1
|
Wang Q, Chen Q, Lin H, Ding J, Sha T, Han Y. Investigation of the Mechanism of Oxidative Potential Increase in Atmospheric Particulate Matter during Photoaging: Important Role of Aromatic Nitrogenous Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19818-19831. [PMID: 39436324 DOI: 10.1021/acs.est.4c03199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Particulate matter (PM) undergoing various aging processes in the atmosphere changes its toxicity. However, the mechanism of toxicity evolution is not fully clarified currently. This study demonstrates that photoaging promotes an increase in the oxidative potential (OP) of atmospheric PM by about 30%, and the increased OP is mainly attributed to the production of secondary organic compounds, while water-soluble metal ions contribute only 11%. The OP of nonextractable matters (NEMs) of atmospheric PM was mostly increased after photoaging, followed by water-soluble matters (WSMs). NEM can produce quinone-like functional groups and secondary persistent free radicals during photoaging, which are most likely to produce reactive oxygen species (ROS). For WSM, the conversion of low-oxidation humic-like substances (HULIS) to high-oxidation HULIS is the main reason for the increase in OP. Quinones, nitrophenols, and N-containing heterocycles are the OP contributors produced during the conversion process. Among them, quinones are the main secondary oxidizing active compounds, while nitro-phenolic compounds and N-containing heterocyclic compounds may play a catalyst-like role, facilitating the production of oxidizing active compounds and ROS in the newly converted high-oxidation HULIS. This study clarifies the secondary OP generation mechanism and provides new insights into the uncertainty of PM toxicity during atmospheric aging.
Collapse
Affiliation(s)
- Qingwen Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qingcai Chen
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Hao Lin
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiale Ding
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Tong Sha
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yuemei Han
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| |
Collapse
|
2
|
Qiu R, Chen A, Zhang P, Tang X, Wang C, Sun H. Preparation of novel Fe-containing zeolite-A for KN-R decolorization by Fenton-like reaction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28525-28537. [PMID: 38558348 DOI: 10.1007/s11356-024-33023-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
Herein, novel catalysts of Fe-containing zeolite-A (Fe/zeolite-A) were synthesized by exchanging iron ions into zeolite-A framework, and short-chain organic acids (SCOAs) were employed as chelating agents. Reactive Brilliant Blue KN-R (KN-R) was used as a model pollutant to evaluate the performance of these catalysts based on the heterogeneous Fenton reaction. The results showed that Fe-OA/3A, which applied zeolite-3A as the supporter and oxalic as the chelating agent, presented the most prominent KN-R decolorization efficiency. Under the initial pH of 2.5, 0.4 mM KN-R could be totally decolorized within 20 min. However, the mineralization efficiency of KN-R was only 58.2%. Therefore, anthraquinone dyes were introduced to modify zeolite-3A. As a result, the mineralization efficiency of KN-R was elevated to 92.7% when using Alizarin Violet (AV) as the modifier. Moreover, the modified catalysts exhibited excellent stability, the KN-R decolorization efficiency could be maintained above 95.0% within 20 min after operating for nine cycles. The mechanism revealed that the Fe(II)/Fe(III) cycle was accelerated by AV-modified catalyst thus prompting the KN-R decolorization in Fenton-like system. These findings provide new insights for preparing catalysts with excellent activity and stability for dye wastewater treatment.
Collapse
Affiliation(s)
- Rui Qiu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, #38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China
- Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350, China
| | - Aiyin Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, #38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China
- Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350, China
| | - Peng Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, #38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China
- Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350, China
| | - Xuejiao Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, #38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China
- Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350, China
| | - Cuiping Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, #38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China
- Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, #38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China.
- Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350, China.
| |
Collapse
|
3
|
Liu H, Tang S, Wang Z, Zhang Q, Yuan D. Organic cocatalysts improved Fenton and Fenton-like processes for water pollution control: A review. CHEMOSPHERE 2024; 353:141581. [PMID: 38430936 DOI: 10.1016/j.chemosphere.2024.141581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
In recent times, organic compounds have been extensively utilized to mitigate the limitations associated with Fe(Ⅲ) reduction and the narrow pH range in Fenton and Fenton-like processes, which have garnered considerable attention in relevant studies. This review presents the latest advancements in the comprehensive analysis and applications of organic agents as assistant/cocatalysts during Fenton/Fenton-like reactions for water pollution control. The primary focus includes the following: Firstly, the mechanism of organic co-catalytic reactions is introduced, encompassing both complexation and reduction aspects. Secondly, these organic compounds are classified into distinct categories based on their functional group structures and applications, namely polycarboxylates, aminopolycarboxylic acids, quinones, phenolic acids, humic substances, and sulfhydryl compounds, and their co-catalytic functions and mechanisms of each category are discussed in meticulous detail. Thirdly, a comprehensive comparison is conducted among various types of organic cocatalysts, considering their relative merits, cost implications, toxicity, and other pertinent factors. Finally, the review concludes by addressing the universal challenges and development prospects associated with organic co-catalytic systems. The overarching objective of this review is to provide insights into potential avenues for the future advancement of organic co-catalytic Fenton/Fenton-like reactions in the context of water purification.
Collapse
Affiliation(s)
- Huilin Liu
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Shoufeng Tang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China.
| | - Zhibin Wang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China.
| | - Qingrui Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Deling Yuan
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China.
| |
Collapse
|
4
|
Chen Y, Zhao M, Li Y, Liu Y, Chen L, Jiang H, Li H, Chen Y, Yan H, Hou S, Jiang L. Regulation of tourmaline-mediated Fenton-like system by biochar: Free radical pathway to non-free radical pathway. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118497. [PMID: 37413726 DOI: 10.1016/j.jenvman.2023.118497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/13/2023] [Accepted: 06/22/2023] [Indexed: 07/08/2023]
Abstract
The heterogeneous Fenton-like systems induced by Fe-containing minerals have been largely applied for the degradation of organic pollutants. However, few studies have been conducted on biochar (BC) as an additive to Fenton-like systems mediated by iron-containing minerals. In this study, the addition of BC prepared at different temperatures was found to significantly enhance the degradation of contaminants in the tourmaline-mediated Fenton-like system (TM/H2O2) using Rhodamine B (RhB) as the target contaminant. Furthermore, the hydrochloric acid-modified BC prepared at 700 °C (BC700(HCl)) could achieve complete degradation of high concentrations of RhB in the BC700(HCl)/TM/H2O2 system. Free radical quenching experiments showed that TM/H2O2 system removed contaminants mainly mediated by the free radical pathway. After adding BC, the removal of contaminants is mainly mediated by the non-free radical pathway in BC700(HCl)/TM/H2O2 system which was confirmed by the Electron paramagnetic resonance (EPR) experiments and electrochemical impedance spectroscopy (EIS). In addition, BC700(HCl) had broad feasibility in the degradation of other organic pollutants (Methylene Blue (MB) 100%, Methyl Orange (MO) 100%, and tetracycline (TC) 91.47%) in the tourmaline-mediated Fenton-like system. Possible pathways for the degradation of RhB by the BC700(HCl)/TM/H2O2 system were also proposed.
Collapse
Affiliation(s)
- Yaoning Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Mengyang Zhao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yuanping Li
- School of Municipal and Geomatics Engineering, Hunan City University, Yiyang, 413000, China.
