1
|
Liu J, Yu M, Shi R, Ge Y, Li J, Zeb A, Cheng Z, Liu W. Comparative toxic effect of tire wear particle-derived compounds 6PPD and 6PPD-quinone to Chlorella vulgaris. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175592. [PMID: 39154997 DOI: 10.1016/j.scitotenv.2024.175592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/04/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), a widely used antioxidant in rubber products, and its corresponding ozone photolysis product N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q), have raised public concerns due to their environmental toxicity. However, there is an existing knowledge gap on the toxicity of 6PPD and 6PPD-Q to aquatic plants. A model aquatic plant, Chlorella vulgaris (C. vulgaris), was subjected to 6PPD and 6PPD-Q at concentrations of 50, 100, 200, and 400 μg/L to investigate their effects on plant growth, photosynthetic, antioxidant system, and metabolic behavior. The results showed that 6PPD-Q enhanced the photosynthetic efficiency of C. vulgaris, promoting growth of C. vulgaris at low concentrations (50, 100, and 200 μg/L) while inhibiting growth at high concentration (400 μg/L). 6PPD-Q induced more oxidative stress than 6PPD, disrupting cell permeability and mitochondrial membrane potential stability. C. vulgaris responded to contaminant-induced oxidative stress by altering antioxidant enzyme activities and active substance levels. Metabolomics further identified fatty acids as the most significantly altered metabolites following exposure to both contaminants. In conclusion, this study compares the toxicity of 6PPD and 6PPD-Q to C. vulgaris, with 6PPD-Q demonstrating higher toxicity. This study provides valuable insight into the risk assessment of tire wear particles (TWPs) derived chemicals in aquatic habitats and plants.
Collapse
Affiliation(s)
- Jinzheng Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Miao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Yichen Ge
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jiantao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| |
Collapse
|
2
|
Chu Y, Chen X, Li S, Li X, Xie P, Ho SH. Molecular insights into biological transformation mechanism of sulfathiazole by Chlorella sorokiniana: Deciphering the uptake, translocation, and biotransformation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136228. [PMID: 39461293 DOI: 10.1016/j.jhazmat.2024.136228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/03/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024]
Abstract
As a sustainable approach to wastewater treatment, microalgae have been extensively used to degrade antibiotics. However, the underlying mechanisms involved in the degradation process remain unclear. Therefore, this study investigated the biotransformation mechanism of sulfathiazole (STZ) by Chlorella sorokiniana (C. sorokiniana) at the molecular level. The results show that C. sorokiniana could efficiently degrade STZ, achieving a maximum degradation rate of 94.74 %, mainly through biodegradation routes. Transcriptome analysis has elucidated the potential biological transformation mechanisms driving the degradation of STZ by microalgae, focusing on the uptake, translocation, and biotransformation as key metabolic processes. In particular, STZ induced the up-regulation of genes associated with cell adhesion, membrane protein, and lipopolysaccharide, suggesting their involvement in the uptake of STZ by microalgae. Furthermore, ABC, MATE, and MFS transporters were identified as crucial for the transmembrane transport of STZ by microalgae. A plausible biotransformation pathway for STZ degradation was proposed, identifying hydroxylation, oxidation, ring cleavage, and formylation as the primary transformation processes. The up-regulation of key enzymes such as monooxygenases, dioxygenases, hydrolases, and transferases suggested their pivotal role in the biodegradation of STZ. This research provides valuable insights into the biotransformation mechanisms of STZ by microalgae, thereby laying a theoretical framework to advance the implementation of microalgae in the treatment of antibiotic-contaminated wastewater.
