via the crosslinking of phosphate radical. The sorption capacities to carbamazepine (CBZ) and bisphenol A (BPA) increased after H3PO4 modification, which is ascribed to the large hydrophobic surface areas and more abundant micropores. Overall, H3PO4 pretreatment produced biochars with large surface area and high abundance of porous structures. Furthermore, the H3PO4 modified biochars can be applied as high adsorbing material as well as P-rich fertilizer.
Collapse
Affiliation(s)
- Gang Chu
- Faculty of Environment Science & Engineering, Kunming University of Science & Technology, Kunming, Yunnan, 650500, China
| | - Jing Zhao
- Faculty of Environment Science & Engineering, Kunming University of Science & Technology, Kunming, Yunnan, 650500, China
| | - Yu Huang
- Faculty of Environment Science & Engineering, Kunming University of Science & Technology, Kunming, Yunnan, 650500, China
| | - Dandan Zhou
- Faculty of Environment Science & Engineering, Kunming University of Science & Technology, Kunming, Yunnan, 650500, China
| | - Yang Liu
- Faculty of Environment Science & Engineering, Kunming University of Science & Technology, Kunming, Yunnan, 650500, China
| | - Min Wu
- Faculty of Environment Science & Engineering, Kunming University of Science & Technology, Kunming, Yunnan, 650500, China
| | - Hongbo Peng
- Faculty of Environment Science & Engineering, Kunming University of Science & Technology, Kunming, Yunnan, 650500, China
| | - Qing Zhao
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Bo Pan
- Faculty of Environment Science & Engineering, Kunming University of Science & Technology, Kunming, Yunnan, 650500, China.
| | - Christian E W Steinberg
- Faculty of Life Sciences, Institute of Biology, Freshwater & Stress Ecology, Humboldt-University at Berlin, Arboretum, Späthstr. 80/81, 12437, Berlin, Germany
| |
Collapse
|
37
|
Samuel MS, Shah SS, Bhattacharya J, Subramaniam K, Pradeep Singh N. Adsorption of Pb(II) from aqueous solution using a magnetic chitosan/graphene oxide composite and its toxicity studies. Int J Biol Macromol 2018; 115:1142-1150. [DOI: 10.1016/j.ijbiomac.2018.04.185] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 04/05/2018] [Accepted: 04/30/2018] [Indexed: 10/17/2022]
|
38
|
Yuan D, Zheng Y, Li Q, Lin B, Zhang G, Liu J. Effects of pore structure of prepared coal-based activated carbons on CH4 enrichment from low concentration gas by IAST method. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2018.04.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Moradi G, Dabirian F, Mohammadi P, Rajabi L, Babaei M, Shiri N. Electrospun fumarate ferroxane/polyacrylonitrile nanocomposite nanofibers adsorbent for lead removal from aqueous solution: Characterization and process optimization by response surface methodology. Chem Eng Res Des 2018. [DOI: 10.1016/j.cherd.2017.09.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Kang X, Wang C, Yin J. Hierarchically Porous Carbons Derived from Cotton Stalks for High-Performance Supercapacitors. ChemElectroChem 2017. [DOI: 10.1002/celc.201700501] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaonan Kang
- School of Chemistry and Chemical Engineering; Shihezi University; Shihezi 832003 China
- Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Technical Institute of Physics & Chemistry; Chinese Academy of Sciences; 40-1 South Beijing Road Urumqi, Xinjiang 830011 China
- Laboratory of Eco-Materials and Sustainable Technology (LEMST); Xinjiang Technical Institute of Physics & Chemistry; Chinese Academy of Sciences; 40-1 South Beijing Road Urumqi, Xinjiang 830011 China
| | - Chuanyi Wang
- School of Chemistry and Chemical Engineering; Shihezi University; Shihezi 832003 China
- Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Technical Institute of Physics & Chemistry; Chinese Academy of Sciences; 40-1 South Beijing Road Urumqi, Xinjiang 830011 China
- Laboratory of Eco-Materials and Sustainable Technology (LEMST); Xinjiang Technical Institute of Physics & Chemistry; Chinese Academy of Sciences; 40-1 South Beijing Road Urumqi, Xinjiang 830011 China
| | - Jiao Yin
- Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Technical Institute of Physics & Chemistry; Chinese Academy of Sciences; 40-1 South Beijing Road Urumqi, Xinjiang 830011 China
- Laboratory of Eco-Materials and Sustainable Technology (LEMST); Xinjiang Technical Institute of Physics & Chemistry; Chinese Academy of Sciences; 40-1 South Beijing Road Urumqi, Xinjiang 830011 China
