1
|
Feng H, Xu T, Zhu Y, Chen Y, Su J, Ha E, Jia R, Zhang K, Ma L, Wang L. A facile room temperature method to recycle Cd from CdS. Heliyon 2023; 9:e15229. [PMID: 37095936 PMCID: PMC10122037 DOI: 10.1016/j.heliyon.2023.e15229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
Cadmium-based semiconductors have a wide range of applications in light-emitting, energy conversion, photodetection and artificial photosynthesis. With the concern about the potential toxicity of Cd, it is necessary to recycle the element from the Cd based semiconductors. Commonly, the precipitation of Cd cations with S2- is deemed as the end point of recycling. However, actually, CdS is easy to be oxidized and released into the environment and accumulate in the food chain. It still remains challenges on how to refine the Cd element and convert it to the raw material. Herein, we demonstrate a facile room temperature method for recycling Cd from CdS. Cd can be produced from CdS within 3 h with the help of the lithium-ethylenediamine solution. DFT calculations further confirm that the high surface energy of (100) and (101) planes are selectively attacked by the solvated electrons in the solution, which is in good accordance with the XRD, STEM-HAADF and XPS characterizations. With a total recovery efficiency of 88%, Cd is successfully recovered from the CdS powder. This method provides a new perspective on the treatment of Cd-based semiconductor waste, which is of great significance for the recycling of cadmium metal.
Collapse
|
2
|
Synthesis and Surface Modification of Iron Oxide Nanoparticles for the Extraction of Cadmium Ions in Food and Water Samples: A Chemometric Study. SEPARATIONS 2023. [DOI: 10.3390/separations10020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
In this project, a prompt, efficient, and effective method for Cd2+ ions extraction from different food and water samples using magnetic dispersion-based solid phase extraction by functionalized iron oxide nanoparticles was proposed. Iron oxide nanoparticles were synthesized through the co-precipitation method followed by functionalization with tetraethyl orthosilicate (TEOS) and 3-aminopropyl silane (APTES) to obtain Fe3O4@SiO2@APTES. This composite was characterized through different techniques, including vibrating sample magnetometer, dynamic light scattering, zeta potential, FTIR, SEM, XRD, and BET. Variables studied were pH, temperature, sorbent amount, sonication time, and sample and eluent volume affecting the sorption efficacy of freshly synthesized sorbent. Plackett–Burman design was utilized for the identification of significant factors for microextraction of target analyte, while the central composite design was utilized for the optimization of significant factors. Detection and quantification limits obtained were 0.17 and 0.58 μgL−1, respectively, with an enhancement factor of 83.5. Under optimum conditions, Fe3O4@SiO2@APTES showed good stability even after >80 adsorption/desorption cycles run while maintaining over 96% analyte recoveries. The developed method was validated by assessing certified reference materials and standard addition methodology for Cd2+ detection in real samples. To confirm the precision, repeatability (RSDr) and reproducibility (RSDR) were calculated and found as <3.0 (n = 7) and <7.5 (n = 15), respectively. Furthermore, in accordance with the ISO/IEC 17025 recommendations, the validation was also confirmed through a “bottom-up” approach while considering all possible uncertainties in data.
Collapse
|
3
|
Wu S, Liang L, Zhang Q, Xiong L, Shi S, Chen Z, Lu Z, Fan L. The ion-imprinted oyster shell material for targeted removal of Cd(II) from aqueous solution. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114031. [PMID: 34735836 DOI: 10.1016/j.jenvman.2021.114031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/09/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
In order to realize the sustainable utilization of waste oyster shell and develop a targeted removal technology for cadmium. A novel ion-imprinted oyster shell material (IIOS) was prepared by surface imprinting technique. The prepared samples were characterized by scanning electron microscope, Fourier infrared spectrometer, X-ray diffractometer, thermogravimetric analysis and N2 adsorption-desorption. The adsorption performances of IIOS for Cd(II) from aqueous solution were studied by the single factor sequential batch, kinetics, isotherms, selectivity and recycling experiments. The characterization researches showed that IIOS was successfully prepared. The adsorption experiments indicated that the adsorption process reached equilibrium within 240 min; the maximum adsorption capacity was up to 69.1 mg g-1 with the initial Cd(II) concentration of 75 mg L-1 at pH 5; the adsorption process fitted well to the pseudo-second-order model and the Langmuir isotherm model, which revealed the chemisorption characteristic of Cd(II). Moreover, IIOS exhibited a good targeted adsorption of Cd(II) in several binary competition systems owing to the present of these imprinted cavities. The recycling experiment showed that the targeted removal ratio of IIOS for Cd(II) remained above 80% after used six times. The results of this study indicated that it is a promising prospect for waste oyster shell used as IIOS to dispose heavy metals in wastewater.
