1
|
Zeng HH, Huang RX, Jiang MQ, Liu F, Shi WG, Chen L. Dual-mode sensing strategy based on carbon dots for sensitive and selective detection of molybdate ions. Mikrochim Acta 2024; 191:187. [PMID: 38453742 DOI: 10.1007/s00604-024-06275-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/22/2024] [Indexed: 03/09/2024]
Abstract
Two kinds of carbon dots with the maximum fluorescence peak of 492 nm (named as G-CDs) and 607 nm (named as R-CDs) were synthesized. In the presence of MoO42- ions, the fluorescence of R-CDs at 607 nm can be quenched, which can probably be assigned to their aggregation caused by MoO42-, while that of G-CDs at 492 nm remained unchanged. For the first time, a ratiometric fluorescence probe was developed for MoO42- ions detection. In the range 0.25 ~ 100 μM, the fluorescence ratio (F492/F607) of the probe was linearly related to MoO42- concentration, and the detection limit was 61.5 nM, which fully meets the minimum detection requirements of MoO42- ions in drinking water. On the other hand, when MoO42- was introduced, a significant fading phenomenon of R-CDs can be observed with the naked eye; thereby, the colorimetric method can also be proposed. Based on above, the ratiometric fluorometric/colorimetric dual-mode sensing method was established for MoO42- anion quantification. Compared with the traditional analysis methods, the results obtained by multimodal sensing can be mutually verified, which effectively improves the accuracy and reliability. The dual-mode assay proposed in this work provides an alternative scheme to meet the need of sensing target compounds in complex matrices.
Collapse
Affiliation(s)
- Hui-Hui Zeng
- Jiangxi Key Laboratory of Industrial Ceramics, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China.
| | - Ren-Xiu Huang
- Jiangxi Key Laboratory of Industrial Ceramics, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China
| | - Ming-Qiang Jiang
- Jiangxi Key Laboratory of Industrial Ceramics, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China
| | - Fang Liu
- Jiangxi Key Laboratory of Industrial Ceramics, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China
| | - Wei-Guo Shi
- Jiangxi Key Laboratory of Industrial Ceramics, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China
| | - Lin Chen
- Jiangxi Key Laboratory of Industrial Ceramics, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China
| |
Collapse
|
2
|
Alali AF, Almojil SF, Almohana AI, Almoalimi KT. Highly reusable bentonite clay@biochar@Fe 3O 4 nanocomposite for Hg(II) removal from synthetic and real wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27401-7. [PMID: 37171734 DOI: 10.1007/s11356-023-27401-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/29/2023] [Indexed: 05/13/2023]
Abstract
The present research investigates the performance of bentonite clay@biochar@Fe3O4 nanocomposite in removing mercury ions (Hg2+) from aqueous media. The physical and structural properties of bentonite clay@biochar@Fe3O4 were determined using Brunauer-Emmett-Teller (BET), vibrating-sample magnetometer (VSM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), and Raman analyses. The highest uptake efficiency of Hg2+ was obtained at pH 6, Hg2+ concentration of 10 mg/L, contact time of 80 min, and the composite dose of 1.5 g/L. Under these conditions, the uptake efficiency of bentonite clay@biochar@Fe3O4 and bentonite clay was obtained as 98.78% and 97.67%, respectively, which are remarkable values. Also, the qmax values in Hg2+ removal using bentonite clay@biochar@Fe3O4 and bentonite clay were obtained as 66.66 and 60.98 mg/g, respectively. Moreover, the uptake process of Hg2+ ions using bentonite clay@biochar@Fe3O4 nanocomposite and bentonite was spontaneous, physical, favorable, and exothermic. Besides, the impact of various divalent ions such as Co2+, Cu2+, Pb2+, Ni2+, and Zn2+ on the removal efficiency of Hg2+ was studied. The results showed that Co2+ and Zn2+ ions have the highest and lowest interference effect in Hg2+ removal, respectively. Also, the reusability of both adsorbents showed that they have high stability and can be used for at least 5 cycles with high uptake efficiency. Additionally, the removal efficiency of chemical oxygen demand (COD), biochemical oxygen demand (BOD5), Hg2+, As3+, and As5+ from real wastewater using bentonite clay@biochar@Fe3O4 was obtained as 37.5%, 28.9%, 65%, 60.5%, and 50%, respectively, indicating its remarkable performance.
