1
|
A Recent Progress in the Leachate Pretreatment Methods Coupled with Anaerobic Digestion for Enhanced Biogas Production: Feasibility, Trends, and Techno-Economic Evaluation. Int J Mol Sci 2023; 24:ijms24010763. [PMID: 36614205 PMCID: PMC9820962 DOI: 10.3390/ijms24010763] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Landfill leachate (LFL) treatment is a severe challenge due to its highly viscous nature and various complex pollutants. Leachate comprises various toxic pollutants, including inorganic macro/nano components, xenobiotics, dissolved organic matter, heavy metals, and microorganisms responsible for severe environmental pollution. Various treatment procedures are available to achieve better effluent quality levels; however, most of these treatments are nondestructive, so pollutants are merely transported from one phase to another, resulting in secondary contamination. Anaerobic digestion is a promising bioconversion technology for treating leachate while producing renewable, cleaner energy. Because of its high toxicity and low biodegradability, biological approaches necessitate employing other techniques to complement and support the primary process. In this regard, pretreatment technologies have recently attracted researchers' interest in addressing leachate treatment concerns through anaerobic digestion. This review summarizes various LFL pretreatment methods, such as electrochemical, ultrasonic, alkaline, coagulation, nanofiltration, air stripping, adsorption, and photocatalysis, before the anaerobic digestion of leachate. The pretreatment could assist in converting biogas (carbon dioxide to methane) and residual volatile fatty acids to valuable chemicals and fuels and even straight to power generation. However, the selection of pretreatment is a vital step. The techno-economic analysis also suggested the high economic feasibility of integrated-anaerobic digestion. Therefore, with the incorporation of pretreatment and anaerobic digestion, the process could have high economic viability attributed to bioenergy production and cost savings through sustainable leachate management options.
Collapse
|
2
|
Vaidh S, Parekh D, Patel D, Vishwakarma GS. Leachate treatment potential of nanomaterial based assemblies: a systematic review on recent development. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:3285-3300. [PMID: 35704411 DOI: 10.2166/wst.2022.168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rapid development of the population has brought about a serious problem of waste generation and management. Open dumping and land filling are two of the preferred options for waste management and treatment. As a consequence of this, the accumulation of leachates has become one of the concerns for environmental sustainability. In this regard, various treatment methodologies have been developed in recent decades. Among them, the nanomaterial-based approaches are the emerging ones in the current scenario due to their various unique properties. Furthermore, nanomaterial-based assemblies (i.e., nanomaterials combined with microbes, chemical catalysts, enzymes, and so on) have been introduced as a novel modification for leachate treatment. This work, therefore, has been dedicated to comprehensively reviewing all nanomaterial based leachate treatment techniques. In this regard, the first part of this review will discuss the nano catalyst, nano adsorbent along with their synthesis and mechanistic view of pollutant removal potential. In the second part, the nanomaterial-based microbial conjugates applied in the leachate treatments have been discussed. Apart from this, various other nanomaterial-based methods have been discussed in the third part of the review. Hence this review is providing an insight of all the recent developments pertaining to the nano material based leachate treatment techniques.