Collapse
Affiliation(s)
- Shurong Wu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lin Liang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qin Zhang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lifeng Xiong
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuiqin Shi
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zibin Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zexiang Lu
- Department of Chemical Engineering, College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350108, China.
| | - Liwei Fan
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
4
|
Wang H, Lou X, Hu Q, Sun T. Adsorption of antibiotics from water by using Chinese herbal medicine residues derived biochar: Preparation and properties studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114967] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
5
|
Yadav A, Kumar A, Verma N. Microchannel–engraved and Cu–dispersed carbon nanocomposite film as a chemiresistive sensor for aqueous metal ions. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Development of poly(1-vinylimidazole)-chitosan composite sorbent under microwave irradiation for enhanced uptake of Cd(II) ions from aqueous media. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03523-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Qu J, Wang Y, Tian X, Jiang Z, Deng F, Tao Y, Jiang Q, Wang L, Zhang Y. KOH-activated porous biochar with high specific surface area for adsorptive removal of chromium (VI) and naphthalene from water: Affecting factors, mechanisms and reusability exploration. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123292. [PMID: 32645546 DOI: 10.1016/j.jhazmat.2020.123292] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/20/2020] [Accepted: 06/20/2020] [Indexed: 05/22/2023]
Abstract
Herein, a high-performance porous biochar described as PBCKOH was successfully synthesized by two-step pyrolysis of corn straw with chemical activation of KOH, and was employed for the elimination of Cr(VI) and naphthalene (NAP) from water. Benefiting from KOH activation, the PBCKOH was found to possess huge specific surface area of 2183.80 m2/g and many well-developed micropores with average particle size of 2.75 nm and main pore diameters distribution from 1 to 2 nm. The PBCKOH presented an excellent adsorption performance with a theoretical monolayer uptake of 116.97 mg/g for Cr(VI) and a heterogeneous adsorption capacity of 450.43 mg/g for NAP. The uptake equilibrium was attained within about 120 min for Cr(VI), while about 180 min for NAP following avrami fractional-order model, revealing the existence of multiple kinetics during the adsorption. The thermodynamic results showed that the uptake of both Cr(VI) and NAP occurred spontaneously (-ΔG°), while in an endothermic nature for Cr(VI) (+ΔH°) and an exothermic characteristic for NAP (-ΔH°) with different randomness. Furthermore, the PBCKOH was believed to enhance the Cr(VI) adsorption mainly through the combination of electrostatic attraction, complexation, ion exchange and reduction action, while achieving the high NAP uptake by pore filling and π-π stacking interactions.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yuxin Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xue Tian
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zhao Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Fengxia Deng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Qun Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
8
|
Qu J, Yuan Y, Meng Q, Zhang G, Deng F, Wang L, Tao Y, Jiang Z, Zhang Y. Simultaneously enhanced removal and stepwise recovery of atrazine and Pb(II) from water using β-cyclodextrin functionalized cellulose: Characterization, adsorptive performance and mechanism exploration. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123142. [PMID: 32593944 DOI: 10.1016/j.jhazmat.2020.123142] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/25/2020] [Accepted: 06/03/2020] [Indexed: 05/27/2023]
Abstract
