1
|
Hu L, Luo R, Wang D, Lin F, Xiao K, Kang Y. SERS-based microdroplet platform for high-throughput screening of Escherichia coli strains for the efficient biosynthesis of D-phenyllactic acid. Front Bioeng Biotechnol 2024; 12:1470830. [PMID: 39372433 PMCID: PMC11449890 DOI: 10.3389/fbioe.2024.1470830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024] Open
Abstract
D-Phenyllactic acid (D-PLA) is a potent antimicrobial typically synthesized through chemical methods. However, due to the complexity and large pollution of these reactions, a simpler and more eco-friendly approach was needed. In this study, a strain for D-PLA biosynthesis was constructed, but the efficiency was restricted by the activity of D-lactate dehydrogenase (DLDH). To address this issue, a DLDH mutant library was constructed and the Surface-Enhanced Raman Spectroscopy (SERS) was employed for the precise quantification of D-PLA at the single-cell level. The TB24 mutant exhibited a significant improvement in D-PLA productivity and a 23.03-fold increase in enzymatic activity, which was attributed to the enhanced hydrogen bonding and increased hydrophobicity within the substrate-binding pocket. By implementing multi-level optimization strategies, including the co-expression of glycerol dehydrogenase (GlyDH) with DLDH, chassis cell replacement, and RBS engineering, a significant increase in D-PLA yields was achieved, reaching 128.4 g/L. This study underscores the effectiveness of SERS-based microdroplet high-throughput screening (HTS) in identifying superior mutant enzymes and offers a strategy for large-scale D-PLA biotransformation.
Collapse
Affiliation(s)
| | | | - Dan Wang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
| | | | | | | |
Collapse
|
2
|
Fu C, Huang B, Zhang W, Zhang W, He S. Experimental Evaluation of Performance of a Low-Initial-Viscosity Gel Flooding System. Molecules 2024; 29:3077. [PMID: 38999029 PMCID: PMC11243160 DOI: 10.3390/molecules29133077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
In order to effectively adjust reservoir heterogeneity and further exploit the remaining oil, a new type of low-viscosity gel was prepared by adding a regulating agent, retarder, and reinforcing agent on the basis of a polymer + Cr3+ crosslinking system. The new gel has the advantages of low initial viscosity, a slow gel formation rate, and high strength after gel formation. The effectiveness of the gel was verified through three-layer core displacement experiments, and the injection scheme was optimized by changing the slug combination of the polymer and the gel. The results showed that the gel can effectively block the high-permeability layer and adjust reservoir heterogeneity. An injection of 0.1 pore volume (PV) low-initial-viscosity gel can improve oil recovery by 5.10%. By changing the slug combination of the gel and polymer, oil recovery was further increased by 3.12% when using an injection of 0.07 PV low-initial-viscosity gel +0.2 PV high-concentration polymer +0.05 PV low-initial-viscosity gel +0.5 PV high-concentration polymer.
Collapse
Affiliation(s)
- Cheng Fu
- College of Petroleum and Gas Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Bin Huang
- Chongqing Institute of Unconventional Oil & Gas, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Wei Zhang
- College of Petroleum and Gas Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Weisen Zhang
- Cnooc Energy Development Co., Ltd., Engineering Technology Branch, Tianjin 300450, China
| | - Shibo He
- Sinopec Zhenhai Refining and Chemical Company, Ningbo 315221, China
| |
Collapse
|
3
|
Zhang X, Ma K, Yu Z, Zhou J, Zhang C, Dai R. Reusable Solid-form Phase-Selective Organogelators for Rapid and Efficient Remediation of Crude Oil Spill. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2091-2101. [PMID: 38227788 DOI: 10.1021/acs.langmuir.3c02902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Phase-selective organogelators (PSOGs) are considered as a prospective tool for their application in oil spill remediation. However, the number of reports on the PSOGs that can be used in powder form for prompt phase-selective gelation of crude oils is still limited. In this study, a series of compounds with l-mandelic acid as the scaffold bearing different amino acid fragments have been prepared. Also, the gelation behaviors and properties of these derivatives toward organic liquids, product oils, and a type of Chinese crude oil were investigated via heating-and-cooling process, stirring, or resting operation. Besides, the micromorphologies of the resulting gels and the driving forces for the gel formation have been studied by scanning electron microscopy, Fourier transform infrared, UV spectroscopy, concentration-dependent 1H NMR, and X-ray diffraction. Particularly, gelator C15-Phe-Mac-Nap was shown to have the capability of congealing the Chinese crude oil selectively from water in powder form with a relatively lower gelator dosage, as compared with the other gelators we reported in the current and previous works. Moreover, gelator C15-Phe-Mac-Nap displayed some advantageous behaviors such as the reusability of gelator, excellent mechanical and chemical stability of the crude oil gels, and nontoxicity of the gelator in the aquatic environment, indicating its great potential application value for marine oil spill remediation.
