1
|
Zr(OH) 4/GO Nanocomposite for the Degradation of Nerve Agent Soman (GD) in High-Humidity Environments. MATERIALS 2020; 13:ma13132954. [PMID: 32630315 PMCID: PMC7372395 DOI: 10.3390/ma13132954] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 12/16/2022]
Abstract
Zirconium hydroxide, Zr(OH)4 is known to be highly effective for the degradation of chemical nerve agents. Due to the strong interaction force between Zr(OH)4 and the adsorbed water, however, Zr(OH)4 rapidly loses its activity for nerve agents under high-humidity environments, limiting real-world applications. Here, we report a nanocomposite material of Zr(OH)4 and graphene oxide (GO) which showed enhanced stability in humid environments. Zr(OH)4/GO nanocomposite was prepared via a dropwise method, resulting in a well-dispersed and embedded GO in Zr(OH)4 nanocomposite. The nitrogen (N2) isotherm analysis showed that the pore structure of Zr(OH)4/GO nanocomposite is heterogeneous, and its meso-porosity increased from 0.050 to 0.251 cm3/g, compared with pristine Zr(OH)4 prepared. Notably, the composite material showed a better performance for nerve agent soman (GD) degradation hydrolysis under high-humidity air conditions (80% relative humidity) and even in aqueous solution. The soman (GD) degradation by the nanocomposite follows the catalytic reaction with a first-order half-life of 60 min. Water adsorption isotherm analysis and diffuse reflectance infrared Fourier transform (DRIFT) spectra provide direct evidence that the interaction between Zr(OH)4 and the adsorbed water is reduced in Zr(OH)4/GO nanocomposite, indicating that the active sites of Zr(OH)4 for the soman (GD) degradation, such as surface hydroxyl groups are almost available even in high-humidity environments.
Collapse
|
2
|
Jung H, Kim MK, Lee J, Kwon JH, Lee J. Characterization of the Zirconium Metal-Organic Framework (MOF) UiO-66-NH2 for the Decomposition of Nerve Agents in Solid-State Conditions Using Phosphorus-31 Solid State-Magic Angle Spinning Nuclear Magnetic Resonance (31P SS-MAS NMR) and Gas Chromatography – Mass Spectrometry (GC-MS). ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1768399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hyunsook Jung
- Agency for Defense Development (ADD), Daejeon, South Korea
| | - Min-Kun Kim
- Agency for Defense Development (ADD), Daejeon, South Korea
| | - Juno Lee
- Agency for Defense Development (ADD), Daejeon, South Korea
| | - Ji Hyun Kwon
- Agency for Defense Development (ADD), Daejeon, South Korea
| | - Jaeheon Lee
- Agency for Defense Development (ADD), Daejeon, South Korea
| |
Collapse
|
3
|
Kalinovskyy Y, Wright AJ, Hiscock JR, Watts TD, Williams RL, Cooper NJ, Main MJ, Holder SJ, Blight BA. Swell and Destroy: A Metal-Organic Framework-Containing Polymer Sponge That Immobilizes and Catalytically Degrades Nerve Agents. ACS APPLIED MATERIALS & INTERFACES 2020; 12:8634-8641. [PMID: 31990517 DOI: 10.1021/acsami.9b18478] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Organophosphorus chemical warfare agents function as potent neurotoxins. Whilst the destruction of nerve agents is most readily achieved by hydrolysis, their storage and transport are hazardous and lethal in milligram doses, with any spillage resulting in fatalities. Furthermore, current decontamination and remediation measures are limited by a need for stoichiometric reagents, solvents, and buffered solutions, complicating the process for the treatment of bulk contaminants. Herein, we report a composite polymer material capable of rendering bulk VX unusable by immobilization within a porous polymer until a metal-organic framework (MOF) catalyst fully hydrolyzes the neurotoxin. This is an all-in-one capability that minimizes the use of multiple reagents, facilitated by a porous high internal phase emulsion-based polystyrene monolith housing an active zirconia MOF catalyst (MOF-808); the porous polymer absorbs and immobilizes the liquid agents, while the MOF enables hydrolysis. The dichotomous hierarchy of porous materials facilitates the containment and rapid hydrolysis of VX (>80% degradation in 8 h) in the presence of excess H2O. This composite can further enable the hydrolysis of neat VX with reliance on ambient humidity (>95% in 11 days). Potentially, 4.5 kg of the composite can absorb, immobilize, and degrade the contents of a standard chemical drum/barrel (208 L, 55 gal) of the chemical warfare agent (CWA). We believe that this composite is the first example of what will be the go-to approach for CWA immobilization and degradation in the future. Furthermore, we believe that this demonstration of a catalytically reusable absorbent sponge provides a signpost for the development of similar materials where immobilization of a substrate in a catalytically active environment is desirable.