| |
Collapse
|
41
|
Marrakchi F, Ahmed M, Khanday W, Asif M, Hameed B. Mesoporous-activated carbon prepared from chitosan flakes via single-step sodium hydroxide activation for the adsorption of methylene blue. Int J Biol Macromol 2017; 98:233-239. [DOI: 10.1016/j.ijbiomac.2017.01.119] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/05/2017] [Accepted: 01/26/2017] [Indexed: 11/30/2022]
|
42
|
Liu Z, Zhong X, Wang Y, Ding Z, Wang C, Wang G, Liao S. An Efficient Adsorption of Manganese Oxides/Activated Carbon Composite for Lead(II) Ions from Aqueous Solution. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2017. [DOI: 10.1007/s13369-017-2514-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Al Lafi AG, Ajji Z. Radiation grafting of acrylic acid andN-vinyl imidazole onto polyethylene films for lead-ion removal: A two-dimensional correlation infrared spectroscopy investigation. J Appl Polym Sci 2017. [DOI: 10.1002/app.44781] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Abdul G. Al Lafi
- Department of Chemistry; Atomic Energy Commission; P.O. Box 6091 Damascus Syrian Arab Republic
| | - Z. Ajji
- Department of Chemistry; Atomic Energy Commission; P.O. Box 6091 Damascus Syrian Arab Republic
| |
Collapse
|
44
|
Efficient removal/recovery of Pb onto environmentally friendly fabricated copper ferrite nanoparticles. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2016.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Tang C, Shu Y, Zhang R, Li X, Song J, Li B, Zhang Y, Ou D. Comparison of the removal and adsorption mechanisms of cadmium and lead from aqueous solution by activated carbons prepared from Typha angustifolia and Salix matsudana. RSC Adv 2017. [DOI: 10.1039/c6ra28035h] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
H3PO4 activated Typha angustifolia and Salix matsudana carbons provide good adsorption/desorption characteristics for Cd and Pb.
Collapse
Affiliation(s)
- Chunfang Tang
- College of Environmental Science and Engineering
- Central South University of Forestry and Technology
- Changsha 410004
- China
| | - Yan Shu
- College of Environmental Science and Engineering
- Central South University of Forestry and Technology
- Changsha 410004
- China
| | - Riqing Zhang
- College of Forestry
- Central South University of Forestry and Technology
- Changsha 410004
- China
| | - Xin Li
- College of Environmental Science and Engineering
- Hunan University
- Changsha 410082
- China
| | - Jinfeng Song
- College of Environmental Science and Engineering
- Central South University of Forestry and Technology
- Changsha 410004
- China
| | - Bing Li
- College of Environmental Science and Engineering
- Central South University of Forestry and Technology
- Changsha 410004
- China
| | - Yuting Zhang
- College of Environmental Science and Engineering
- Central South University of Forestry and Technology
- Changsha 410004
- China
| | - Danling Ou
- College of Environmental Science and Engineering
- Central South University of Forestry and Technology
- Changsha 410004
- China
| |
Collapse
|
46
|
Sun Y, Li H, Li G, Gao B, Yue Q, Li X. Characterization and ciprofloxacin adsorption properties of activated carbons prepared from biomass wastes by H3PO4 activation. BIORESOURCE TECHNOLOGY 2016; 217:239-244. [PMID: 27034157 DOI: 10.1016/j.biortech.2016.03.047] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 06/05/2023]
Abstract
As biomass wastes, Arundo donax Linn and pomelo peel were used as precursors for activated carbons (ALAC and PPAC) preparation by phosphoric acid activation. The pore structure and surface acidic functional groups of both carbons were characterized by nitrogen adsorption/desorption experiment, NH3-temperature-programmed desorption (NH3-TPD) and Fourier transform infrared spectroscopy (FTIR). A batch of experiments was carried out to investigate the adsorption performances of ciprofloxacin under different conditions. Results showed that PPAC exhibited larger surface area (1252m(2)/g) and larger portion of mesoporous, while ALAC was typical of microporous materials. Results from NH3-TPD suggested that ALAC was characteristic of more acidic functional group than PPAC. The maximum monolayer adsorption capability was 244mg/g for ALAC and 400mg/L for PPAC. Kinetics studies showed intra-particle diffusion was not the unique rate-controlling step. Boundary layer resistance existed between adsorbent and adsorbate.