| | - Yihuan Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Li Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Hongjuan Jiang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Hui Li
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha, 410004, China
| | - Yanrong Chen
- School of Resource & Environment, Hunan University of Technology and Business, Changsha, 410205, China
| | - Haoqin Yan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Suzhen Hou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Longbo Jiang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
5
|
Zhong D, Zhang J, Huang J, Ma W, Li K, Li J, Zhang S, Li Z. Accelerated electron transfer process via MOF-derived FeCo/C for enhanced degradation of antibiotic contaminants towards heterogeneous electro-Fenton system. CHEMOSPHERE 2023:138994. [PMID: 37211168 DOI: 10.1016/j.chemosphere.2023.138994] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
The Fe(III) to Fe(II) process limits the rate of the electro-Fenton system. In this study, MIL-101(Fe) derived porous carbon skeleton-coated FeCo bimetallic catalyst Fe4/Co@PC-700 was prepared as a heterogeneous electro-Fenton (EF) catalytic process. The experimental results showed its good performance in catalytic removal of antibiotic contaminants, the rate constant of tetracycline (TC) degradation catalyzed by Fe4/Co@PC-700 was 8.93 times higher than that of Fe@PC-700 under the pH conditions of raw water (pH = 5.86), exhibited good removal of TC, oxytetracycline (OTC), hygromycin (CTC), chloramphenicol (CAP) and ciprofloxacin (CIP). It was shown that the introduction of Co promoted more Fe0 production, allowing the material to exhibit faster Fe(III)/Fe(II) cycling rates. 1O2 and high-priced metal oxygen species were identified as the main active species of the system, in addition to the analysis of possible degradation pathways and toxicity of intermediates of TC. Finally, the stability and adaptability of Fe4/Co@PC-700 and EF systems to different water matrices were evaluated, showing that Fe4/Co@PC-700 was easy to recover and could be applied to different water matrices. This study provides a reference for the design and system application of heterogeneous EF catalysts.
Collapse
Affiliation(s)
- Dan Zhong
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China; National Engineering Research Center of Urban Water Resources Co., Ltd., Harbin Institute of Technology, Harbin 150090, PR China
| | - Jingna Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | | | - Wencheng Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China; National Engineering Research Center of Urban Water Resources Co., Ltd., Harbin Institute of Technology, Harbin 150090, PR China.
| | - Kefei Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jinxin Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shaobo Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Zhaopeng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
6
|
Kumari M, Pulimi M. Phthalate esters: occurrence, toxicity, bioremediation, and advanced oxidation processes. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:2090-2115. [PMID: 37186617 PMCID: wst_2023_119 DOI: 10.2166/wst.2023.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Phthalic acid esters are emerging pollutants, commonly used as plasticizers that are categorized as hazardous endocrine-disrupting chemicals (EDCs). A rise in anthropogenic activities leads to an increase in phthalate concentration in the environment which leads to various adverse environmental effects and health issues in humans and other aquatic organisms. This paper gives an overview of the research related to phthalate ester contamination and degradation methods by conducting a bibliometric analysis with VOS Viewer. Ecotoxicity analysis requires an understanding of the current status of phthalate pollution, health impacts, exposure routes, and their sources. This review covers five toxic phthalates, occurrences in the aquatic environment, toxicity studies, biodegradation studies, and degradation pathways. It highlights the various advanced oxidation processes like photocatalysis, Fenton processes, ozonation, sonolysis, and modified AOPs used for phthalate removal from the environment.
Collapse
Affiliation(s)
- Madhu Kumari
- Centre of Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India E-mail:
| | - Mrudula Pulimi
- Centre of Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India E-mail:
| |
Collapse
|
7
|
An Y, Li X, Liu Z, Li Y, Zhou Z, Liu X. Constant oxidation of atrazine in Fe(III)/PDS system by enhancing Fe(III)/Fe(II) cycle with quinones: Reaction mechanism, degradation pathway and DFT calculation. CHEMOSPHERE 2023; 317:137883. [PMID: 36693481 DOI: 10.1016/j.chemosphere.2023.137883] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/24/2022] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Quinones are potential pollutants and redox active compounds widely distributed in environmental media. In this study, methyl-p-benzoquinone (MBQ) was introduced into Fe(III)/peroxydisulfate system (Fe(III)/PDS) to expedite the conversion of Fe(III) to Fe(II) and the degradation of atrazine (ATZ), ultimately establishing an environmentally friendly system of "treating pollution with pollution". MBQ/Fe(III)/PDS system showed superior performance to traditional Fe(II)/PDS system in pH range of 2-7. Sulfate radical (SO4•-) and hydroxyl radical (•OH) were confirmed to exist in MBQ/Fe(III)/PDS system according to alcohol quenching experiments and ESR tests. Meanwhile, stable 80% of η[PMSO2] (i.e., the molar ratio of PMSO2 generation to PMSO consumption) was achieved and manifested that highly reactive substance Fe(IV) also participated in MBQ/Fe(III)/PDS system. The spontaneous transformation of MBQ and methyl-hydroquinone (MHQ) drove Fe(III)/Fe(II) cycle, during which MHQ induced Fe(III) reduction and Fe(II) regeneration. Transformation pathways of ATZ were proposed based on HPLC-MS detection and DFT calculation and ATZ degradation could be initiated by lateral chain oxidation and dechlorination-hydroxylation. The acute toxicity, bioaccumulation factor, developmental toxicity and mutagenicity of ATZ and its degradation intermediates were evaluated by Toxicity Estimation Software Tool, and the luminescent bacteria test was conducted to investigate the acute toxicity variation of the reaction solution. Cl- obviously inhibited ATZ degradation and three main by-products generation, while humic acid (HA) had little effect on them probably due to the established balance between inhibition (some components in HA competed to consume reactive species) and acceleration (quinone units in HA also facilitated Fe(III)/Fe(II) cycle).