Collapse
Affiliation(s)
- Xin Zhang
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Ke Ma
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Ziqian Yu
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Jinming Zhou
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Caicai Zhang
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Ran Dai
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
4
|
Wu H, Guang C, Zhang W, Mu W. Recent development of phenyllactic acid: physicochemical properties, biotechnological production strategies and applications. Crit Rev Biotechnol 2023; 43:293-308. [PMID: 34965820 DOI: 10.1080/07388551.2021.2010645] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Phenyllactic acid (PLA) is capable of inhibiting the growth of many microorganisms, showing a broad-spectrum antimicrobial property, which allows it to hold vast applications in the: food, feed, pharmaceutical, and cosmetic industries, especially in the field of food safety. Recently, the production of PLA has garnered considerable attention due to the increasing awareness of food safety from the public. Accordingly, this review mainly updates the recent development for the production of PLA through microbial fermentation and whole-cell catalysis (expression single-, double-, and triple-enzyme) strategies. Firstly, the: physicochemical properties, existing sources, and measurement methods of PLA are systematically covered. Then, the inhibition spectrum of PLA is summarized, and synchronously, the antimicrobial and anti-biofilm mechanisms of PLA on commonly pathogenic microorganisms in foods are described in detail, thereby clarifying the reason for extending the shelf life of foods. Additionally, the factors affecting the production of PLA are summarized from the biosynthesis and catabolism pathway of PLA in microorganisms, as well as external environmental parameters insights. Finally, the downstream treatment process and applications of PLA are discussed and outlined. In the future, clinical data should be supplemented with the metabolic kinetics of PLA in humans and to evaluate animal toxicology, to enable regulatory use of PLA as a food additive. A food-grade host, such as Bacillus subtilis and Lactococcus lactis, should also be developed as a cell vector expressing enzymes for PLA production from a food safety perspective.
Collapse
Affiliation(s)
- Hao Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
5
|
Li T, Qin Z, Wang D, Xia X, Zhou X, Hu G. Coenzyme self-sufficiency system-recent advances in microbial production of high-value chemical phenyllactic acid. World J Microbiol Biotechnol 2022; 39:36. [PMID: 36472665 DOI: 10.1007/s11274-022-03480-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Phenyllactic acid (PLA), a natural antimicrobial substance, has many potential applications in the food, animal feed, pharmaceutical and cosmetic industries. However, its production is limited by the complex reaction steps involved in its chemical synthesis. Through advances in metabolic engineering and synthetic biology strategies, enzymatic or whole-cell catalysis was developed as an alternative method for PLA production. Herein, we review recent developments in metabolic engineering and synthetic biology strategies that promote the microbial production of high-value PLA. Specially, the advantages and disadvantages of the using of the three kinds of substrates, which includes phenylpyruvate, phenylalanine and glucose as starting materials by natural or engineered microbes is summarized. Notably, the bio-conversion of PLA often requires the consumption of expensive coenzyme NADH. To overcome the issues of NADH regeneration, efficiently internal cofactor regeneration systems constructed by co-expressing different enzyme combinations composed of lactate dehydrogenase with others for enhancing the PLA production, as well as their possible improvements, are discussed. In particular, the construction of fusion proteins with different linkers can achieve higher PLA yield and more efficient cofactor regeneration than that of multi-enzyme co-expression. Overall, this review provides a comprehensive overview of PLA biosynthesis pathways and strategies for increasing PLA yield through biotechnology, providing future directions for the large-scale commercial production of PLA and the expansion of downstream applications.