Collapse
Affiliation(s)
- Yuhao Chu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xi Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xue Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Peng Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
3
|
Xiao Z, Meng H, Li S, Ning W, Song Y, Han J, Chang JS, Wang Y, Ho SH. Insights into the removal of antibiotics from livestock and aquaculture wastewater by algae-bacteria symbiosis systems. ENVIRONMENTAL RESEARCH 2024; 257:119326. [PMID: 38849002 DOI: 10.1016/j.envres.2024.119326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/09/2024]
Abstract
With the burgeoning growth of the livestock and aquaculture industries, antibiotic residues in treated wastewater have become a serious ecological threat. Traditional biological wastewater treatment technologies-while effective for removing conventional pollutants, such as organic carbon, ammonia and phosphate-struggle to eliminate emerging contaminants, notably antibiotics. Recently, the use of microalgae has emerged as a sustainable and promising approach for the removal of antibiotics due to their non-target status, rapid growth and carbon recovery capabilities. This review aims to analyse the current state of antibiotic removal from wastewater using algae-bacteria symbiosis systems and provide valuable recommendations for the development of livestock/aquaculture wastewater treatment technologies. It (1) summarises the biological removal mechanisms of typical antibiotics, including bioadsorption, bioaccumulation, biodegradation and co-metabolism; (2) discusses the roles of intracellular regulation, involving extracellular polymeric substances, pigments, antioxidant enzyme systems, signalling molecules and metabolic pathways; (3) analyses the role of treatment facilities in facilitating algae-bacteria symbiosis, such as sequencing batch reactors, stabilisation ponds, membrane bioreactors and bioelectrochemical systems; and (4) provides insights into bottlenecks and potential solutions. This review offers valuable information on the mechanisms and strategies involved in the removal of antibiotics from livestock/aquaculture wastewater through the symbiosis of microalgae and bacteria.
Collapse
Affiliation(s)
- Zhihua Xiao
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264000, China
| | - Hao Meng
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264000, China
| | - Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Weihao Ning
- Xinrui Environmental Protection Technology Co., Ltd, Yantai, 264000, China
| | - Youliang Song
- Shaoxing Academy of Agricultural Sciences, Shaoxing, 312003, China
| | - Jinglong Han
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264000, China
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yue Wang
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264000, China.
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
4
|
Liu F, Feng S, Ali Nasser Mansoor Al-Haimi A, Zhu S, Chen H, Feng P, Wang Z, Qin L. Discovery of two novel bioactive algicidal substances from Brevibacillus sp. via metabolomics profiling and back-validation. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133985. [PMID: 38471378 DOI: 10.1016/j.jhazmat.2024.133985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
Identifying potent bacterial algicidal agents is essential for the development of effective, safe, and economically viable algaecides. Challenges in isolating and purifying these substances from complex secretions have impeded progress in this field. Metabolomics profiling, an efficient strategy for identifying metabolites, was pioneered in identifying bacterial algicidal substances in this study. Extracellular secretions from different generations of the algicidal bacterium Brevibacillus sp. were isolated for comprehensive analysis. Specifically, a higher algicidal efficacy was observed in the secretion from Generation 3 (G3) of Brevibacillus sp. compared to Generation 1 (G1). Subsequent metabolomics profiling comparing G3 and 1 revealed 83 significantly up-regulated metabolites, of which 9 were identified as potential algicidal candidates. Back-validation highlighted the potency of 4-acetamidobutanoic acid (4-ABC) and 8-hydroxyquinoline (8-HQL), which exhibited robust algicidal activity with 3d-EC50 values of 6.40 mg/L and 92.90 µg/L, respectively. These substances disrupted photosynthetic activity in M. aeruginosa by ceasing electron transfer in PSⅡ, like the impact exerted by Brevibacillus sp. secretion. These findings confirmed that 4-ABC and 8-HQL were the main algicidal components derived from Brevibacillus sp.. Thus, this study presents a streamlined strategy for identifying bacterial algicidal substances and unveils two novel and highly active algicidal substances. ENVIRONMENTAL IMPLICATION: Harmful cyanobacterial blooms (HCBs) pose significant environmental problems and health effects to humans and other organisms. The increasing frequency of HCBs has emerged as a pressing global concern. Bacterial-derived algicidal substances are expected to serve as effective, safe, and economically viable algaecides against HCBs. This study presents a streamlined strategy for identifying bacterial algicidal substances and unveils two novel substances (4-ABC and 8-HQL). These two substances demonstrate remarkable algicidal activity and disrupt the photosynthetic system in M. aeruginosa. They hold potential as prospective algaecides for addressing HCBs.