Collapse
Affiliation(s)
- Sachin Vaidh
- Department of Biological Science and Biotechnology, Institute of Advanced Research, Gandhinagar, Gujarat 382426, India E-mail:
| | - Dharni Parekh
- Department of Biological Science and Biotechnology, Institute of Advanced Research, Gandhinagar, Gujarat 382426, India E-mail:
| | - Dhara Patel
- Department of Biological Science and Biotechnology, Institute of Advanced Research, Gandhinagar, Gujarat 382426, India E-mail:
| | - Gajendra Singh Vishwakarma
- Department of Biological Science and Biotechnology, Institute of Advanced Research, Gandhinagar, Gujarat 382426, India E-mail:
| |
Collapse
|
3
|
Fang D, Wang J, Cui D, Dong X, Tang C, Zhang L, Yue D. Recent Advances of Landfill Leachate Treatment. J Indian Inst Sci 2021. [DOI: 10.1007/s41745-021-00262-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Aarthi A, Bindhu MR, Umadevi M, Parimaladevi R, Sathe GV, Al-Mohaimeed AM, Elshikh MS, Balasubramanian B. Evaluating the detection efficacy of advanced bimetallic plasmonic nanoparticles for heavy metals, hazardous materials and pesticides of leachate in contaminated groundwater. ENVIRONMENTAL RESEARCH 2021; 201:111590. [PMID: 34181923 DOI: 10.1016/j.envres.2021.111590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 05/20/2023]
Abstract
During the decomposition of trashes, leachate is created and leaching is gradually pollutes the surface and groundwater. Thus, the most severe ecological impact is the risk of ground water pollution because of collection of leachate from unlined insecure landfills. Due to the low biodegradable organic strength, irregular productivity and composition, the environmentally neglected landfill leachate treatment is challenging. This work was conducted on a synthetically effective bimetallic surface enhanced Raman spectroscopic (SERS) nanosensor by gold/silver-bimetallic nanoparticles (Au/Ag-NPs), and used for the specific detection of municipal solid waste (MSW) landfill leachate in groundwater. The optical study of Au/Ag-NPs led to reflections from Ag cores and small Au shells. The structural studies represent the FCC structure of Au/Ag-NPs. The core-shell nanocrevice NPs with particle size of 23 nm played an important role with plasmonic behaviour enhances the electromagnetic excitation to achieve SERS detection and plasmonic photocatalysis. Thus, obtained results clearly show that Au was successfully added to Ag-NPs, and its existence can also be confirmed by energy dispersive spectroscopy (EDAX). The prepared SERS based sensors have the potential to detect aromatic hydrocarbon, pesticides and heavy metals from environmentally ignored MSW landfill leachate. In general, the application of this new synergetic strategy of the photocatalytic degradation of leachate was irradiated by visible wavelength with the rate constant of 0.0036/min, 0.0047/min and 0.005/min by Ag-NPs, Au-NPs and Au/Ag-NPs respectively. Overall, this is the only study achieved efficiently with photocatalytic degradation and SERS detection of environmentally ignored real sample (leachate) to make pollutant free homeland aquifers.
Collapse
Affiliation(s)
- A Aarthi
- Department of Physics, Mother Teresa Women's University, Kodaikanal, 624102, India
| | - M R Bindhu
- Department of Physics, Sree Devi Kumari Women's College, Kuzhithurai, 629163, India
| | - M Umadevi
- Department of Physics, Mother Teresa Women's University, Kodaikanal, 624102, India.
| | - R Parimaladevi
- Department of Physics, Mother Teresa Women's University, Kodaikanal, 624102, India
| | - G V Sathe
- UGC - DAE Consortium for Scientific Research, Indore, India
| | - Amal M Al-Mohaimeed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | | |
Collapse
|
5
|
Degradation of Landfill Leachate Using UV-TiO2 Photocatalysis Combination with Aged Waste Reactors. Processes (Basel) 2021. [DOI: 10.3390/pr9060946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This study explored the performance of TiO2 nanoparticles in combination with aged waste reactors to treat landfill leachate. The optimum conditions for synthesis of TiO2 were determined by a series of characterizations and removal rates of methyl orange. The effect of the ultraviolet irradiation time, amount of the catalyst, and pH on the removal efficiency for the chemical oxygen demand (COD) and color in the leachate was explored to determine the optimal process conditions, which were 500 min, 4 g/L and 8.88, respectively. The removal rates for COD and chroma under three optimal conditions were obtained by the single factor control method: 89% and 70%; 95.56% and 70%; and 85% and 87.5%, respectively. Under optimal process conditions, the overall average removal rates for ammonium nitrogen (NH4+–N) and COD in the leachate for the combination of TiO2 nanoparticles and an aged waste reactor were 98.8% and 32.5%, respectively, and the nitrate (NO3−–N) and nitrite nitrogen (NO2–N) concentrations were maintained at 7–9 and 0.01–0.017 mg/L, respectively. TiO2 nanoparticles before and after the photocatalytic reaction were characterized by emission scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and Fourier transform infrared spectrometry. In addition, TiO2 nanoparticles have excellent recyclability, showing the potential of the photocatalytic/biological combined treatment of landfill leachate. This simulation of photocatalysis-landfilling could be a baseline study for the implementation of technology at the pilot scale.