Collapse
Affiliation(s)
- Yaroslav Kalinovskyy
- School of Physical Sciences , University of Kent , Ingram Building, Canterbury CT2 7NH , U.K
| | - Alexander J Wright
- School of Physical Sciences , University of Kent , Ingram Building, Canterbury CT2 7NH , U.K
| | - Jennifer R Hiscock
- School of Physical Sciences , University of Kent , Ingram Building, Canterbury CT2 7NH , U.K
| | - Toby D Watts
- School of Physical Sciences , University of Kent , Ingram Building, Canterbury CT2 7NH , U.K
| | - Rebecca L Williams
- Defence Science and Technology Laboratory , Porton Down, Salisbury SP4 0JQ , Wiltshire, U.K
| | - Nicholas J Cooper
- Defence Science and Technology Laboratory , Porton Down, Salisbury SP4 0JQ , Wiltshire, U.K
| | - Marcus J Main
- Defence Science and Technology Laboratory , Porton Down, Salisbury SP4 0JQ , Wiltshire, U.K
| | - Simon J Holder
- School of Physical Sciences , University of Kent , Ingram Building, Canterbury CT2 7NH , U.K
| | - Barry A Blight
- School of Physical Sciences , University of Kent , Ingram Building, Canterbury CT2 7NH , U.K
- Department of Chemistry , University of New Brunswick , Fredericton , New Brunswick E3B 5A3 , Canada
| |
Collapse
|
4
|
Dey N, Jha S, Bhattacharya S. Visual detection of a nerve agent simulant using chemically modified paper strips and dye-assembled inorganic nanocomposite. Analyst 2018; 143:528-535. [PMID: 29236113 DOI: 10.1039/c7an01058c] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Chromogenic probe with oxidized bis-indolyl scaffold has been synthesized for the detection of a nerve gas mimicking agent, DCNP (diethyl cyanophosphonate) at pH 8.0 in water. The mechanism of interaction was proposed as the release of cyanide ion through the indole group mediating the hydrolysis of phosphorous-hetero atom bond and, thereafter, the Michael addition of the liberated CN- ion to the electron deficient C[double bond, length as m-dash]C bond of the bis-indolyl moiety. The reaction featured a remarkable change in color from red to colorless at ambient condition. Then, low-cost and portable paper strips were designed for a rapid and on-site vapor phase detection of DCNP without involving any sophisticated instrument or skilled personnel. Finally, a dye assembled inorganic nanocomposite material was devised to achieve a more sensitive 'turn-on' detection of DCNP in water.