Collapse
Affiliation(s)
- Yuanyuan Sun
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Hong Li
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Guangci Li
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Baoyu Gao
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Qinyan Yue
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Xuebing Li
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
| |
Collapse
|
47
|
Potential of Arundo donax L. stems as renewable precursors for activated carbons and utilization for wastewater treatments: Review. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2016.03.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
A new statistical physics model to interpret the binary adsorption isotherms of lead and zinc on activated carbon. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2015.12.080] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
49
|
Stanković MN, Krstić NS, Mitrović JZ, Najdanović SM, Petrović MM, Bojić DV, Dimitrijević VD, Bojić AL. Biosorption of copper(ii) ions by methyl-sulfonated Lagenaria vulgaris shell: kinetic, thermodynamic and desorption studies. NEW J CHEM 2016. [DOI: 10.1039/c5nj02408k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemically modified Lagenaria vulgaris shell was found to be an efficient, regenerative biosorbent to remove copper ions from wastewater models.
Collapse
Affiliation(s)
- Maja N. Stanković
- Department of Chemistry
- Faculty of Sciencies
- University of Niš
- 18000 Niš
- Serbia
| | - Nenad S. Krstić
- Department of Chemistry
- Faculty of Sciencies
- University of Niš
- 18000 Niš
- Serbia
| | - Jelena Z. Mitrović
- Department of Chemistry
- Faculty of Sciencies
- University of Niš
- 18000 Niš
- Serbia
| | | | - Milica M. Petrović
- Department of Chemistry
- Faculty of Sciencies
- University of Niš
- 18000 Niš
- Serbia
| | - Danijela V. Bojić
- Department of Chemistry
- Faculty of Sciencies
- University of Niš
- 18000 Niš
- Serbia
| | | | | |
Collapse
|
50
|
Li K, Cao J, Li H, Liu J, Lu M, Tang D. Nitrogen functionalized hierarchical microporous/mesoporous carbon with a high surface area and controllable nitrogen content for enhanced lead(ii) adsorption. RSC Adv 2016. [DOI: 10.1039/c6ra19166e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nitrogen-doped hierarchical microporous/mesoporous carbons (NHMCs) were conveniently fabricated for enhanced lead adsorption through a sol–gel method and NaOH-assisted activation with a soluble melamine–phenol–formaldehyde resin as a precursor.
Collapse
Affiliation(s)
- Kunquan Li
- College of Engineering
- Nanjing Agricultural University
- Nanjing 210031
- China
- School of Environmental Science & Engineering
| | - Jinfan Cao
- College of Engineering
- Nanjing Agricultural University
- Nanjing 210031
- China
| | - Hua Li
- College of Engineering
- Nanjing Agricultural University
- Nanjing 210031
- China
| | - Jiamin Liu
- College of Engineering
- Nanjing Agricultural University
- Nanjing 210031
- China
| | - Mingzhou Lu
- College of Engineering
- Nanjing Agricultural University
- Nanjing 210031
- China
| | - Dengyong Tang
- School of Environmental Science & Engineering
- Nanjing University of Information Science & Technology
- Nanjing 210031
- China
| |
Collapse
|