1
|
Wu Z, Wu S, Hou Y, Zhang M, Liang J, Cai C. Contrast of hydraulic conductivity induces transport of combined pollutants in high- and low-permeability systems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117297. [PMID: 39520746 DOI: 10.1016/j.ecoenv.2024.117297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/09/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
The transport process of pollutants in the environment can be influenced by heterogeneous geologic architecture and pollutant interactions. However, there has been a lack of research on co-transport behaviors of combined pollutants in heterogeneous aquifers. In this study, a series of two-dimensional tank experiments were carried out to study the transport behavior of toluene and naphthalene in both homogeneous and heterogeneous aquifers. The results revealed that the coexisting solutes facilitated the transport of toluene and naphthalene in the homogeneous aquifers, potentially due to competitive adsorption between these compounds. In the high- and low-permeability systems, the transport rates for both toluene and naphthalene decreased while exhibiting characteristics such as early arrival, long tails, and multiple peaks. The spatial analysis of pollutant distribution indicated that hydraulic conductivity contrast played a critical role in inducing back diffusion phenomenon. Furthermore, toluene exhibited more pronounced matrix diffusion compared to naphthalene in heterogeneous aquifers, characterized by higher concentrations, wider diffusion range in low-permeability zones. And the β value for toluene is smaller than naphthalene in CTRW model, indicating that the former is more sensitive to the hydraulic conductivity contrast. This study provides novel insights into understanding the co-transport behavior of combined pollutants in heterogenous aquifers.
Collapse
Affiliation(s)
- Zhongran Wu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengyu Wu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Hou
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Min Zhang
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, Hebei 050061, China
| | - Jianhong Liang
- Institute of Karst Geology, Chinese Academy of Geological Sciences/Key Laboratory of Karst Dynamics, MNR&GZAR, Guilin, Guangxi 541004, China
| | - Chao Cai
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Qiu H, Xu J, Yuan Y, Alesi EJ, Liang X, Cao B. Low-disturbance land remediation using vertical groundwater circulation well technology: The first commercial deployment in an operational chemical plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173804. [PMID: 38848922 DOI: 10.1016/j.scitotenv.2024.173804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Soil and groundwater contamination by organic pollutants from chemical plants presents significant risks to both environmental and human health. We report a significant field trial where a chemical plant in operation showed soil and groundwater pollution, as verified by sampling and laboratory tests. While many remediation methods are effective, they often require the temporary shutdown of plant operations to install necessary equipment. This paper introduces a novel combination of low-disturbance contaminant remediation technologies, including groundwater circulation well (GCW), pump and treat (P&T), and in-situ chemical oxidation (ISCO) technologies, that can be applied on the premises of an active plant without halting production. The groundwater with dissolved contaminants is removed through P&T and GCW, while GCW enhances ISCO that focus on eliminating the remaining hard-to-pump contaminants. Results show: (1) after two years of remediation effort, the contaminant levels in soil and groundwater were significantly reduced; (2) the average concentration reduction rate of four contaminants, including 1,2-dichloroethane, methylbenzene, ethylbenzene, and M&P-xylene, exceeds 98 %; (3) the presented remediation strategy results in the improvement of remediation efficiency. Specifically, the concentration of 1,2-dichloroethane in observation wells dropped from 40,550.7 μg/L to 44.6 μg/L. This study offers a first-of-its-kind commercial deployment of a GCW-based remediation strategy in an active plant setting. Moreover, the combined remediation approach presented here can serve as a model for designing contaminant remediation projects that require minimal operational disruption.