Collapse
Affiliation(s)
- Tinglan Li
- School of Chemistry and Chemical Engineering, Chongqing University, 400044, Chongqing, P. R. China
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, P. R. China
| | - Zhao Qin
- School of Chemistry and Chemical Engineering, Chongqing University, 400044, Chongqing, P. R. China
| | - Dan Wang
- School of Chemistry and Chemical Engineering, Chongqing University, 400044, Chongqing, P. R. China.
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, P. R. China.
| | - Xue Xia
- School of Chemistry and Chemical Engineering, Chongqing University, 400044, Chongqing, P. R. China
| | - Xiaojie Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, 400044, Chongqing, P. R. China
| | - Ge Hu
- School of Chemistry and Chemical Engineering, Chongqing University, 400044, Chongqing, P. R. China
| |
Collapse
|
6
|
Yang Y, Wang L, Li X, Liu D, Dai S, Lu H. Carboxylate Group-Based Phase-Selective Organogelators with a pH-Triggered Recyclable Property. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9567-9574. [PMID: 35881913 DOI: 10.1021/acs.langmuir.2c00957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Phase-selective organogelators (PSOGs) have recently attracted more attention because of their advantages in handling oil spills and leaked organic solvents. However, it is difficult to separate and recover the organic phase and PSOGs from organic gels due to the strong interaction between them. Aiming to enhance the separation and recovery performance of the organic phase and PSOGs, we synthesized a series of pH-responsive PSOGs by using itaconic anhydride and fatty amines with carbon chain lengths of C12-C18. Here, PSOGs have an excellent gelation ability in that amounts of organic solvents and fuel oil can be solidified at a low concentration (<3 wt %). It is worth noting that these gels are stronger, which is more convenient for removal by a salvage operation. More importantly, compared with traditional organogelators, pH-responsive PSOGs can easily recover the organic phase and fuel oil with an adjustment of the pH without extraction or distillation. Because of the transformation between the hydrophilicity and hydrophobicity of PSOGs by pH stimulation, 83.15% PSOGs are recovered in three-cycle experiments. In addition, the recycled PSOGs can be used to realize the removal of the organic phase again. Herein, we find that pH-responsive PSOGs could be used as promising and sustainable materials for separating and recovering organic solvents/oils and PSOGs.
Collapse
Affiliation(s)
- Yang Yang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Li Wang
- College of Material Science and Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Xiaojiang Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Dan Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Shanshan Dai
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Hongsheng Lu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
- Engineering Research Center of Oilfield Chemistry, Ministry of Education, Chengdu 610500, P. R. China
| |
Collapse
|
7
|
Wang Y, Yu X, Fan W, Liu R, Liu Y. Alginate-oil gelator composite foam for effective oil spill treatment. Carbohydr Polym 2022; 294:119755. [DOI: 10.1016/j.carbpol.2022.119755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 11/02/2022]
|
8
|
NiO-Ni foam supported Ag3PO4 for efficient photoelectrocatalytic degradation of oil pollutant in water. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Qin Z, Wang D, Luo R, Li T, Xiong X, Chen P. Using Unnatural Protein Fusions to Engineer a Coenzyme Self-Sufficiency System for D-Phenyllactic Acid Biosynthesis in Escherichia coli. Front Bioeng Biotechnol 2021; 9:795885. [PMID: 34976983 PMCID: PMC8718758 DOI: 10.3389/fbioe.2021.795885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/01/2021] [Indexed: 11/13/2022] Open
Abstract
The biosynthetic production of D-penyllactic acid (D-PLA) is often affected by insufficient supply and regeneration of cofactors, leading to high production cost, and difficulty in industrialization. In this study, a D-lactate dehydrogenase (D-LDH) and glycerol dehydrogenase (GlyDH) co-expression system was constructed to achieve coenzyme NADH self-sufficiency and sustainable production of D-PLA. Using glycerol and sodium phenylpyruvate (PPA) as co-substrate, the E. coli BL21 (DE3) harboring a plasmid to co-express LfD-LDH and BmGlyDH produced 3.95 g/L D-PLA with a yield of 0.78 g/g PPA, similar to previous studies. Then, flexible linkers were used to construct fusion proteins composing of D-LDH and GlyDH. Under the optimal conditions, 5.87 g/L D-PLA was produced by expressing LfD-LDH-l3-BmGlyDH with a yield of 0.97 g/g PPA, which was 59.3% increased compared to expression of LfD-LDH. In a scaled-up reaction, a productivity of 5.83 g/L/h was reached. In this study, improving the bio-catalytic efficiency by artificial redox self-equilibrium system with a bifunctional fusion protein could reduce the bio-production cost of D-PLA, making this bio-production of D-PLA a more promising industrial technology.