Collapse
Affiliation(s)
- Fen Liu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Siran Feng
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Akram Ali Nasser Mansoor Al-Haimi
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Shunni Zhu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Huanjun Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Pingzhong Feng
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Zhongming Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Lei Qin
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China.
| |
Collapse
|
5
|
Zhang K, Jiang S, Zhang J, Zheng J, Li P, Wang S, Bi R, Gao L. Phycoremediation and valorization of hypersaline pickled mustard wastewater via Chaetoceros muelleri and indigenous bacteria. BIORESOURCE TECHNOLOGY 2024; 393:130172. [PMID: 38086464 DOI: 10.1016/j.biortech.2023.130172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/14/2023] [Accepted: 12/06/2023] [Indexed: 01/18/2024]
Abstract
Hypersaline pickled mustard wastewater (PMW), a typical food wastewater with high nutrient content, was successfully bioremediated via the co-treatment of Chaetoceros muelleri and indigenous bacteria in this study. Chemical oxygen demand, ammonia nitrogen, total nitrogen and total phosphorus in 10 % PMW could be effectively reduced by 82 %, 90 %, 94 % and 96 %, respectively, after 12 days treatment. Oxygen species activities, malondialdehyde content, microalgal biomass, photosynthesis and extracellular polymeric substances were characterized during the treatment to determine the responses of the consortium when exposed to different concentration of PMW. Microbial community analysis demonstrated a significant increase in the relative abundance of Halomonas and Marinobacter in the 10 % PMW after 12 days treatment, which was beneficial for nutrients recycling by the diatoms. Meanwhile, C. muelleri was effective in reducing the relative abundance of potentially pathogenic bacteria Malaciobacter. In conclusion, the work here offers a promising and environmentally friendly approach for hypersaline wastewater treatment.
Collapse
Affiliation(s)
- Kai Zhang
- Research Institute of Agricultural Engineering, Chongqing Academy of Agricultural Sciences, Chongqing 401329, PR China; Chongqing Key Laboratory of Agricultural Waste Resource Utilization Technology and Equipment Research, Chongqing 401329, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Shuqin Jiang
- Research Institute of Agricultural Engineering, Chongqing Academy of Agricultural Sciences, Chongqing 401329, PR China; Chongqing Key Laboratory of Agricultural Waste Resource Utilization Technology and Equipment Research, Chongqing 401329, PR China
| | - Juan Zhang
- Research Institute of Agricultural Engineering, Chongqing Academy of Agricultural Sciences, Chongqing 401329, PR China; Chongqing Key Laboratory of Agricultural Waste Resource Utilization Technology and Equipment Research, Chongqing 401329, PR China
| | - Jishu Zheng
- Research Institute of Agricultural Engineering, Chongqing Academy of Agricultural Sciences, Chongqing 401329, PR China; Chongqing Key Laboratory of Agricultural Waste Resource Utilization Technology and Equipment Research, Chongqing 401329, PR China
| | - Ping Li
- Research Institute of Agricultural Engineering, Chongqing Academy of Agricultural Sciences, Chongqing 401329, PR China; Chongqing Key Laboratory of Agricultural Waste Resource Utilization Technology and Equipment Research, Chongqing 401329, PR China
| | - Song Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518061, PR China.
| | - Ru Bi
- Research Institute of Agricultural Engineering, Chongqing Academy of Agricultural Sciences, Chongqing 401329, PR China; Chongqing Key Laboratory of Agricultural Waste Resource Utilization Technology and Equipment Research, Chongqing 401329, PR China
| | - Lihong Gao
- Research Institute of Agricultural Engineering, Chongqing Academy of Agricultural Sciences, Chongqing 401329, PR China; Chongqing Key Laboratory of Agricultural Waste Resource Utilization Technology and Equipment Research, Chongqing 401329, PR China.