Collapse
Affiliation(s)
- Huiyang Qiu
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, Jiangsu, China; Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Jian Xu
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, Jiangsu, China.
| | - Yizhi Yuan
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Eduard J Alesi
- IEG Technologie GmbH, Hohlbachweg 2, D-73344 Gruibingen, Baden-Württemberg, Germany
| | - Xin Liang
- Jiangsu Zhongchuan Ecological Environment Co., Ltd, China
| | - Benyi Cao
- School of Sustainability, Civil and Environmental Engineering, University of Surrey, Guildford, Surrey GU2 7XH, UK
| |
Collapse
|
3
|
Yang L, Chen Q, Wei J, Fan T, Kong L, Long T, Zhang S, Deng S. Response of microbial communities in aquifers with multiple organic solvent contamination: Implications for MNA remedy. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134798. [PMID: 38843633 DOI: 10.1016/j.jhazmat.2024.134798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/07/2024] [Accepted: 06/01/2024] [Indexed: 06/26/2024]
Abstract
The application of Monitored Natural Attenuation (MNA) technology has been widespread, while there is a paucity of data on groundwater with multiple co-contaminants. This study focused on high permeability, low hydraulic gradient groundwater with co-contamination of benzene, toluene, ethylbenzene, and xylenes (BTEX), chlorinated aliphatic hydrocarbons (CAHs), and chlorinated aromatic hydrocarbons (CPs). The objective was to investigate the responses of microbial communities during natural attenuation processes. Results revealed greater horizontal variation in groundwater microbial community composition compared to vertical variation. The variation was strongly correlated with the total contaminant quantity (r = 0.722, p < 0.001) rather than individual contaminants. BTEX exerted a more significant influence on community diversity than other contaminants. The assembly of groundwater microbial communities was primarily governed by deterministic processes (βNTI < -2) in high contaminant concentration zones, while stochastic processes (|βNTI| < 2) dominated in low-concentration zones. Moreover, the microbial interactions shifted at different depths indicating the degradation rate variation in the vertical. This study makes fundamental contribution to the understanding for the effects of groundwater flow and material fields on indigenous microbial communities, which will provide a scientific basis for more precise adoption of microbial stimulation/augmentation to accelerate the rate of contaminant removal.
Collapse
Affiliation(s)
- Lu Yang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China
| | - Qiang Chen
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China
| | - Jing Wei
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China
| | - Tingting Fan
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China
| | - Lingya Kong
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China.
| | - Tao Long
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China
| | - Shengtian Zhang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China
| | - Shaopo Deng
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China.
| |
Collapse
|
4
|
Qiang J, Zhang S, Liu H, Zhu X, Zhou J. A construction strategy of Kriging surrogate model based on Rosenblatt transformation of associated random variables and its application in groundwater remediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119555. [PMID: 37980793 DOI: 10.1016/j.jenvman.2023.119555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/21/2023] [Accepted: 11/04/2023] [Indexed: 11/21/2023]
Abstract
When using simulation-optimization models for optimizing the design of groundwater pumping-treatment plans for pollution, building a surrogate model for the numerical simulation model has become an effective means of overcoming the computational load of such models. However, previous studies often treated pumping time as a single optimization variable, leading to unnecessary excessive pumping. This paper considers the location, pumping rate, start time, and end time of each candidate pumping well as optimization variables, and proposes a Rosenblatt-transform-based optimal Latin hypercube sampling method for the associated random variables to ensure that the start time is less than or equal to the end time. This method is coupled with an adaptive sampling method based on batch local optimal solutions to construct a dynamic adaptive Kriging surrogate model for the numerical model, ensuring that the true value of the optimal remediation scheme is not lost. The results show that, at the final stage of remediation, the pollutant concentration in the 4 scenarios achieves comprehensive compliance. However, when considering the minimization of remediation costs as the evaluation criterion, the remediation scheme in scenario 1 (the pumping start and end times are independent optimization variables for all candidate pumping wells) is optimal. In the optimization design of groundwater pumping-treatment plans, the pumping wells should be arranged in the midstream and downstream regions of the contaminant plume and parallel to the regional flow direction. This paper provides a method reference for the construction and adaptive updating of surrogate models involving associated random variables, as well as guidance for the dynamic optimization of groundwater pumping and treatment at contaminated sites.