Collapse
Affiliation(s)
- Yujiao An
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Xiaowan Li
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China.
| | - Zihao Liu
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Yiwen Li
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Zhou Zhou
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China; North China Power Engineering Co., Ltd of China Power Engineering Group, Beijing 100120, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| |
Collapse
|
8
|
Li Y, Xu J, Shi G, Yue D. Different crystallographic Ni(OH) 2 as highly efficient Fenton-like catalysts for sulfate radical activation. Chem Commun (Camb) 2023; 59:1341-1344. [PMID: 36647614 DOI: 10.1039/d2cc05989d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
By a simple hydrothermal method, a phase boundary between α- and β-Ni(OH)2 can be obtained. The Fenton-like performance of α@β-Ni(OH)2 is 1.56 times higher than that of single β-Ni(OH). α@β-Ni(OH)2 displays superior stability compared to α-Ni(OH)2, β-Ni(OH)2, and amorphous Ni(OH)2, which makes significant contributions to developing advanced catalysts in diverse fields.
Collapse
Affiliation(s)
- Yunzhang Li
- Shanghai Applied Radiation Institute, State Key Lab. Advanced Special Steel, Shanghai University, NO. 99 Shangda Road, Baoshan District, Shanghai 200444, P. R. China.
| | - Jin Xu
- Ecological Environment Sub-bureau of Liangshan, Jining 272600, P. R. China
| | - Guosheng Shi
- Shanghai Applied Radiation Institute, State Key Lab. Advanced Special Steel, Shanghai University, NO. 99 Shangda Road, Baoshan District, Shanghai 200444, P. R. China. .,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, P. R. China
| | - Dongting Yue
- Shanghai Applied Radiation Institute, State Key Lab. Advanced Special Steel, Shanghai University, NO. 99 Shangda Road, Baoshan District, Shanghai 200444, P. R. China.
| |
Collapse
|
9
|
Lima JPP, Tabelini CHB, Aguiar A. A Review of Gallic Acid-Mediated Fenton Processes for Degrading Emerging Pollutants and Dyes. Molecules 2023; 28:molecules28031166. [PMID: 36770833 PMCID: PMC9921589 DOI: 10.3390/molecules28031166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Diverse reducing mediators have often been used to increase the degradation of emerging pollutants (EPs) and dyes through the Fenton reaction (Fe2+ + H2O2 → Fe3+ + HO● + HO-). Adding reductants can minimize the accumulation of Fe3+ in a solution, leading to accelerated Fe2+ regeneration and the enhanced generation of reactive oxygen species, such as the HO● radical. The present study consisted in reviewing the effects of gallic acid (GA), a plant-extracted reductant, on the Fenton-based oxidation of several EPs and dyes. It was verified that the pro-oxidant effect of GA was not only reported for soluble iron salts as a catalyst (homogeneous Fenton), but also iron-containing solid materials (heterogeneous Fenton). The most common molar proportion verified in the studies was catalyst:oxidant:GA equal to 1:10-20:1. This shows that the required amount of both catalyst and GA is quite low in comparison with the oxidant, which is generally H2O2. Interestingly, GA has proven to be an effective mediator at pH values well above the ideal range of 2.5-3.0 for Fenton processes. This allows treatments to be carried out at the natural pH of the wastewater. The use of plant extracts or wood barks containing GA and other reductants is suggested to make GA-mediated Fenton processes easier to apply for treating real wastewater.