| |
Collapse
|
6
|
Jia Y, Huang Y, Ma J, Zhang S, Liu J, Li T, Song L. Toxicity of the disinfectant benzalkonium chloride (C 14) towards cyanobacterium Microcystis results from its impact on the photosynthetic apparatus and cell metabolism. J Environ Sci (China) 2024; 135:198-209. [PMID: 37778795 DOI: 10.1016/j.jes.2022.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 10/03/2023]
Abstract
Quaternary ammonium compounds (QACs) are commonly used in a variety of consumer and commercial products, typically as a component of disinfectants. During the COVID-19 pandemic, QACs became one of the primary agents utilized to inactivate the SARS-CoV-2 virus on surfaces. However, the ecotoxicological effects of QACs upon aquatic organisms have not been fully assessed. In this study, we examined the effects of a widely used QAC (benzalkonium chloride-C14, BAC-14) on two toxigenic Microcystis strains and one non-toxigenic freshwater Microcystis strain and carried out an analysis focused on primary, adaptive and compensatory stress responses at apical (growth and photosynthesis) and metabolic levels. This analysis revealed that the two toxic Microcystis strains were more tolerant than the non-toxic strain, with 96 hr-EC50 values of 0.70, 0.76, and 0.38 mg/L BAC-14 for toxigenic M. aeruginosa FACHB-905, toxigenic M. aeruginosa FACHB-469, and non-toxigenic M. wesenbergii FACHB-908, respectively. The photosynthetic activities of the Microcystis, assessed via Fv/Fm values, were significantly suppressed under 0.4 mg/L BAC-14. Furthermore, this analysis revealed that BAC-14 altered 14, 12, and 8 metabolic pathways in M. aeruginosa FACHB-905, M. aeruginosa FACHB-469, and M. wesenbergii FACHB-908, respectively. It is noteworthy that BAC-14 enhanced the level of extracellular microcystin production in the toxigenic Microcystis strains, although cell growth was not significantly affected. Collectively, these data show that BAC-14 disrupted the physiological and metabolic status of Microcystis cells and stimulated the production and release of microcystin, which could result in damage to aquatic systems.
Collapse
Affiliation(s)
- Yunlu Jia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Yi Huang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Jin Ma
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Shangwei Zhang
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Jin Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Tianli Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lirong Song
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
7
|
Maltsev Y, Kulikovskiy M, Maltseva S. Nitrogen and phosphorus stress as a tool to induce lipid production in microalgae. Microb Cell Fact 2023; 22:239. [PMID: 37981666 PMCID: PMC10658923 DOI: 10.1186/s12934-023-02244-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/04/2023] [Indexed: 11/21/2023] Open
Abstract
Microalgae, capable of accumulating large amounts of lipids, are of great value for biodiesel production. The high cost of such production stimulates the search for cultivation conditions that ensure their highest productivity. Reducing the content of nitrogen and phosphorus in the culture medium is widely used to change the content and productivity of lipids in microalgae. Achieving the right balance between maximum growth and maximum lipid content and productivity is the primary goal of many experimental works to ensure cost-effective biodiesel production from microalgae. The content of nitrogen and phosphorus in nutrient media for algal cultivation after converted to nitrogen (-N) and phosphorus (-P) lies in an extensive range: from 0.007 g L- 1 to 0.417 g L- 1 and from 0.0003 g L- 1 to 0.227 g L- 1 and N:P ratio from 0.12:1 to 823.33:1. When studying nutritional stress in microalgae, no single approach is used to determine the experimental concentrations of nitrogen and phosphorus. This precludes the possibility of correct interpretation of the data and may lead to erroneous conclusions. This work results from the systematisation of information on using nitrogen and phosphorus restriction to increase the lipid productivity of microalgae of different taxonomic and ecological groups to identify future research directions. The results of 301 experiments were included in the analysis using the principal components method. The investigation considered various divisions and classes: Cyanobacteria, Rhodophyta, Dinophyta, Haptophyta, Cryptophyta, Heterokontophyta/Ochrophyta (Bacillariophyceae, Eustigmatophyceae, Xanthophyceae), Chlorophyta, and also the ratio N:P, the time of the experiment, the light intensity during cultivation. Based on the concentrations of nitrogen and phosphorus existing in various nutrient media, a general scheme for designating the supply of nutrient media for nitrogen (as NO3- or NH4+, N g L- 1) and phosphorus (as РO4-, P g L- 1) has been proposed: replete -N (˃0.4 g L- 1), moderate -N (0.4-0.2), moderate N-limitation (0.19-0.1), strong N-limitation (˂0.1), without nitrogen (0), replete -Р (˃0.2), moderate -P (0.2-0.02), moderate P-limitation (0.019-0.01), strong P-limitation (˂0.01), without phosphorus (0).