Collapse
Affiliation(s)
- Jing Qiang
- School of Mathematics, China University of Mining and Technology, Xuzhou, 221116, China; Jiangsu Center for Applied Mathematics (CUMT), Xuzhou, 221116, China
| | - Shuangsheng Zhang
- College of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China.
| | - Hanhu Liu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Xueqiang Zhu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Junjie Zhou
- College of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| |
Collapse
|
5
|
Ciampi P, Esposito C, Bartsch E, Alesi EJ, Petrangeli Papini M. Pump-and-treat (P&T) vs groundwater circulation wells (GCW): Which approach delivers more sustainable and effective groundwater remediation? ENVIRONMENTAL RESEARCH 2023; 234:116538. [PMID: 37399987 DOI: 10.1016/j.envres.2023.116538] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/15/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Pump-and-treat (P&T) is commonly used to remediate contaminated groundwater sites. The scientific community is currently engaged in a debate regarding the long-term effectiveness and sustainability of P&T for groundwater remediation. This work aims to provide a quantitative comparative analysis of the performance of an alternative system to traditional P&T, to support the development of sustainable groundwater remediation plans. Two industrial sites with unique geological frameworks and contamination with dense non-aqueous phase liquid (DNAPL) and arsenic (As) respectively, were selected for the study. At both locations, attempts were made for decades to clean up groundwater contamination by pump-and-treat. In response to persistently high levels of pollutants, groundwater circulation wells (GCWs) were installed to explore the possibility of accelerating the remediation process in unconsolidated and rock deposits. This comparative evaluation focuses on the different mobilization patterns observed, resulting variations in contaminant concentration, mass discharge, and volume of extracted groundwater. To facilitate the fusion of multi-source data, including geological, hydrological, hydraulic, and chemical information, and enable the continuous extraction of time-sensitive information, a geodatabase-supported conceptual site model (CSM) is utilized as a dynamic and interactive interface. This approach is used to assess the performance of GCW and P&T at the investigated sites. At Site 1, the GCW stimulated microbiological reductive dichlorination and mobilized significantly higher 1,2-DCE concentrations than P&T, despite recirculating a smaller volume of groundwater. At Site 2, As removal rate by GCW resulted generally higher than pumping wells. One conventional well mobilized higher masses of As in the early stages of P&T. This reflected the P&T's impact on accessible contaminant pools in early operational periods. P&T withdrew a significantly larger volume of groundwater than the GCW. The outcomes unveil the diverse contaminant removal behavior characterizing two distinct remediation strategies in different geological environments, revealing the dynamics and decontamination mechanisms that feature GCWs and P&T and emphasizing the limitations of traditional groundwater extraction systems in targeting aged pollution sources. GCWs have been shown to reduce remediation time, increase mass removal, and minimize the significant water consumption associated with P&T. These benefits pave the way for more sustainable groundwater remediation approaches in various hydrogeochemical scenarios.
Collapse
Affiliation(s)
- Paolo Ciampi
- Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Carlo Esposito
- Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Ernst Bartsch
- IEG Technologie GmbH, Hohlbachweg 2, D-73344, Gruibingen, Baden-Württemberg, Germany.
| | - Eduard J Alesi
- IEG Technologie GmbH, Hohlbachweg 2, D-73344, Gruibingen, Baden-Württemberg, Germany.