Collapse
|
6
|
Phuekphong AF, Imwiset KJ, Ogawa M. Designing nanoarchitecture for environmental remediation based on the clay minerals as building block. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:122888. [PMID: 32937697 DOI: 10.1016/j.jhazmat.2020.122888] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/29/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Nanoarchitecture of hybrids materials based on clay minerals as nano building blocks for the environmental remediation is summarized with the emphasis on the utilization of layered clay minerals, especially smectite group of clay minerals, as nano building blocks for designing functional nanostructures for the adsorption of molecular contaminants from the environments. Smectites are well-known adsorbents of cationic contaminants, while surface modification of smectites with organoammonium ions has given hydrophobic and microporous characters to uptake nonionic organic contaminants from environments. Not only on the designed interactions between adsorbent-adsorbate for efficient and higher capacity adsorption, the states of the adsorbed nonionic organic compounds have been altered and varied by the modification of smectites as shown by the controlled release and specific catalytic reactions. The organically modified clays are classified from the nanoarchitecture, and the functions derived from the nanoarchitectures are discussed based on the structure-property relationship.
Collapse
Affiliation(s)
- Alisa Fern Phuekphong
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| | - Kamonnart Jaa Imwiset
- School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand.
| |
Collapse
|
7
|
Becerra D, Soto J, Villamizar S, Machuca-Martínez F, Ramírez L. Alternative for the Treatment of Leachates Generated in a Landfill of Norte de Santander–Colombia, by Means of the Coupling of a Photocatalytic and Biological Aerobic Process. Top Catal 2020. [DOI: 10.1007/s11244-020-01284-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Zhang YJ, Yang ZH, Song PP, Xu HY, Xu R, Huang J, Li J, Zhou Y. Application of TiO2-organobentonite modified by cetyltrimethylammonium chloride photocatalyst and polyaluminum chloride coagulant for pretreatment of aging landfill leachate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:18552-18563. [PMID: 27294701 DOI: 10.1007/s11356-016-7031-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/02/2016] [Indexed: 06/06/2023]
Abstract
This study investigated the treatment performance for aging leachate containing refractory organic pollutants by TiO2-organobentonite photocatalyst combined with polyaluminum chloride (PAC) coagulant. TiO2 was immobilized on organobentonite granules as a supporter modified by cetyltrimethylammonium chloride (CTAC). The prepared catalysts were characterized by ESEM, FTIR, and XRD analysis, which showed that TiO2-organobentonite catalyst had uniform coating of TiO2 on support. Chemical oxygen demand (COD) and NH3-N removal rates by combination of TiO2-CTAC2.0 photocatalysis and PAC coagulation were evaluated, optimized, and compared to that by either treatment alone, with respect to TiO2-CTAC2.0 dose, photocatalytic contact time, pH, and PAC dose. Furthermore, higher removal rates (COD 80 %; NH3-N 46 %) were achieved by response surface methodology (RSM) when TiO2-CTAC2.0 photocatalysis was followed by PAC coagulation at optimized conditions. The optimized experimental conditions were TiO2-CTAC2.0 dosage of 5.09 g/L, at pH 5.53, photocatalytic contact time for 180 min, and PAC dosage of 1062 mg/L.
Collapse
Affiliation(s)
- Yi-Jie Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Zhao-Hui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China.