Collapse
Affiliation(s)
- Yevhen Maltsev
- К.А. Timiryazev Institute of Plant Physiology RAS, IPP RAS, Moscow, 127276, Russia.
| | - Maxim Kulikovskiy
- К.А. Timiryazev Institute of Plant Physiology RAS, IPP RAS, Moscow, 127276, Russia
| | - Svetlana Maltseva
- К.А. Timiryazev Institute of Plant Physiology RAS, IPP RAS, Moscow, 127276, Russia
| |
Collapse
|
8
|
Thabet J, Elleuch J, Martínez F, Abdelkafi S, Hernández LE, Fendri I. Characterization of cellular toxicity induced by sub-lethal inorganic mercury in the marine microalgae Chlorococcum dorsiventrale isolated from a metal-polluted coastal site. CHEMOSPHERE 2023; 338:139391. [PMID: 37414298 DOI: 10.1016/j.chemosphere.2023.139391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Mercury (Hg) is a global pollutant that affects numerous marine aquatic ecosystems. We isolated Chlorococcum dorsiventrale Ch-UB5 microalga from coastal areas of Tunisia suffering from metal pollution and analyzed its tolerance to Hg. This strain accumulated substantial amounts of Hg and was able to remove up to 95% of added metal after 24 and 72 h in axenic cultures. Mercury led to lesser biomass growth, higher cell aggregation, significant inhibition of photochemical activity, and appearance of oxidative stress and altered redox enzymatic activities, with proliferation of starch granules and neutral lipids vesicles. Such changes matched the biomolecular profile observed using Fourier Transformed Infrared spectroscopy, with remarkable spectral changes corresponding to lipids, proteins and carbohydrates. C. dorsiventrale accumulated the chloroplastic heat shock protein HSP70B and the autophagy-related ATG8 protein, probably to counteract the toxic effects of Hg. However, long-term treatments (72 h) usually resulted in poorer physiological and metabolic responses, associated with acute stress. C. dorsiventrale has potential use for Hg phycoremediation in marine ecosystems, with the ability to accumulating energetic reserves that could be used for biofuel production, supporting the notion of using of C. dorsiventrale for sustainable green chemistry in parallel to metal removal.
Collapse
Affiliation(s)
- Jihen Thabet
- Laboratoire de Biotechnologies Végétales Appliquées à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia; Laboratory of Plant Physiology-Department of Biology, Universidad Autónoma Madrid, Darwin 2, ES28049, Madrid, Spain
| | - Jihen Elleuch
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Flor Martínez
- Laboratory of Plant Physiology-Department of Biology, Universidad Autónoma Madrid, Darwin 2, ES28049, Madrid, Spain
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Luis Eduardo Hernández
- Laboratory of Plant Physiology-Department of Biology, Universidad Autónoma Madrid, Darwin 2, ES28049, Madrid, Spain.