| | - Marco Petrangeli Papini
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
6
|
Zhang S, Qiang J, Liu H, Zhu X, Lv H. A construction strategy for conservative adaptive Kriging surrogate model with application in the optimal design of contaminated groundwater extraction-treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:42792-42808. [PMID: 35088275 DOI: 10.1007/s11356-021-18216-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
When the simulation-optimization model to optimize the groundwater extraction-treatment schemes is used, the construction of a surrogate model for the numerical simulation model has become an effective means to overcome the large calculation load of repeatedly calling the numerical model. However, there are still some problems in using the surrogate model, such as large training sample size, low accuracy, and poor optimization results. In this paper, a conservative adaptive Kriging surrogate model (CAKSM) was proposed by coupling the Kriging surrogate model, optimal solution adaptive sampling method (OSAS), and conservative prediction idea. Firstly, an initial Kriging surrogate model (IKSM) was built for the numerical simulation model of groundwater flow and solute transport. Then, the IKSM was coupled with the optimization model to construct the adaptive Kriging surrogate model (AKSM) by using OSAS. A safety margin was added to the AKSM to build the CAKSM. Finally, the simulation-optimization models based on IKSM, AKSM, and CAKSM were solved by the genetic algorithm, respectively. The results showed that the IKSM could well substitute for the simulation model. The AKSM significantly improved the approximation degree between the surrogate model and the simulation model at the optimal solution by supplementing a small number of new samples. CAKSM could effectively constrain the pollutant mass concentrations within the controlled value, improving the reliability of the optimization scheme. The optimal extraction wells based on different surrogate models were all well 5, well 6, and well 9. They were concentrated in the middle and lower reaches of the contaminated plume's central axis. The sequence for the remediation effects by different surrogate models from high to low was as follows: CAKSM, AKSM, and IKSM. The risk rate of the optimal remediation scheme from the hydraulic conductivity random fields was as high as 12.12%, and the risks were mainly located upstream of the pollution plume's central axis.
Collapse
Affiliation(s)
- Shuangsheng Zhang
- College of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Jing Qiang
- College of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China.
- School of Mathematics, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Hanhu Liu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Xueqiang Zhu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Hongli Lv
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| |
Collapse
|
7
|
Guerin TF. Using prototypes to enable development of commercially viable field scale contaminated site remediation processes. CHEMOSPHERE 2022; 288:132481. [PMID: 34634280 DOI: 10.1016/j.chemosphere.2021.132481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/25/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
Soil structure was damaged from solvents and localised heating after a large fire which had potential to limit bioremediation of an industrial site. Laboratory prototypes (biopile, bioflushing, bioreactor, slurry reactor) for treating the site contamination were developed. After successful laboratory testing (96% removal of main contaminant, phenol), the bioflushing prototype was then applied in the field. Field prototype removed 95% phenol using a small scale 2000 L bioreactor. Field trial was then scaled to commercial clean-up. Intensive soil grid sampling after 600 days treatment revealed hotspots of solvents remaining as well as the heterogeneity in the subsurface, however overall concentrations were substantially decreased below the initial assessment. The process decreased initial soil phenol concentrations of approximately 500 mg/kg (pre-treatment area average) to 75 mg/kg across the most contaminated areas. Phenol toxicity increased with depth and is linked to increasing oxygen deficit. The study demonstrated the prototyping process enabling site clean-up and scaling for bioremediation at the industrial site, provided certainty for site owner on treatment elements and achieving improved environmental and commercial outcomes.
Collapse
Affiliation(s)
- Turlough F Guerin
- Ag Institute of Australia, c/o 1A Pasley St, Sunbury, Victoria, 3429, Australia.