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China.
| | - Pei-Pei Song
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Hai-Yin Xu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Rui Xu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Jing Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Juan Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yan Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| |
Collapse
|
9
|
Li J, Yang ZH, Xu HY, Song PP, Huang J, Xu R, Zhang YJ, Zhou Y. Electrochemical treatment of mature landfill leachate using Ti/RuO2–IrO2 and Al electrode: optimization and mechanism. RSC Adv 2016. [DOI: 10.1039/c6ra05080h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Today, improving the elimination of refractory pollutants in landfill leachate through electrochemical oxidation technology has attracted considerable attention.
Collapse
Affiliation(s)
- Juan Li
- College of Environmental Science and Engineering
- Hunan University
- Changsha 410082
- PR China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University)
| | - Zhao-hui Yang
- College of Environmental Science and Engineering
- Hunan University
- Changsha 410082
- PR China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University)
| | - Hai-yin Xu
- College of Environmental Science and Engineering
- Hunan University
- Changsha 410082
- PR China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University)
| | - Pei-pei Song
- College of Environmental Science and Engineering
- Hunan University
- Changsha 410082
- PR China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University)
| | - Jing Huang
- College of Environmental Science and Engineering
- Hunan University
- Changsha 410082
- PR China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University)
| | - Rui Xu
- College of Environmental Science and Engineering
- Hunan University
- Changsha 410082
- PR China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University)
| | - Yi-jie Zhang
- College of Environmental Science and Engineering
- Hunan University
- Changsha 410082
- PR China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University)
| | - Yan Zhou
- College of Environmental Science and Engineering
- Hunan University
- Changsha 410082
- PR China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University)
| |
Collapse
|
10
|
Müller GT, Giacobbo A, dos Santos Chiaramonte EA, Rodrigues MAS, Meneguzzi A, Bernardes AM. The effect of sanitary landfill leachate aging on the biological treatment and assessment of photoelectrooxidation as a pre-treatment process. WASTE MANAGEMENT (NEW YORK, N.Y.) 2015; 36:177-183. [PMID: 25464941 DOI: 10.1016/j.wasman.2014.10.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/02/2014] [Accepted: 10/28/2014] [Indexed: 06/04/2023]
Abstract
The sanitary landfill leachate is a dark liquid, of highly variable composition, with recalcitrant features that hamper conventional biological treatment. The physical-chemical characteristics of the leachate along the landfill aging, as well as their effects on the efficiency of the conventional treatment, were evaluated at this paper. The feasibility of photoelectrooxidation process as an alternative technique for treatment of landfill leachates was also determined. Photoelectrooxidation experiments were conducted in a bench-scale reactor. Analysis of the raw leachate revealed many critical parameters demonstrating that the recalcitrance of leachate tends to increase with time, directly influencing the decline in efficiency of the conventional treatment currently employed. The effects of current density and lamp power were investigated. Using a 400 W power lamp and a current density of 31.5 mA cm(-)(2), 53% and 61% efficiency for the removal of ammoniacal nitrogen and chemical oxygen demand were respectively achieved by applying photoelectrooxidation process. With the removal of these pollutants, downstream biological treatment should be improved. These results demonstrate that photoelectrooxidation is a feasible technique for the treatment of sanitary landfill leachate, even considering this effluent's high resistance to treatment.
Collapse
Affiliation(s)
- Gabriel Timm Müller
- Universidade Estadual do Rio Grande do Sul (UERGS), R. Gal. João Manoel, 50, CEP 90010-030 Porto Alegre, RS, Brazil
| | - Alexandre Giacobbo
- Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Setor 4, Prédio 74, CEP 91501-970 Porto Alegre, RS, Brazil
| | | | | | - Alvaro Meneguzzi
- Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Setor 4, Prédio 74, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Andréa Moura Bernardes
- Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Setor 4, Prédio 74, CEP 91501-970 Porto Alegre, RS, Brazil.
| |
Collapse
|