Collapse
Affiliation(s)
- Abdulrhman Fahmi Alali
- Department of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, 5, Riyadh, 11421, Saudi Arabia
| | - Sattam Fahad Almojil
- Department of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, 5, Riyadh, 11421, Saudi Arabia.
| | - Abdulaziz Ibrahim Almohana
- Department of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, 5, Riyadh, 11421, Saudi Arabia
| | - Khaled Twfiq Almoalimi
- Department of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, 5, Riyadh, 11421, Saudi Arabia
| |
Collapse
|
3
|
Synthesis of activated carbon composited with Egyptian black sand for enhanced adsorption performance toward methylene blue dye. Sci Rep 2023; 13:4209. [PMID: 36918583 PMCID: PMC10015066 DOI: 10.1038/s41598-023-28556-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/20/2023] [Indexed: 03/16/2023] Open
Abstract
The present study reports the feasibility of the synthesis of a novel porous composite adsorbent, prepared from olive stone activated carbon (OS400) and garnet (GA) mineral impregnations (referred to as OSMG). This composite (OSMG) was applied for its ability to adsorb a macromolecular organic dye. The composite's structural characteristics were evaluated using various techniques such as Brunauer-Emmett-Teller (BET), Scanning Electron Microscopy equipped with Energy Dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), and a Fourier transform infrared spectrometer (FT-IR). The specific surface area of the garnet (GA), (OS400), and (OSMG) were found to be 5.157 mg⋅g-1, 1489.598 mg⋅g-1, and 546.392 mg⋅g-1, respectively. The specific surface area of the new composite (OSMG) was promoted to enhance the adsorption of methylene blue (MB). Experiments were conducted under various conditions, including contact time, initial dye concentration, adsorbent dosage, pH, and temperatures. Data from these experiments were analyzed using several adsorption models including Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich (D-R). The results indicated that, the adsorption fit best with the Freundlich model and that the adsorption process followed a pseudo-second-order kinetic mechanism. Additionally, the thermodynamic analysis indicated the adsorption of MB onto garnet(GA) adsorbents is endothermic, while the sorption onto (OS400) and (OSMG) is an exothermic and non-spontaneous process. The OSMG composite can be used for at least five cycles without significant loss of adsorptive performance, and can easily be separated from the water after treatment.
Collapse
|
4
|
Extraction and separation of Fe and Ti from extracted vanadium residue by enhanced ammonium sulfate leaching and synthesis of LiFePO4/C for lithium-ion batteries. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
5
|
Ajeya KV, Sadhasivam T, Kurkuri MD, Kang UI, Park IS, Park WS, Kim SC, Jung HY. Recovery of spent VOSO 4 using an organic ligand for vanadium redox flow battery applications. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123047. [PMID: 32937711 DOI: 10.1016/j.jhazmat.2020.123047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/24/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
To recover the spent vanadium compound, Rhodamine-B-based Schiff's base ligand (L1) was synthesized via ultrasonication process and was evaluated with vanadyl sulfate (VOSO4), which has shown considerable selectivity towards V(IV). The change of the solution color from colorless to pink is attributed to L1 after the reaction with vanadium ion owing to the successful formation of the vanadium complex and the opening of the spirolactam ring in the L1 structure. In FT-IR spectra, the vanadyl peaks are co-existed with the L1 structure, which confirmed the complex formation of the L1 with vanadium. Similarly, the binding energy of V(IV) was identified at 516.2 eV for V2p3/2 in XPS spectra. The new strategy for VOSO4 recovery was established through solvent extraction and acid leaching. After recovery process, the absence of vanadium peak in the XPS confirmed the complete removal of V(IV) from the complex. The recovered VOSO4 solution used as an electrolyte in vanadium redox flow battery (VRFB) systems, where the unit cell performance is comparable with the conventional electrolyte solution. The advantage of study is reuse of VOSO4 as a resource for energy storage applications.