Collapse
Affiliation(s)
- Zhao Qin
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
| | - Dan Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
- *Correspondence: Dan Wang,
| | - Ruoshi Luo
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
| | - Tinglan Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
| | - Xiaochao Xiong
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, United States
| | - Peng Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
| |
Collapse
|
10
|
Mohammad Alwi M, Normaya E, Ismail H, Iqbal A, Mat Piah B, Abu Samah MA, Ahmad MN. Two-Dimensional Infrared Correlation Spectroscopy, Conductor-like Screening Model for Real Solvents, and Density Functional Theory Study on the Adsorption Mechanism of Polyvinylpolypyrrolidone for Effective Phenol Removal in an Aqueous Medium. ACS OMEGA 2021; 6:25179-25192. [PMID: 34632177 PMCID: PMC8495713 DOI: 10.1021/acsomega.1c02699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
The discharge of industrial effluents, such as phenol, into aquatic and soil environments is a global problem due to its serious negative impacts on human health and aquatic ecosystems. In this study, the ability of polyvinylpolypyrrolidone (PVPP) to remove phenol from an aqueous medium was investigated. The results showed that a significant proportion of phenol (up to 74.91%) was removed using PVPP at pH 6.5. Isotherm adsorption experiments of phenol on PVPP indicated that the best-fit adsorption was obtained using Langmuir models. The response peaks of the hydroxyl groups of phenol (OH) and the carboxyl groups (i.e., C=O) of PVPP were altered, indicating the formation of a hydrogen bond between the PVPP and phenol during phenol removal, as characterized using 1D and 2D IR spectroscopy. The resulting complexes were successfully characterized based on their thermodynamic properties, Mulliken charge, and electronic transition using the DFT approach. To clarify the types of interactions taking place in the complex systems, quantum theory of atoms in molecules (QTAIM) analysis, reduced density gradient noncovalent interaction (RDG-NCI) approach, and conductor-like screening model for real solvents (COSMO-RS) approach were also successfully calculated. The results showed that the interactions that occurred in the process of removing phenol by PVPP were through hydrogen bonding (based on RDG-NCI and COSMO-RS), which was identified as an intermediate type (∇2ρ(r) > 0 and H < 0, QTAIM). To gain a deeper understanding of how these interactions occurred, further characterization was performed based on adsorption mechanisms using molecular electrostatic potential, global reactivity, and local reactivity descriptors. The results showed that during hydrogen bond formation, PVPP acts as a nucleophile, whereas phenol acts as an electrophile and the O9 atom (i.e., donor electron) reacts with the H22 atom (i.e., acceptor electron).