Collapse
|
10
|
Li F, Zhou S, Du L, Zhao J, Hang J, Wang X. Aqueous-phase chemistry of atmospheric phenolic compounds: A critical review of laboratory studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158895. [PMID: 36130630 DOI: 10.1016/j.scitotenv.2022.158895] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 06/15/2023]
Abstract
Phenolic compounds (PhCs) are crucial atmospheric pollutants typically emitted by biomass burning and receive particular concerns considering their toxicity, light-absorbing properties, and involvement in secondary organic aerosol (SOA) formation. A comprehensive understanding of the transformation mechanisms on chemical reactions in atmospheric waters (i.e., cloud/fog droplets and aerosol liquid water) is essential to predict more precisely the atmospheric fate and environmental impacts of PhCs. Laboratory studies play a core role in providing the fundamental knowledge of aqueous-phase chemical transformations in the atmosphere. This article critically reviews recent laboratory advances in SOA formation from the aqueous-phase reactions of PhCs. It focuses primarily on the aqueous oxidation of PhCs driven by two atmospheric reactive species: OH radicals and triplet excited state organics, including the important chemical kinetics and mechanisms. The effects of inorganic components (i.e., nitrate and nitrite) and transition metal ions (i.e., soluble iron) are highlighted on the aqueous-phase transformation of PhCs and on the properties and formation mechanisms of SOA. The review is concluded with the current knowledge gaps and future perspectives for a better understanding of the atmospheric transformation and SOA formation potential of PhCs.
Collapse
Affiliation(s)
- Fenghua Li
- School of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Shengzhen Zhou
- School of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Guangdong Provincial Field Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Sun Yat-sen University, Guangzhou 510275, China; Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai 519082, China.
| | - Lin Du
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jun Zhao
- School of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Guangdong Provincial Field Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Sun Yat-sen University, Guangzhou 510275, China; Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai 519082, China
| | - Jian Hang
- School of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Guangdong Provincial Field Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Sun Yat-sen University, Guangzhou 510275, China; Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai 519082, China
| | - Xuemei Wang
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Institute for Environmental and Climate Research, Jinan University, Guangzhou 510000, China
| |
Collapse
|
11
|
Zhao F, Xiao J, Geng S, Wang Y, Tsiakaras P, Song S. Novel Fe7S8/C nanocomposites with accelerating iron cycle for enhanced heterogeneous electro-Fenton degradation of dyes. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Costante MR, García Einschlag FS. Assessment of key processes that govern the degradation of mixtures in photo-Fenton systems. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Pan Y, Qin R, Hou M, Xue J, Zhou M, Xu L, Zhang Y. The interactions of polyphenols with Fe and their application in Fenton/Fenton-like reactions. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Unveiling a MnxCo1−xSe Fenton-like catalyst for organic pollutant degradation: A key role of ternary redox cycle and Se vacancy. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
15
|
Advance Oxidation Process (AOP) of Bisphenol A Using a Novel Surface-Functionalised Polyacrylonitrile (PAN) Fibre Catalyst. WATER 2022. [DOI: 10.3390/w14040640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bisphenol A (BPA) is a well-known endocrine disruptor in the environment which is not readily oxidised during wastewater treatment at Municipal Authorities. The aim of this work is to evaluate the environmental value of the wastewater treatment of a novel heterogeneous oxidation catalyst by means of the degradation of BPA, avoiding sewage sludge and its post-treatments. A surface-functionalised polyacrylonitrile (PAN) mesh has been produced by reaction of the cyano group of PAN with hydrazine and hydroxylamine salts. This surface-functionalised PAN is then exposed to iron (III) salt solution to promote the ligation of Fe(III) to the functional groups to form the active catalytic site. The experiments were set up in two different batch reactors at laboratory scale at different temperatures and initial pH. The degradation of BPA was detected by measuring the absorbance of BPA in Reverse Phase High Performance Liquid Chromatography at 280 nm. A total elimination of 75 ppm of BPA in less than 30 min was achieved under 300 ppm H2O2, 0.5 g PAN catalyst, initial pH 3 and 60 °C. Almost no adsorption of BPA on the catalyst was detected and there was no significant difference in activity of the catalyst after use for two cycles.