Collapse
Affiliation(s)
- Nilanjan Dey
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | | | | |
Collapse
|
5
|
Saeidian H, Hosseini SE, Amoozadeh A, Naseri MT, Babri M. Investigation of sarin(Se) reactivity against human plasma proteins using liquid chromatography-tandem mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2018; 53:138-145. [PMID: 29134720 DOI: 10.1002/jms.4045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/24/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
Electron ionization mass spectrum of sarin(Se) was interpreted in compare of sarin MS spectrum. Inhibition of butyrylcholinesterase of human plasma by sarin and sarin(Se) was determined spectrophotometrically using modified Ellman method. It appeared that after incubation with sarin and sarin(Se), cholinesterase inhibition were 93% and 83%, respectively. Sarin, sarin(Se), and sarin(Se)-d7 were spiked into a vial containing human plasma, and albumin adduct metabolites were identified using liquid chromatography-tandem mass spectrometry. The experiments show that these agents are attached to tyrosine on albumin in human blood. Corresponding deuterated adducts were used to confirm the proposed mechanisms for the formation of the fragments in mass spectrometry experiments.
Collapse
Affiliation(s)
- Hamid Saeidian
- Department of Science, Payame Noor University (PNU), PO Box 19395-4697, Tehran, Iran
| | - Seyed Esmaeil Hosseini
- Department of Chemistry, Semnan University, PO Box 35131-19111, Semnan, Iran
- Defense Chemical Research Lab (DCRL), PO Box 31585-1461, Karaj, Iran
| | - Ali Amoozadeh
- Department of Chemistry, Semnan University, PO Box 35131-19111, Semnan, Iran
| | | | - Mehran Babri
- Defense Chemical Research Lab (DCRL), PO Box 31585-1461, Karaj, Iran
| |
Collapse
|
6
|
Pascual L, Sayed SE, Martínez-Máñez R, Costero AM, Gil S, Gaviña P, Sancenón F. Acetylcholinesterase-Capped Mesoporous Silica Nanoparticles That Open in the Presence of Diisopropylfluorophosphate (a Sarin or Soman Simulant). Org Lett 2016; 18:5548-5551. [DOI: 10.1021/acs.orglett.6b02793] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lluís Pascual
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de Valencia, 46022 Valencia, Spain
- Departamento
de Química, Universitat Politècnica de València, Camino
de Vera s/n, 46022, Valencia, Spain
- CIBER de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN)
| | - Sameh El Sayed
- Dipartimento
di Chimica, Università di Pavia, via Taramelli 12, I-27100 Pavia, Italy
| | - Ramón Martínez-Máñez
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de Valencia, 46022 Valencia, Spain
- Departamento
de Química, Universitat Politècnica de València, Camino
de Vera s/n, 46022, Valencia, Spain
- CIBER de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN)
| | - Ana M. Costero
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de Valencia, 46022 Valencia, Spain
- CIBER de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN)
- Departamento
de Química Orgánica, Universitat de València, Doctor
Moliner 50, Burjassot, 46100 Valencia, Spain
| | - Salvador Gil
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de Valencia, 46022 Valencia, Spain
- CIBER de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN)
- Departamento
de Química Orgánica, Universitat de València, Doctor
Moliner 50, Burjassot, 46100 Valencia, Spain
| | - Pablo Gaviña
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de Valencia, 46022 Valencia, Spain
- CIBER de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN)
- Departamento
de Química Orgánica, Universitat de València, Doctor
Moliner 50, Burjassot, 46100 Valencia, Spain
| | - Félix Sancenón
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de Valencia, 46022 Valencia, Spain
- Departamento
de Química, Universitat Politècnica de València, Camino
de Vera s/n, 46022, Valencia, Spain
- CIBER de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN)
| |
Collapse
|
7
|
Janoš P, Henych J, Pelant O, Pilařová V, Vrtoch L, Kormunda M, Mazanec K, Štengl V. Cerium oxide for the destruction of chemical warfare agents: A comparison of synthetic routes. JOURNAL OF HAZARDOUS MATERIALS 2016; 304:259-268. [PMID: 26561750 DOI: 10.1016/j.jhazmat.2015.10.069] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 10/03/2015] [Accepted: 10/28/2015] [Indexed: 06/05/2023]
Abstract
Four different synthetic routes were used to prepare active forms of cerium oxide that are capable of destroying toxic organophosphates: a sol-gel process (via a citrate precursor), homogeneous hydrolysis and a precipitation/calcination procedure (via carbonate and oxalate precursors). The samples prepared via homogeneous hydrolysis with urea and the samples prepared via precipitation with ammonium bicarbonate (with subsequent calcination at 500°C in both cases) exhibited the highest degradation efficiencies towards the extremely dangerous nerve agents soman (O-pinacolyl methylphosphonofluoridate) and VX (O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate) and the organophosphate pesticide parathion methyl. These samples were able to destroy more than 90% of the toxic compounds in less than 10 min. The high degradation efficiency of cerium oxide is related to its complex surface chemistry (presence of surface OH groups and surface non-stoichiometry) and to its nanocrystalline nature, which promotes the formation of crystal defects on which the decomposition of organophosphates proceeds through a nucleophilic substitution mechanism that is not dissimilar to the mechanism of enzymatic hydrolysis of organic phosphates by phosphotriesterase.