Collapse
Affiliation(s)
- Kanalli V Ajeya
- Department of Environment & Energy Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - T Sadhasivam
- Department of Environment & Energy Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea; Center for Energy Storage System, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Mahaveer D Kurkuri
- Centre for Nano and Material Sciences, JAIN University, Jain Global Campus, Bengaluru, 562112, Karnataka, India.
| | - Ung-Il Kang
- Depertment of the Fire Service Administration, Honam University, #417, Eodeung-daero, Gwangsan-gu, Gwangju, 62399, Republic of Korea
| | - In-Su Park
- Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources(KIGAM),124 Gwahak-ro, Yuseong-gu, Daejeon, 34132, Republic of Korea
| | - Won-Shik Park
- Energy Valley R&D Center, Korea Electric Power Research Institute, 55 Jeollyeok-ro, Naju-si, Jeollanam-do, 58217, Republic of Korea
| | - Sang-Chai Kim
- Department of Environmental Education, Mokpo National University, 1666 Youngsan Ro, Cheonggye Myeon, Muan, 58554, Republic of Korea.
| | - Ho-Young Jung
- Department of Environment & Energy Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea; Center for Energy Storage System, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
6
|
Zhang J, Yang C, Chen Y, Wang C. Efficient Phase Transformation of γ-Al2O3 to α-Al2O3 in Spent Hydrodesulphurization Catalyst by Microwave Roasting Method. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b04621] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jialiang Zhang
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Laboratory of Rare and Precious Metals Green Recycling and Extraction, University of Science and Technology Beijing, Beijing 100083, China
| | - Cheng Yang
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yongqiang Chen
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Laboratory of Rare and Precious Metals Green Recycling and Extraction, University of Science and Technology Beijing, Beijing 100083, China
| | - Chengyan Wang
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Laboratory of Rare and Precious Metals Green Recycling and Extraction, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
7
|
Shahat A, Hassan HMA, El-Shahat MF, El Shahawy O, Awual MR. A ligand-anchored optical composite material for efficient vanadium(ii) adsorption and detection in wastewater. NEW J CHEM 2019. [DOI: 10.1039/c9nj01818b] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A ligand-anchored composite material was prepared for vanadium (V(ii)) ion capturing. The pH was found to be a key factor in both detection and removal operations. The composite material exhibited the high adsorption capacity of 492.61 mg g−1.
Collapse
Affiliation(s)
- Ahmed Shahat
- Chemistry Department
- Faculty of Science
- Suez University
- Suez 43518
- Egypt
| | | | - M. F. El-Shahat
- Department of Chemistry
- Faculty of Science
- Ain Shams University
- Cairo
- Egypt
| | - Osama El Shahawy
- Chemistry Department
- Faculty of Science
- Suez University
- Suez 43518
- Egypt
| | - Md. Rabiul Awual
- Materials Science and Research Center
- Japan Atomic Energy Agency (SPring-8)
- Hyogo 679-5148
- Japan
- Center of Excellence for Advanced Materials Research
| |
Collapse
|
8
|
Yang Y, Cao T, Xiong Y, Huang G, Wang W, Liu Q, Xu S. Oil removal from spent HDT catalyst by an aqueous method with assistance of ultrasound. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 78:595-601. [PMID: 32559950 DOI: 10.1016/j.wasman.2018.05.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/14/2018] [Accepted: 05/30/2018] [Indexed: 06/11/2023]
Abstract
Deoiling enjoys great significance in recycling and landfill of spent hydrotreating (HDT) catalyst. In this study, a novel approach for oil removal from spent HDT catalyst with assistance of ultrasound was developed. The effects of variables on oil removal were investigated by response surface methodology and central composite design method. The oil removal efficiency reaches 96.03 ± 0.82% under the optimum conditions of liquid-solid ratio 16.00 ml·g-1, 75 °C, sodium hydroxide dosage 3.88 wt%, and 40 kHz ultrasonic irradiation for 3.25 h. Under the optimum conditions, the contact angle of spent catalyst is 98.7° before oil removal, and then reduces to 57.2° after deoiling with the help of ultrasound, but turns to 72° after deoiling in the absence of ultrasound, which further verifies that the oil removal efficiency can be improved by ultrasound. Compared to traditional extraction or hydrothermal methods for removing oil from spent catalyst, the proposed approach introduced ultrasonic force field to enhance oil removal efficiency without adding organic solvent or surfactant.
Collapse
Affiliation(s)
- Yue Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Tiantian Cao
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Yong Xiong
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - GuoYong Huang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Wenqiang Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China.
| | - Qi Liu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Shengming Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|