Collapse
Affiliation(s)
- Muhammad
Ammar Mohammad Alwi
- Experimental
and Theoretical Research Lab, Department of Chemistry, Kulliyyah of Science, International Islamic University
of Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Erna Normaya
- Experimental
and Theoretical Research Lab, Department of Chemistry, Kulliyyah of Science, International Islamic University
of Malaysia, 25200 Kuantan, Pahang, Malaysia
- River
of Life (ROL) Kuantan Chapter, International
Islamic University of Malaysia, 25200 Kuantan, Pahang, Malaysia
- Innovative
Toyyib Environment Minds (ITEMS), International Islamic University
of Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Hakimah Ismail
- Experimental
and Theoretical Research Lab, Department of Chemistry, Kulliyyah of Science, International Islamic University
of Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Anwar Iqbal
- School
of Chemical Science, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Bijarimi Mat Piah
- Faculty
of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, 26300 Kuantan, Pahang, Malaysia
| | - Mohd Armi Abu Samah
- Experimental
and Theoretical Research Lab, Department of Chemistry, Kulliyyah of Science, International Islamic University
of Malaysia, 25200 Kuantan, Pahang, Malaysia
- River
of Life (ROL) Kuantan Chapter, International
Islamic University of Malaysia, 25200 Kuantan, Pahang, Malaysia
- Innovative
Toyyib Environment Minds (ITEMS), International Islamic University
of Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Mohammad Norazmi Ahmad
- Experimental
and Theoretical Research Lab, Department of Chemistry, Kulliyyah of Science, International Islamic University
of Malaysia, 25200 Kuantan, Pahang, Malaysia
- River
of Life (ROL) Kuantan Chapter, International
Islamic University of Malaysia, 25200 Kuantan, Pahang, Malaysia
- Innovative
Toyyib Environment Minds (ITEMS), International Islamic University
of Malaysia, 25200 Kuantan, Pahang, Malaysia
- Drug and
Poison Call Centre, IIUM Poison Centre, International Islamic University of Malaysia, 25200 Kuantan, Pahang, Malaysia
| |
Collapse
|
11
|
Bao E, Long S, Zhang S, Li H, Zhang W, Zou J, Xu Q. A Ternary Photocatalyst with Double Heterojunctionsfor Efficient Diesel Oil Degradation. ChemistrySelect 2021. [DOI: 10.1002/slct.202004782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Er‐Peng Bao
- School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P R China
| | - Songtao Long
- School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P R China
| | - Shuoqing Zhang
- School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P R China
| | - Huan Li
- School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| | - Weiguo Zhang
- School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P R China
| | - Jijun Zou
- School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P R China
| | - Qiang Xu
- School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P R China
| |
Collapse
|
12
|
Liu D, Dai S, Wang L, Liu Y, Lu H. A tertiary amine group-based organogelator with pH-trigger recyclable property. NEW J CHEM 2021. [DOI: 10.1039/d1nj00656h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The separation and recovery of oils and organogelators can be easily realized by tuning the pH value.
Collapse
Affiliation(s)
- Dan Liu
- College of Chemistry and Chemical Engineering
- Southwest Petroleum University
- Chengdu
- P. R. China
| | - Shanshan Dai
- College of Chemistry and Chemical Engineering
- Southwest Petroleum University
- Chengdu
- P. R. China
- Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province
| | - Li Wang
- College of Chemistry and Chemical Engineering
- Southwest Petroleum University
- Chengdu
- P. R. China
| | - Ya Liu
- College of Chemistry and Chemical Engineering
- Southwest Petroleum University
- Chengdu
- P. R. China
| | - Hongsheng Lu
- College of Chemistry and Chemical Engineering
- Southwest Petroleum University
- Chengdu
- P. R. China
- Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province
| |
Collapse
|
13
|
Tómasson DA, Ghosh D, Kurup MRP, Mulvee MT, Damodaran KK. Evaluating the role of a urea-like motif in enhancing the thermal and mechanical strength of supramolecular gels. CrystEngComm 2021. [DOI: 10.1039/d0ce01194k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Enhanced thermal and mechanical strength in semicarbazone gels with a urea-like motif obtained by modifying the hydrogen bonding motif of the hydrazone compound.