Collapse
|
16
|
Jin L, Liu F, Wu JH, Ma SJ, Li JH, Tian YJ, Liu X, Lin ZX. The construction of a palladium–hydrogen accelerated catalytic Fenton system enhanced by UiO-66(Zr). NEW J CHEM 2022. [DOI: 10.1039/d1nj04550d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The introduction of H2 and Pd/UiO-66(Zr) accelerated the FeII/FeIII cycle and led to higher contaminant degradation using only a trace level of FeII in several reaction cycles.
Collapse
Affiliation(s)
- Long Jin
- Institute of Solid Waste Pollution Control and Resource Reuse, Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu Province 215009, China
| | - Feng Liu
- Institute of Solid Waste Pollution Control and Resource Reuse, Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu Province 215009, China
| | - Jian-hua Wu
- Institute of Solid Waste Pollution Control and Resource Reuse, Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu Province 215009, China
| | - San-Jian Ma
- Institute of Solid Waste Pollution Control and Resource Reuse, Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu Province 215009, China
- Suzhou Cott Environmental Protection Co., Ltd, Suzhou, Jiangsu Province 215156, China
| | - Juan-Hong Li
- Changzhou Vocational Institute of Engineering, Changzhou, Jiangsu Province 213164, China
| | - Yong-Jing Tian
- Institute of Solid Waste Pollution Control and Resource Reuse, Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu Province 215009, China
| | - Xin Liu
- Institute of Solid Waste Pollution Control and Resource Reuse, Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu Province 215009, China
| | - Zi-Xia Lin
- Testing Center, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| |
Collapse
|
17
|
Qiu W, Gao M, Chen Q, Zheng A, Shi Y, Liu X, Li J, Dai G, Hu Y, Lin Z. Acceleration of Fe
III
/Fe
II
cycle enhanced by Pd/MOF‐808(Zr) composite in hydrogen promotion Fenton system for sulfamethazine elimination. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wen‐Jing Qiu
- Tianping College of Suzhou University of Science and Technology Suzhou China
| | - Ming‐Wu Gao
- Tianping College of Suzhou University of Science and Technology Suzhou China
| | - Qi Chen
- Tianping College of Suzhou University of Science and Technology Suzhou China
| | - Ao Zheng
- Tianping College of Suzhou University of Science and Technology Suzhou China
| | - Yi‐Jia Shi
- Tianping College of Suzhou University of Science and Technology Suzhou China
| | - Xin Liu
- Tianping College of Suzhou University of Science and Technology Suzhou China
- Institute of Environmental Protection Application Technology, Institute of Solid Waste Pollution Control and Resource Reuse, School of Environmental Science and Engineering Suzhou University of Science and Technology Suzhou China
| | - Juan‐Hong Li
- Changzhou Vocational Institute of Engineering Changzhou China
| | - Guo‐Liang Dai
- School of Chemistry and Life Science Suzhou University of Science and Technology Suzhou China
| | - Yang Hu
- Suzhou Cott Environmental Protection Co., Ltd. Suzhou China
| | - Zi‐Xia Lin
- Testing Center Yangzhou University Yangzhou China
| |
Collapse
|
18
|
How Organic Substances Promote the Chemical Oxidative Degradation of Pollutants: A Mini Review. SUSTAINABILITY 2021. [DOI: 10.3390/su131910993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The promotion of pollutant oxidation degradation efficiency by adding organic catalysts has obtained widespread attention in recent years. Studies have shown that organic substances promote the process of traditional oxidation reactions by accelerating the redox cycle of transition metals, chelating transition metals, activating oxidants directly to generate reactive oxygen species such as hydroxyl and sulfate radical, or changing the electron distribution of the target pollutant. Based on the promotion of typical organic functional groups on the chemical oxidative process, a metal-organic framework has been developed and applied in the field of chemical catalytic oxidation. This manuscript reviewed the types, relative merits, and action mechanisms of common organics which promoted oxidation reactions so as to deepen the understanding of chemical oxidation mechanisms and enhance the practical application of oxidation technology.