Heavy metals and pesticides often coexist in contaminated water, while their potential competition behaviors make the adsorptive removal more challenging. Thus, decorating an adsorbent with independent functional sites could be a promising alternative to radically prevent the competitive process for improving the adsorption performance. Herein, β-cyclodextrin functionalized rice husk-based cellulose (β-CD@RH-C) was designed and applied for synchronous removal of atrazine and Pb(II). The characterization results supported the successful grafting of β-cyclodextrin onto the cellulose. The β-CD@RH-C presented a pH-dependent adsorption performance for Pb(II) with a theoretical monolayer adsorption capacity of 283.00 mg/g, while was mostly unrelated to pH for atrazine adsorption with a heterogeneous uptake of 162.21 mg/g in the mono-component system. Most importantly, the β-CD@RH-C could efficiently achieve simultaneous removal of atrazine and Pb(II) via avoiding their competitive behaviors, which was due to the different adsorption mechanisms for atrazine (i.e. host-guest interaction) and Pb(II) (i.e. complexation and electrostatic interaction). Moreover, the adsorbed atrazine and Pb(II) could be sequentially desorbed with slight decrease in the adsorption performance of β-CD@RH-C even after four cycles in the atrazine-Pb(II) multi-component system. All these results suggested β-CD@RH-C to be a tailored adsorbent with high-performance elimination of co-existing heavy metals and organic pollutants in water.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yihang Yuan
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Qingjuan Meng
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Guangshan Zhang
- College of Resource and Environment, Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fengxia Deng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Zhao Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
9
|
Tetracycline Removal by Activating Persulfate with Diatomite Loading of Fe and Ce. Molecules 2020; 25:molecules25235531. [PMID: 33255809 PMCID: PMC7728345 DOI: 10.3390/molecules25235531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/15/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
Persulfate (PS)-based oxidation technology is efficient in removing refractory organics from water. A novel diatomite (DIA) support Fe and Ce composite (Fe-Ce/DIA) was prepared for activating persulfate to degrade tetracycline in water. The Fe and Ce were uniformly loaded on DIA, and the total pore size of Fe-Ce/DIA was 6.99 × 10−2 cm3/g, and the average pore size was 12.06 nm. Fe-Ce/DIA presented a good catalytic activity and 80% tetracycline was removed under the persulfate system. The Fe-Ce/DIA also had photocatalytic activity, and the corresponding tetracycline removal efficiency was 86% under UV irradiation. Fe-Ce/DIA exhibited less iron dissolution rate compared with Fe-DIA. The tetracycline degradation rate was enhanced when the temperature increased. The optimal tetracycline removal efficiency was obtained when the conditions were of persulfate 10 mM, Fe-Ce/DIA dosage 0.02 g/L, and tetracycline concentration 50 mg/L. In addition, Fe-Ce/DIA showed a wide pH application and good reusability and stability.
Collapse
|
10
|
Unravelling the Environmental Application of Biochar as Low-Cost Biosorbent: A Review. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10217810] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this age, a key target for enhancing the competitiveness of the chemical, environmental and biotechnology industries is to manufacture high-value products more efficiently and especially with significantly reduced environmental impact. Under this premise, the conversion of biomass waste to a high-value added product, biochar, is an interesting approach under the circular economy principles. Thus, the improvements in the biochar production and its new and innovative uses are hot points of interest, which are the focus of vast efforts of the scientific community. Biochar has been recognized as a material of great potential, and its use as an adsorbent is becoming a reliable strategy for the removal of pollutants of different streams, according to its high adsorption capacity and potential to eliminate recalcitrant compounds. In this review, a succinct overview of current actions developed to improve the adsorption capability of biochar, mainly of heavy metal and organic pollutants (dyes, pharmaceuticals and personal care products), is summarized and discussed, and the principal adsorption mechanisms are described. The feedstock and the production procedure are revealed as key factors that provide the appropriate physicochemical characteristics for the good performance of biochar as an adsorbent. In addition, the modification of the biochar by the different described approaches proved their feasibility and became a good strategy for the design of selective adsorbents. In the last part of this review, the novel prospects in the regeneration of the biochar are presented in order to achieve a clean technology for alleviating the water pollution challenge.