Collapse
Affiliation(s)
| | - Dipankar Ghosh
- Department of Chemistry
- Science Institute
- University of Iceland
- 107 Reykjavík
- Iceland
| | | | | | - Krishna K. Damodaran
- Department of Chemistry
- Science Institute
- University of Iceland
- 107 Reykjavík
- Iceland
| |
Collapse
|
14
|
Sun XW, Wang ZH, Li YJ, Yang HL, Gong GF, Zhang YM, Yao H, Wei TB, Lin Q. Transparency and AIE tunable supramolecular polymer hydrogel acts as TEA-HCl vapor controlled smart optical material. SOFT MATTER 2020; 16:5734-5739. [PMID: 32525181 DOI: 10.1039/d0sm00522c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Stimuli-responsive optical materials attract lots of attention due to their broad applications. Herein, a novel smart stimuli-responsive supramolecular polymer was successfully constructed using a simple tripodal quaternary ammonium-based gelator (TH). The TH self-assembles into a supramolecular polymer hydrogel (TH-G) and shows aggregation-induced emission (AIE) properties. Interestingly, the transparency and fluorescence of the TH-G xerogel film (TH-GF) could be reversibly regulated by use of triethylamine (TEA) and hydrochloric acid (HCl) vapor. When alternately fumed with TEA and HCl vapor, the optical transmittance of the TH-GF was changed from 8.9% to 92.7%. Meanwhile, the fluorescence of the TH-G shows an "ON/OFF" switch. The reversible switching of the transparency and the fluorescence of the TH-GF is attributed to the assembly and disassembly of the supramolecular polymer TH-G. Based on these stimuli-response properties, the TH-GF could act as an optical material and shows potential applications as smart windows or fluorescent display material controlled by TEA and HCl vapor.
Collapse
Affiliation(s)
- Xiao-Wen Sun
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Zhong-Hui Wang
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Ying-Jie Li
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Hai-Long Yang
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Guan-Fei Gong
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - You-Ming Zhang
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Hong Yao
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Tai-Bao Wei
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Qi Lin
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| |
Collapse
|
15
|
Zhang B, Chen S, Luo H, Zhang B, Wang F, Song J. Porous amorphous powder form phase-selective organogelator for rapid recovery of leaked aromatics and spilled oils. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121460. [PMID: 31690502 DOI: 10.1016/j.jhazmat.2019.121460] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 05/22/2023]
Abstract
Phase-selective organogelators (PSOGs) have drawn wide attention due to their potential applications in recovery of leaked aromatics and spilled oils. However, powder form PSOGs with fast gelling abilities and broad applicabilities are still limited. Herein, we developed three D-gluconic acetal-based gelators with different alkyl chains, all of which show excellent gel properties for hydrocarbon solvents. The spectroscopic and X-ray results revealed that the gel formation was the synergy of hydrogen bonding, π-π stacking and van der Waals forces. Surprisingly, the powder form gelator A with a cis double bond in the alkyl chain could instantly and selectively gel aromatic hydrocarbons, and also rapidly solidify crude oils with widely ranging viscosities from seawater at room temperature within minutes. Further research revealed that A powder exhibited porous amorphous morphology because the cis double bonds broke the crystalline chain-chain interdigitation between the assemblies. Therefore, the fast dispersion and recombination of fibers under the action of oil molecules lead to the fast room temperature gel process. Overall, a non-toxic and low-cost powder form PSOG with rapid room temperature phase selective gelation ability for a wide range of oils makes it promising for the emergency treatment of oil spill and aromatics leakage.
Collapse
Affiliation(s)
- Baohao Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Shipeng Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Hao Luo
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Bao Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Fumin Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Jian Song
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.
| |
Collapse
|
16
|
Liu Y, Liu L, Zhang L, Lv X, Che G. A monopyrrolotetrathiafulvalene based naphthalimide tailored organogelator with stimuli responsive properties and absorption for rhodamine B. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Dong R, Chen D, Li N, Xu Q, Li H, He J, Lu J. Removal of phenol from aqueous solution using acid-modified Pseudomonas putida-sepiolite/ZIF-8 bio-nanocomposites. CHEMOSPHERE 2020; 239:124708. [PMID: 31505442 DOI: 10.1016/j.chemosphere.2019.124708] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/22/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
The discharge of phenol, a harmful pollutant, in the environment poses a threat to human health. With the rapid urbanization and industrialization of the land, there is a pressing need to find new technologies and efficient adsorption materials to address phenol contamination. As a potential adsorbent candidate, sepiolite (SEP) has garnered much interest owing to its large specific surface area, and excellent adsorption performance and biocompatibility. Herein, nanocomposite CESEP/ZIF-8, consisting of zeolite imidazole framework (ZIF-8) and hydrochloric acid-modified SEP (CESEP), was prepared and examined toward the adsorption of phenol. Adsorption equilibrium was achieved within 150 min at initial phenol solution concentrations of 10 and 20 mg/L. However, complete removal was not achieved. Accordingly, biodegradation was introduced. Microorganism Pseudomonas putida was immobilized onto CESEP/ZIF-8, which afforded synergistic adsorption and biodegradation action. Phenol at solution concentrations of 10 and 20 mg/L was effectively removed within 13 and 24 h, respectively (as opposed to 21 and 36 h when phenol was removed in the presence of free Pseudomonas putida solely). The synergistic physical-biological treatment presented herein is expected to have great potential in the field of wastewater treatment.