| | - Imen Fendri
- Laboratoire de Biotechnologies Végétales Appliquées à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| |
Collapse
|
9
|
Qu R, Chen M, Liu J, Xie Q, Liu N, Ge F. Blockage of ATPase-mediated energy supply inducing metabolic disturbances in algal cells under silver nanoparticles stress. J Environ Sci (China) 2023; 131:141-150. [PMID: 37225375 DOI: 10.1016/j.jes.2022.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 05/26/2023]
Abstract
Adenosine triphosphate (ATP) generation of aquatic organisms is often subject to nanoparticles (NPs) stress, involving extensive reprogramming of gene expression and changes in enzyme activity accompanied by metabolic disturbances. However, little is known about the mechanism of energy supply by ATP to regulate the metabolism of aquatic organisms under NPs stress. Here, we selected extensively existing silver nanoparticles (AgNPs) to investigate their implications on ATP generation and relevant metabolic pathways in alga (Chlorella vulgaris). Results showed that ATP content significantly decreased by 94.2% of the control (without AgNPs) in the algal cells at 0.20 mg/L AgNPs, which was mainly attributed to the reduction of chloroplast ATPase activity (81.4%) and the downregulation of ATPase-coding genes atpB and atpH (74.5%-82.8%) in chloroplast. Molecular dynamics simulations demonstrated that AgNPs competed with the binding sites of substrates adenosine diphosphate and inorganic phosphate by forming a stable complex with ATPase subunit beta, potentially resulting in the reduced binding efficiency of substrates. Furthermore, metabolomics analysis proved that the ATP content positively correlated with the content of most differential metabolites such as D-talose, myo-inositol, and L-allothreonine. AgNPs remarkably inhibited ATP-involving metabolic pathways, including inositol phosphate metabolism, phosphatidylinositol signaling system, glycerophospholipid metabolism, aminoacyl-tRNA biosynthesis, and glutathione metabolism. These results could provide a deep understanding of energy supply in regulating metabolic disturbances under NPs stress.
Collapse
Affiliation(s)
- Ruohua Qu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Mi Chen
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qiting Xie
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Na Liu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Fei Ge
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China..
| |
Collapse
|
10
|
Frickenstein AN, Mukherjee S, Harcourt T, He Y, Sheth V, Wang L, Malik Z, Wilhelm S. Quantification of monodisperse and biocompatible gold nanoparticles by single-particle ICP-MS. Anal Bioanal Chem 2023; 415:4353-4366. [PMID: 36670192 PMCID: PMC10645370 DOI: 10.1007/s00216-023-04540-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/03/2023] [Accepted: 01/11/2023] [Indexed: 01/21/2023]
Abstract
Bioanalytical and biomedical applications often require nanoparticles that exhibit narrow size distributions and biocompatibility. Here, we demonstrate how different synthesis methods affect gold nanoparticle (AuNPs) monodispersity and cytotoxicity. Using single particle inductively coupled plasma mass spectrometry (SP-ICP-MS), we found that the size distribution of AuNPs synthesized with a cetyltrimethylammonium chloride (CTAC) cap was significantly improved compared to AuNPs synthesized with citrate capping agents. We determined an up to 4× decrease in the full width at half maximum (FWHM) value of the normal distributions of AuNP diameter and up to a 12% decrease in relative standard deviation (RSD). While the CTAC-capped AuNPs exhibit narrow nanoparticle size distributions, they are cytotoxic, which limits safe and effective bioanalytical and biomedical applications. We sought to impart biocompatibility to CTAC-capped AuNPs through a PEGylation-based surface ligand exchange. We developed a unique ligand exchange method driven by physical force. We demonstrated the successful PEGylation using various PEG derivatives and used these PEGylated nanoparticles to further bioconjugate nucleic acids and peptides. Using cell viability quantification, we confirmed that the monodisperse PEGylated AuNPs were biocompatible. Our monodisperse and biocompatible nanoparticles may advance safe and effective bioanalytical and biomedical applications of nanomaterials.
Collapse
Affiliation(s)
- Alex N Frickenstein
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Shirsha Mukherjee
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Tekena Harcourt
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Yuxin He
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Vinit Sheth
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Lin Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Zain Malik
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA.