Collapse
|
19
|
Ateş H, Argun ME. Advanced oxidation of landfill leachate: Removal of micropollutants and identification of by-products. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125326. [PMID: 33611035 DOI: 10.1016/j.jhazmat.2021.125326] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 11/11/2020] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Landfill leachate contains several macropollutants and micropollutants that cannot be removed efficiently by conventional treatment processes. Therefore, an advanced oxidation process is a promising step in post or pre-treatment of leachate. In this study, the effects of Fenton and ozone oxidation on the removal of 16 emerging micropollutants including polycyclic aromatic hydrocarbons (PAHs), phthalates, alkylphenols and pesticides were investigated. The Fenton and ozone oxidation of the leachate were performed with four (reaction time: 20-90 min, Fe(II) dose: 0.51-2.55 g/L, H2O2 dose: 5.1-25.5 g/L and pH: 3-5) and two (ozonation time: 10-130 min and pH: 4-10) independent variables, respectively. Among these operating conditions, reaction time played more significant role (p-value < 0.05) in eliminating di-(2-Ethylhexyl) phthalate, 4-nonylphenol and 4-tert-octylphenol for both processes. The results showed that Fenton and ozone oxidation processes had a high degradation potential for micropollutants except for the PAHs including four and more rings. Removal efficiencies of micropollutants by ozone and Fenton oxidation were determined in the range of 5-100%. Although the removal efficiencies of chemical oxygen demand (COD) and some micropollutants such as phthalates were found much higher in the Fenton process than ozonation, the degradation products occurred during the Fenton oxidation were a higher molecular weight. Moreover, the oxidation intermediates for the both processes were found as mainly benzaldehyde, pentanoic acid and hydro cinnamic acid as well as derivatives of naphthalenone and naphthalenediol. Also, acid ester with higher molecular weight, naphthalene-based and phenolic compounds were detected in the Fenton oxidation.
Collapse
Affiliation(s)
- Havva Ateş
- Konya Technical University, Faculty of Engineering and Natural Science, Department of Environmental Engineering, Turkey.
| | - Mehmet Emin Argun
- Konya Technical University, Faculty of Engineering and Natural Science, Department of Environmental Engineering, Turkey
| |
Collapse
|
20
|
N-doped carbon-coated Fe3N composite as heterogeneous electro-Fenton catalyst for efficient degradation of organics. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63719-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
21
|
Abstract
Photo-induced Advanced Oxidation Processes (AOPs) using H2O2 or S2O82− as radical precursors were assessed for the abatement of six different contaminants of emerging concern (CECs). In order to increase the efficiency of these AOPs at a wider pH range, the catechol organic functional compound was studied as a potential assistant in photo-driven iron-based processes. Different salinity regimes were also studied (in terms of Cl− concentration), namely low salt water (1 g·L−1) or a salt–water (30 g·L−1) matrix. Results obtained revealed that the presence of catechol could efficiently assist the photo-Fenton system and partly promote the photo-induced S2O82− system, which was highly dependent on salinity. Regarding the behavior of individual CECs, the photo-Fenton reaction was able to enhance the degradation of all six CECs, meanwhile the S2O82−-based process showed a moderate enhancement for acetaminophen, amoxicillin or clofibric acid. Finally, a response-surface methodology was employed to determine the effect of pH and catechol concentration on the different photo-driven processes. Catechol was removed during the degradation process. According to the results obtained, the presence of catechol in organic macromolecules can bring some advantages in water treatment for either freshwater (wastewater) or seawater (maritime or aquaculture industry).
Collapse
|
22
|
Enhancement of organic contaminants degradation at low dosages of Fe(III) and H2O2 in g-C3N4 promoted Fe(III)/H2O2 system under visible light irradiation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117333] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|