Collapse
|
11
|
Qu J, Dong M, Wei S, Meng Q, Hu L, Hu Q, Wang L, Han W, Zhang Y. Microwave-assisted one pot synthesis of β-cyclodextrin modified biochar for concurrent removal of Pb(II) and bisphenol a in water. Carbohydr Polym 2020; 250:117003. [PMID: 33049907 DOI: 10.1016/j.carbpol.2020.117003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022]
Abstract
Herein, β-cyclodextrin (β-CD) functionalized rice husk-derived biochar (BC) was conveniently and fast synthesized via microwave (MW)-assisted one pot process, and employed for simultaneous elimination of bisphenol A (BPA) and plumbum (Pb). Profiting by microwave irradiation, the surface modification was implemented in 15 min and the prepared BCMW-β-CD presented an excellent adsorption performance with a heterogeneous adsorption capacity of 209.20 mg/g for BPA and a theoretical monolayer uptake of 240.13 mg/g for Pb(II) in the mono-component system. Furthermore, the BCMW-β-CD could simultaneously achieve efficient cleanup of BPA and Pb(II) through avoiding the competitive behaviors between them, which were due to the different adsorption mechanisms for Pb(II) (i.e. electrostatic attraction and complexation) and BPA (i.e. host-guest supramolecular and π-π interactions). Moreover, the adsorbed BPA and Pb(II) could be sequentially desorbed with mild decrease in the adsorption performance of BCMW-β-CD even after five cycles in the Pb(II)-BPA multi-component system.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Min Dong
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Shuqi Wei
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Qingjuan Meng
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Limin Hu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qi Hu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Wei Han
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
12
|
Jun KC, Abdul Raman AA, Buthiyappan A. Treatment of oil refinery effluent using bio-adsorbent developed from activated palm kernel shell and zeolite. RSC Adv 2020; 10:24079-24094. [PMID: 35517322 PMCID: PMC9055107 DOI: 10.1039/d0ra03307c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
This study investigated the potential of palm kernel shell (PKS) as a biomass feed for adsorbent production. This work aims at synthesizing green adsorbent from activated PKS by integrating iron oxide and zeolite. The newly developed adsorbents, zeolite-Fe/AC and Fe/AC, were analyzed for surface area, chemical composition, magnetic properties, crystallinity, and stability. The adsorbent efficiency in removing effluent from the palm oil mill was evaluated. The influence of operating parameters, including adsorbent dosage, H2O2, reaction time, and initial solution pH for adsorption performance was studied. The Fourier transform infrared analysis revealed that the adsorbents contain functional groups including OH, N-H, C[double bond, length as m-dash]O and C[double bond, length as m-dash]C, which are essential for removing pollutants. The SEM-EDX analysis shows holes in the adsorbent surface and that it is smooth. The adsorption study revealed that under optimized conditions, by using 4 g L-1 of adsorbent and 67.7 mM H2O2, zeolite-Fe/AC was able to remove 83.1% colour and 67.2% COD within 30 min. However, Fe/AC requires 5 g L-1 of adsorbent and 87.7 mM to remove 86.8 percent and 65.6 percent, respectively. This study also showed that zeolite-Fe/AC has higher reusability compared to Fe/AC. Among Freundlich and Temkin models, the experimental data were found to be best fitted with the Langmuir isotherm model. The kinetic analysis revealed that for both adsorbents, the adsorption process fitted the pseudo-second-order model (R 2 = 0.9724). The finding reflects monolayer adsorption of zeolite-Fe/AC and Fe/AC. This study thus demonstrates the applicability of low-cost green adsorbents produced from PKS to treat oil refinery effluent and other recalcitrant wastewaters.