Collapse
Affiliation(s)
- Pavel Janoš
- Faculty of the Environment, University of Jan Evangelista Purkyně, Králova Výšina 7, 400 96 Ústí nad Labem, Czech Republic.
| | - Jiří Henych
- Faculty of the Environment, University of Jan Evangelista Purkyně, Králova Výšina 7, 400 96 Ústí nad Labem, Czech Republic; Institute of Inorganic Chemistry AS CR v.v.i., 25068 Řež, Czech Republic
| | - Ondřej Pelant
- Faculty of the Environment, University of Jan Evangelista Purkyně, Králova Výšina 7, 400 96 Ústí nad Labem, Czech Republic
| | - Věra Pilařová
- Faculty of the Environment, University of Jan Evangelista Purkyně, Králova Výšina 7, 400 96 Ústí nad Labem, Czech Republic
| | - Luboš Vrtoch
- Faculty of the Environment, University of Jan Evangelista Purkyně, Králova Výšina 7, 400 96 Ústí nad Labem, Czech Republic
| | - Martin Kormunda
- Faculty of Sciences, University of Jan Evangelista Purkyně, České Mládeže 8, 400 96 Ústí nad Labem, Czech Republic
| | - Karel Mazanec
- Military Research Institute, Veslařská 230, 637 00 Brno, Czech Republic
| | - Václav Štengl
- Institute of Inorganic Chemistry AS CR v.v.i., 25068 Řež, Czech Republic
| |
Collapse
|
8
|
Ferri D, Barba-Bon A, Costero AM, Gaviña P, Parra M, Gil S. An Au(iii)–amino alcohol complex for degradation of organophosphorus pesticides. RSC Adv 2015. [DOI: 10.1039/c5ra20645f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A gold(iii)–amino alcohol complex induces the P–S bond cleavage in organophosphorous pesticides giving rise to less toxic compounds.
Collapse
Affiliation(s)
- D. Ferri
- Instituto Interuniversitario de Reconocimiento Molecular y Desarrollo Tecnológico
- Universitat de València
- 46100-Burjassot
- Spain
| | - A. Barba-Bon
- Instituto Interuniversitario de Reconocimiento Molecular y Desarrollo Tecnológico
- Universitat de València
- 46100-Burjassot
- Spain
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN)
| | - A. M. Costero
- Instituto Interuniversitario de Reconocimiento Molecular y Desarrollo Tecnológico
- Universitat de València
- 46100-Burjassot
- Spain
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN)
| | - P. Gaviña
- Instituto Interuniversitario de Reconocimiento Molecular y Desarrollo Tecnológico
- Universitat de València
- 46100-Burjassot
- Spain
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN)
| | - M. Parra
- Instituto Interuniversitario de Reconocimiento Molecular y Desarrollo Tecnológico
- Universitat de València
- 46100-Burjassot
- Spain
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN)
| | - S. Gil
- Instituto Interuniversitario de Reconocimiento Molecular y Desarrollo Tecnológico
- Universitat de València
- 46100-Burjassot
- Spain
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN)
| |
Collapse
|