| |
Collapse
|
8
|
Jiang W, Sheng Y, Liu H, Ma Z, Song Y, Liu F, Chen S. Groundwater quality assessment and hydrogeochemical processes in typical watersheds in Zhangjiakou region, northern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:3521-3539. [PMID: 34389942 DOI: 10.1007/s11356-021-15644-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
It is of significance to elucidate the groundwater quality and hydrogeochemical processes for sustainable utilization of groundwater resources in water shortage regions. A total of 256 groundwater samples were collected in typical watersheds in Zhangjiakou, northern China. The hydrochemical parameters, conventional ions, and trace elements were measured, and δD and δ18O data were collected to delineate the groundwater quality and hydrogeochemical processes. The results showed that 32.91% of the groundwater could be directly used for drinking water sources in the Bashang Plateau, north of the study area. The F- and NO3--N were the main parameters above the standard threshold for drinking water. In contrast, the groundwater quality in the Baxia River Basins, south of the study area, was of a better scenario. Nonetheless, high concentrations of F-, total hardness, and SO42- were still observed. Most samples in the Bashang Plateau had relatively higher salinity than the Baxia River Basins. Both surface water and groundwater in the study area originated from local meteoric water with considerable hydraulic connections. The high-fluoride groundwater was primarily formed by dissolution of fluoride-rich minerals under conditions of high pH and Na+, low Ca2+, and rich in HCO3-. The dissolution of carbonate and silicate minerals accompanied by strong cation exchange and weak evaporation was the dominant water-rock interaction affecting the hydrochemical composition of groundwater, and anthropogenic NO3- input had an extra influence on hydrochemical process. This study provides a scientific guideline for the protection and allocation of local groundwater resources.
Collapse
Affiliation(s)
- Wanjun Jiang
- Tianjin Center, China Geological Survey (CGS), Tianjin, 300170, China
- North China Center of Geoscience Innovation, Tianjin, 300170, China
| | - Yizhi Sheng
- Department of Geology and Environmental Earth Science, Miami University, Oxford, OH, 45056, USA.
| | - Hongwei Liu
- Tianjin Center, China Geological Survey (CGS), Tianjin, 300170, China.
- North China Center of Geoscience Innovation, Tianjin, 300170, China.
| | - Zhen Ma
- Tianjin Center, China Geological Survey (CGS), Tianjin, 300170, China
- North China Center of Geoscience Innovation, Tianjin, 300170, China
| | - Yaxin Song
- China Non-ferrous Metals Resource Geological Survey, Beijing, 100012, China
| | - Futian Liu
- Tianjin Center, China Geological Survey (CGS), Tianjin, 300170, China
- North China Center of Geoscience Innovation, Tianjin, 300170, China
| | - Sheming Chen
- Tianjin Center, China Geological Survey (CGS), Tianjin, 300170, China
- North China Center of Geoscience Innovation, Tianjin, 300170, China
| |
Collapse
|
9
|
Zuo R, Zhao X, Yang J, Pan M, Xue Z, Gao X, Wang J, Teng Y. Analysis of the LNAPL Migration Process in the Vadose Zone under Two Different Media Conditions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111073. [PMID: 34769594 PMCID: PMC8582731 DOI: 10.3390/ijerph182111073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/07/2021] [Accepted: 10/15/2021] [Indexed: 12/03/2022]
Abstract
This study focused on the processes of free infiltration, precipitation displacement, and natural attenuation of the LNAPL under the condition of near-surface leakage. Sandbox experiments were performed to explore the migration characteristics of LNAPL in the vadose zone with two media structures and the influences of the soil interface on the migration of LNAPL. The results indicate that the vertical migration velocity of the LNAPL infiltration front in medium and coarse sand was 1 order of magnitude higher than that in fine sand and that the LNAPL accumulated at the coarse–fine interface, which acted as the capillary barrier. Displacement of precipitation for LNAPL had little relationship with rainfall intensity and was obviously affected by medium particle size, where coarse sand (40.78%) > medium sand (20.5%) > fine sand (10%). The natural attenuation rate of the LNAPL in the vadose zone was related to the water content of the media; the natural attenuation rate of fine sand was higher. This study simulated the process of the LNAPL leakage from the near surface into the layered heterogeneous stratum, improved the understanding of the migration of the LNAPL under different stratum conditions, and can provide support for the treatment of LNAPL leakage events in the actual site.
Collapse
Affiliation(s)
- Rui Zuo
- College of Water Science, Beijing Normal University, Beijing 100875, China; (R.Z.); (X.Z.); (M.P.); (Z.X.); (X.G.); (J.W.); (Y.T.)