Collapse
Affiliation(s)
- Ruifang Dong
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, 215123, PR China
| | - Dongyun Chen
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, 215123, PR China.
| | - Najun Li
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, 215123, PR China
| | - Qingfeng Xu
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, 215123, PR China
| | - Hua Li
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, 215123, PR China
| | - Jinghui He
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, 215123, PR China
| | - Jianmei Lu
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, 215123, PR China.
| |
Collapse
|
18
|
Hu M, Sun Z, Hu J, Lei H, Jin W. Simultaneous Phenol Detoxification and Dilute Metal Recovery in Cyclone Electrochemical Reactor. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02453] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Meiqing Hu
- School of Chemical and Material Engineering, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhi Sun
- Institute of Process Engineering, Chinese Academy of Sciences, 1th Ber-er-tiao Zhongguancun, Beijing 100190, People’s Republic of China
| | - Jiugang Hu
- College of Chemistry and Chemical Engineering, Central South University, No. 932 South Lushan Road, Changsha, Hunan 410083, China
| | - Hong Lei
- Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
| | - Wei Jin
- School of Chemical and Material Engineering, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- Institute of Process Engineering, Chinese Academy of Sciences, 1th Ber-er-tiao Zhongguancun, Beijing 100190, People’s Republic of China
| |
Collapse
|
19
|
Zhang J, Liu J, Tong C, Chen S, Zhang B, Zhang B, Song J. Smart Materials for Environmental Remediation Based on Two-Component Gels: Room-Temperature-Phase-Selective Gelation for the Removal of Organic Pollutants Including Nitrobenzene/O-Dichlorobenzene, and Dye Molecules from the Wastewater. NANOSCALE RESEARCH LETTERS 2019; 14:42. [PMID: 30707315 PMCID: PMC6358627 DOI: 10.1186/s11671-019-2865-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
Novel two-component gel systems based on aliphatic acid-hydroxy/base interaction were developed as smart materials for environmental remediation. The G1-A16 gelator could be used directly as a powder form to selectively gel aromatic solvents (nitrobenzene and o-dichlorobenzene) from their mixtures with wastewater (containing 0.5 M sodium nitrate and 0.5 M sodium sulfate) via a simple shaking strategy at room temperature without employing co-solvents and a heating-cooling process. Meanwhile, the two-component gel system can efficiently remove the toxic dyes from the aqueous solution. The dominant factors that drive gelation in the case of the gelator and nitrobenzene or water have been studied using FT-IR, 1H NMR, and XRD. Overall, our research provides an efficient two-component approach for facilely tuning the properties of one-component gel for the realization of high-performance functionalities of gels. At the same time, our study demonstrates potential industrial application prospect in removing pollutants efficiently (such as aromatic solvents and toxic dye removal).
Collapse
Affiliation(s)
- Jing Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 China
- The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin, 300072 China
- Renai College of Tianjin University, Tianjin, 301636 China
| | - Jiahui Liu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Ciqing Tong
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Shipeng Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 China
- The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin, 300072 China
| | - Baohao Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 China
- The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin, 300072 China
| | - Bao Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 China
- The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin, 300072 China
| | - Jian Song
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 China
- The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin, 300072 China
| |
Collapse
|