Collapse
Affiliation(s)
- Kwong Chia Jun
- Department of Chemical Engineering, University of Malaya 50603 Kuala Lumpur Malaysia +60 3 7967 5319 +60 3 7967 5300
| | - Abdul Aziz Abdul Raman
- Department of Chemical Engineering, University of Malaya 50603 Kuala Lumpur Malaysia +60 3 7967 5319 +60 3 7967 5300
| | - Archina Buthiyappan
- Department of Chemical Engineering, University of Malaya 50603 Kuala Lumpur Malaysia +60 3 7967 5319 +60 3 7967 5300
| |
Collapse
|
13
|
Simonescu CM, Lavric V, Musina A, Antonescu OM, Culita DC, Marinescu V, Tardei C, Oprea O, Pandele AM. Experimental and modeling of cadmium ions removal by chelating resins. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Su Y, Böhm W, Wenzel M, Paasch S, Acker M, Doert T, Brunner E, Henle T, Weigand JJ. Mild hydrothermally treated brewer's spent grain for efficient removal of uranyl and rare earth metal ions. RSC Adv 2020; 10:45116-45129. [PMID: 35516275 PMCID: PMC9058606 DOI: 10.1039/d0ra08164g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/26/2020] [Indexed: 12/15/2022] Open
Abstract
The increasing concerns on uranium and rare earth metal ion pollution in the environment require sustainable strategies to remove them from wastewater. The present study reports an eco-friendly approach to convert a kind of protein-rich biomass, brewer's spent grain (BSG), into effective biosorbents for uranyl and rare earth metal ions. The employed method reduces the energy consumption by performing the hydrothermal treatment at a significantly lower temperature (150 °C) than conventional hydrothermal carbonization. In addition, with the aid of the Maillard reaction between carbohydrates and proteins forming melanoidins, further activation processes are not required. Treatment at 150 °C for 16 h results in an altered biosorbent (ABSG) with increased content of carboxyl groups (1.46 mmol g−1) and a maximum adsorption capacity for La3+, Eu3+, Yb3+ (pH = 5.7) and UO22+ (pH = 4.7) of 38, 68, 46 and 221 mg g−1, respectively. Various characterization methods such as FT-IR, 13C CP/MAS NMR, SEM-EDX and STA-GC-MS analysis were performed to characterize the obtained material and to disclose the adsorption mechanisms. Aside from oxygen-containing functional groups, nitrogen-containing functional groups also contribute to the adsorption. These results strongly indicate that mild hydrothermal treatment of BSG could be applied as a greener, low-cost method to produce effective adsorbents for uranyl and rare earth metal ion removal. Effective biosorbent ABSG is obtained via hydrothermal treatment of BSG at low temperature without activation, minimizing energy consumption and environmental impact.![]()
Collapse
Affiliation(s)
- Yi Su
- Chair of Inorganic Molecular Chemistry
- TU Dresden
- 01062 Dresden
- Germany
| | - Wendelin Böhm
- Chair of Food Chemistry
- TU Dresden
- 01062 Dresden
- Germany
| | - Marco Wenzel
- Chair of Inorganic Molecular Chemistry
- TU Dresden
- 01062 Dresden
- Germany
| | - Silvia Paasch
- Chair of Bioanalytical Chemistry
- TU Dresden
- 01062 Dresden
- Germany
| | - Margret Acker
- Central Radionuclide Laboratory
- TU Dresden
- 01062 Dresden
- Germany
| | - Thomas Doert
- Chair of Inorganic Chemistry II
- TU Dresden
- 01062 Dresden
- Germany
| | - Eike Brunner
- Chair of Bioanalytical Chemistry
- TU Dresden
- 01062 Dresden
- Germany
| | - Thomas Henle
- Chair of Food Chemistry
- TU Dresden
- 01062 Dresden
- Germany
| | - Jan J. Weigand
- Chair of Inorganic Molecular Chemistry
- TU Dresden
- 01062 Dresden
- Germany
| |
Collapse
|
15
|
Jiang Q, Xie W, Han S, Wang Y, Zhang Y. Enhanced adsorption of Pb(II) onto modified hydrochar by polyethyleneimine or H3PO4: An analysis of surface property and interface mechanism. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123962] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|