1
|
Guembe-García M, Utzeri G, Valente AJM, Ibeas S, Trigo-López M, García JM, Vallejos S. Efficient extraction of textile dyes using reusable acrylic-based smart polymers. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135006. [PMID: 38941828 DOI: 10.1016/j.jhazmat.2024.135006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
Water pollution from industrial or household waste, containing dyes from the textile industry, poses a significant environmental challenge requiring immediate attention. In this study, we have developed a crosslinked-smart-polymer film based on 2-(dimethylamino)ethyl methacrylate copolymerized with other hydrophilic and hydrophobic commercial monomers, and its efficacy in removing 21 different textile dyes was assessed. The smart polymer effectively interacts with and adsorbs dyes, inducing a noticeable colour change. UV-Vis spectroscopy analysis confirmed a removal efficiency exceeding 90 % for anionic dyes, with external diffusion identified as the primary influencing factor on process kinetics, consistent with both pseudo-first-order kinetics and the Crank-Dual model. Isothermal studies revealed distinct adsorption behaviors, with indigo carmine adhering to a Freundlich isotherm while others conformed to the Langmuir model. Permeation and fluorescence analyses corroborated isotherm observations, verifying surface adsorption. Significantly, our proof-of-concept demonstrated the resilience of the smart-film to common fabric softeners and detergents without compromising adsorption capacity. Additionally, the material exhibited reusability (for at least 5 cycles), durability, and good thermal and mechanical properties, with T5 and T10 values of 265 °C and 342 °C, respectively, a Tg of 168 °C, and a water swelling percentage of 54.3 %, thus confirming its stability and suitability for industrial application. ENVIRONMENTAL IMPLICATION: Dyes released during laundry processes should be classified as "hazardous materials" owing to their significant toxicity towards aquatic organisms, with the potential to disrupt ecosystems and harm aquatic biodiversity. This paper discusses the development of a novel acrylic material in film form, engineered to extract toxic anionic dyes. This study directly contributes to mitigating the environmental impact associated with the fashion industry and the domestic use of textiles. It can be implemented on both an industrial and personal scale, thereby encouraging more sustainable practices and promoting collaborative citizen science efforts towards.
Collapse
Affiliation(s)
- Marta Guembe-García
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Gianluca Utzeri
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Artur J M Valente
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Saturnino Ibeas
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Miriam Trigo-López
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Jose Miguel García
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Saul Vallejos
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain.
| |
Collapse
|
2
|
Sharma P, Ganguly M, Doi A. Analytical developments in the synergism of copper particles and cysteine: a review. NANOSCALE ADVANCES 2024; 6:3476-3493. [PMID: 38989510 PMCID: PMC11232554 DOI: 10.1039/d4na00321g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/15/2024] [Indexed: 07/12/2024]
Abstract
Cysteine, a sulfur-containing amino acid, is a vital candidate for physiology. Coinage metal particles (both clusters and nanoparticles) are highly interesting for their spectacular plasmonic properties. In this case, copper is the most important candidate for its cost-effectiveness and abundance. However, rapid oxidation destroys the stability of copper particles, warranting the necessity of suitable capping agents and experimental conditions. Cysteine can efficiently carry out such a role. On the contrary, cysteine sensing is a vital step for biomedical science. This review article is based on a comparative account of copper particles with cysteine passivation and copper particles for cysteine sensing. For the deep understanding of readers, we discuss nanoparticles and nanoclusters, properties of cysteine, and importance of capping agents, along with various synthetic protocols and applications (sensing and bioimaging) of cysteine-capped copper particles (cysteine-capped copper nanoparticles and cysteine-capped copper nanoclusters). We also include copper nanoparticles and copper nanoclusters for cysteine sensing. As copper is a plasmonic material, fluorometric and colorimetric methods are mostly used for sensing. Real sample analysis for both copper particles with cysteine and copper particles for cysteine sensing are also incorporated in this review to demonstrate their practical applications. Both cysteine-capped copper particles and copper particles for cysteine sensing are the main essence of this review. The aspect of the synergism of copper and cysteine (unlike other amino acids) is quite promising for future researchers.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Chemistry, Manipal University Jaipur Dehmi Kalan Jaipur 303007 India
| | - Mainak Ganguly
- Department of Chemistry, Manipal University Jaipur Dehmi Kalan Jaipur 303007 India
| | - Ankita Doi