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Xiao Zhao
- College of Water Science, Beijing Normal University, Beijing 100875, China; (R.Z.); (X.Z.); (M.P.); (Z.X.); (X.G.); (J.W.); (Y.T.)
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Jie Yang
- College of Water Science, Beijing Normal University, Beijing 100875, China; (R.Z.); (X.Z.); (M.P.); (Z.X.); (X.G.); (J.W.); (Y.T.)
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
- Correspondence:
| | - Minghao Pan
- College of Water Science, Beijing Normal University, Beijing 100875, China; (R.Z.); (X.Z.); (M.P.); (Z.X.); (X.G.); (J.W.); (Y.T.)
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Zhenkun Xue
- College of Water Science, Beijing Normal University, Beijing 100875, China; (R.Z.); (X.Z.); (M.P.); (Z.X.); (X.G.); (J.W.); (Y.T.)
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Xiang Gao
- College of Water Science, Beijing Normal University, Beijing 100875, China; (R.Z.); (X.Z.); (M.P.); (Z.X.); (X.G.); (J.W.); (Y.T.)
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Jinsheng Wang
- College of Water Science, Beijing Normal University, Beijing 100875, China; (R.Z.); (X.Z.); (M.P.); (Z.X.); (X.G.); (J.W.); (Y.T.)
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Yanguo Teng
- College of Water Science, Beijing Normal University, Beijing 100875, China; (R.Z.); (X.Z.); (M.P.); (Z.X.); (X.G.); (J.W.); (Y.T.)
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| |
Collapse
|
10
|
Liu Y, Sheng Y, Feng C, Chen N, Liu T. Distinct functional microbial communities mediating the heterotrophic denitrification in response to the excessive Fe(II) stress in groundwater under wheat-rice stone and rock phosphate amendments. ENVIRONMENTAL RESEARCH 2020; 185:109391. [PMID: 32240841 DOI: 10.1016/j.envres.2020.109391] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 06/11/2023]
Abstract
Denitrifying microbial community can be utilized for eliminating nitrate and Fe(II) combined contamination in groundwater, while excessive amount of Fe(II) limit the process. Natural mineral can be additional substrate for the microbial growth, whereas how it influences the microbial community that mediating the denitrification coupling with Fe(II) oxidation and balancing inhibition of excessive Fe(II) on denitrification remain unclear. In the present study, we conducted a series of microcosm experiments to explore the denitrification and Fe(II) oxidation kinetic, and used RNA-based qPCR and DNA-based high-throughput sequencing to elucidate microbial diversity, co-occurrence and metabolic profiles amended by wheat-rice stone and rock phosphate. The results showed that both minerals could extensively improve and double the denitrification rates (2.0 ± 0.03 to 2.12 ± 0.13 times), decrease the nitrite accumulation and trigger the high resistance of the denitrifiers from the stress of Fe(II), whereas only wheat-rice stone with higher surface area increased the oxidation of Fe(II) (<10%). The addition of both minerals enhanced the microbial alpha-diversity, shaped the beta-diversity and co-occurrence network, and recovered the transcription of nitrate and nitrite reductase (Nar, Nap, NirS, NirK) from the Fe(II) inhibition. Accordingly, heterotroph Methyloversatilis sp., Methylotenra sp. might contribute to the denitrification under wheat-rice stone amendment, Denitratisoma sp. contribute to the denitrification for rock phosphate, and Fe oxidation was partially catalyzed by Dechloromonas sp. or abiotically by the nitrite/nitrous oxide. These findings would be helpful for better understanding the bioremediation of nitrate and Fe contaminated groundwater.
Collapse
Affiliation(s)
- Ying Liu
- School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, China; The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Yizhi Sheng
- School of Environment, Tsinghua University, Beijing, 100084, China; Department of Geology and Environmental Earth Science, Miami University, OH, 45056, USA
| | - Chuanping Feng
- School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, China.
| | - Nan Chen
- School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, China
| | - Tong Liu
- School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, China
| |
Collapse
|