- Department of Biosciences, Manipal University Jaipur Dehmi Kalan Jaipur 303007 India
| |
Collapse
|
3
|
Bustamante SE, Vallejos S, Pascual-Portal BS, Muñoz A, Mendia A, Rivas BL, García FC, García JM. Polymer films containing chemically anchored diazonium salts with long-term stability as colorimetric sensors. JOURNAL OF HAZARDOUS MATERIALS 2019; 365:725-732. [PMID: 30472458 DOI: 10.1016/j.jhazmat.2018.11.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/05/2018] [Accepted: 11/15/2018] [Indexed: 05/03/2023]
Abstract
We have prepared polymeric films as easy-to-handle sensory materials for the colorimetric detection and quantification of phenol derivatives (phenols) in water. Phenols in water resources result from their presence in pesticides and fungicides, among other goods, and are harmful ecotoxins. Colorless polymeric films with pendant diazonium groups attached to the acrylic polymer structure were designed and prepared for use as sensory matrices to detect phenol-derived species in water. Upon dipping the sensory films into aqueous media, the material swells, and if phenols are present, they react with the diazonium groups of the polymer to render a highly colored azo group, giving rise to the recognition phenomenon. The color development can be visually followed for a qualitative determination of phenols. Additionally, quantitative analysis can be performed by two different techniques: a) by using a UV-vis spectrophotometer (limit of detection of 0.12 ppm for 2-phenylphenol) and/or b) by using a smartphone with subsequent RGB analysis (limit of detection of 30 ppb for 2-phenylphenol).
Collapse
Affiliation(s)
- Saúl E Bustamante
- Polymer Department, Faculty of Chemistry, University of Concepción, Casilla 160-C, Concepción, Chile
| | - Saúl Vallejos
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001, Burgos, Spain.
| | - Blanca Sol Pascual-Portal
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Asunción Muñoz
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Aránzazu Mendia
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Bernabé L Rivas
- Polymer Department, Faculty of Chemistry, University of Concepción, Casilla 160-C, Concepción, Chile.
| | - Félix C García
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001, Burgos, Spain
| | - José M García
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001, Burgos, Spain.
| |
Collapse
|
4
|
Ma Y, Chen Y, Liu J, Han Y, Ma S, Chen X. Ratiometric fluorescent detection of chromium(VI) in real samples based on dual emissive carbon dots. Talanta 2018; 185:249-257. [PMID: 29759197 DOI: 10.1016/j.talanta.2018.03.081] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/20/2018] [Accepted: 03/24/2018] [Indexed: 12/17/2022]
Abstract
As we know, hexavalent chromium (Cr(VI)) was usually used as an additive to improve the color fastness during the printing and dyeing process, and thus posing tremendous threat to our health and living quality. In this work, the dual emissive carbon dots (DECDs) were synthesized through hydrothermal treatment of m-aminophenol and oxalic acid. The obtained DECDs not only exhibited dual emission fluorescence peaks (430 nm, 510 nm) under the single excitation wavelength of 380 nm, but also possessed good water solubility and excellent fluorescence stability. A ratiometric fluorescent method for the determination of Cr(VI) was developed using the DECDs as a probe. Under the optimal conditions, a linear range was obtained from 2 to 300 μM with a limit of detection of 0.4 μM. Furthermore, the proposed ratiometric fluorescent method was applied to the analysis of Cr(VI) in textile, steel, industrial wastewater and chromium residue samples with satisfactory recoveries (88.4-106.8%).
Collapse
Affiliation(s)
- Yunxia Ma
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China; Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yonglei Chen
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China; Department of Chemistry, Lanzhou University, Lanzhou 730000, China.
| | - Juanjuan Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China; Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yangxia Han
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China; Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Sudai Ma
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China; Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xingguo Chen
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China; Department of Chemistry, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou 730000, China.
| |
Collapse
|
5
|
Synthesis of cysteine-functionalized water-soluble luminescent copper nanoclusters and their application to the determination of chromium(VI). Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1458-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Highly Selective Detection of Cr(VI) in Water Matrix by a Simple 1,8-Naphthalimide-Based Turn-On Fluorescent Sensor. J Fluoresc 2015; 25:335-40. [DOI: 10.1007/s10895-015-1514-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/19/2015] [Indexed: 10/24/2022]
|
7
|
Cai F, Liu X, Liu S, Liu H, Huang Y. A simple one-pot synthesis of highly fluorescent nitrogen-doped graphene quantum dots for the detection of Cr(vi) in aqueous media. RSC Adv 2014. [DOI: 10.1039/c4ra09320h] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|