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- Institute for Biomedical Engineering, Science, and Technology (IBEST), University of Oklahoma, Norman, OK, 73019, USA.
| |
Collapse
|
11
|
Li S, Xing D, Sun C, Jin C, Zhao Y, Gao M, Guo L. Effect of mariculture wastewater concentrations on high-value production and pollutants removal with bacterial-algal coupling reactor (BACR). BIORESOURCE TECHNOLOGY 2023; 385:129410. [PMID: 37390931 DOI: 10.1016/j.biortech.2023.129410] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
To achieve the goal of cost-effective mariculture wastewater treatment, a novel Bacteria-Algae Coupling Reactor (BACR) integrating acidogenic fermentation with microalgae cultivation was applied for the mariculture wastewater treatment. Currently, there is limited research on the impact of different concentrations of mariculture wastewater on the pollutant removal and the high-value products recovery. In this study, different concentrations (4, 6, 8, and 10 g/L) of mariculture wastewater were treated with BACR. The results showed thatoptimalMW concentrations of 8 g/L improved the growth viability and biochemical components synthetic of Chlorella vulgaris, which increased the potential for high-value products recovery. The BACR exhibited the excellent removal efficiency of chemical oxygen demand, ammonia-nitrogen and total phosphorus with 82.30%, 81.12% and 96.40%, respectively. This study offers an ecological and economic approach to improve the MW treatment through the utilization of a novel bacterial-algal coupling system.
Collapse
Affiliation(s)
- Shangzong Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Dongxu Xing
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Cheng Sun
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Liang Guo
- Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), Qingdao 266100, China.
| |
Collapse
|
12
|
Li Z, Gao X, Bao J, Li S, Wang X, Li Z, Zhu L. Evaluation of growth and antioxidant responses of freshwater microalgae Chlorella sorokiniana and Scenedesmus dimorphus under exposure of moxifloxacin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159788. [PMID: 36309277 DOI: 10.1016/j.scitotenv.2022.159788] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
As one of the fourth-generation fluoroquinolone antibiotics, moxifloxacin (MOX) has been frequently released to the aquatic environment, threatening local organisms. However, researches on its ecotoxicity to aquatic organisms are still limited. This study analyzed effects of MOX on the growth, photosynthesis and oxidative stress of two common types of freshwater microalgae, Chlorella sorokiniana and Scenedesmus dimorphus. The 96 h-EC50 values of MOX for C. sorokiniana and S. dimorphus were 28.42 and 26.37 mg/L, respectively. Although variations of specific indicators for photosynthetic fluorescence intensity were different, photosystems of two types of microalgae were irreversibly damaged. The malondialdehyde content and superoxide dismutase of C. sorokiniana and S. dimorphus evidently increased, indicating that the exposure of MOX caused serious oxidative stress. Chlorophyll a, b and carotenoids contents of C. sorokiniana increased, probably resulting from the resistance to oxidative stress, whereas they were inhibited due to oxidation damage as for S. dimorphus. Risk quotients (RQs) of MOX for C. sorokiniana and S. dimorphus in wastewater were 7.882 and 8.495, respectively, which demonstrated that MOX had a considerable risk to aquatic environment, especially in the context of its increasing use in practice.
Collapse
Affiliation(s)
- Zhuo Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Xinxin Gao
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Jianfeng Bao
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Shuangxi Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Xu Wang
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China.
| | - Zhaohua Li
- Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, PR China
| | - Liandong Zhu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China; State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
13
|
Wang H, Hu C, Wang Y, Jin C, She Z, Guo L. Mixotrophic cultivation of Chlorella pyrenoidosa under sulfadiazine stress: High-value product recovery and toxicity tolerance evaluation. BIORESOURCE TECHNOLOGY 2022; 363:127987. [PMID: 36126847 DOI: 10.1016/j.biortech.2022.127987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Sulfadiazine (SDZ) as a common sulfonamide antibiotic is frequently detected in wastewater, but there is little information on the high-value product recovery and toxicity tolerance evaluation of mixotrophic microalgae under SDZ stress. In this study, effects of SDZ on growth, photosynthesis, cellular damage, antioxidant capacity and intracellular biochemical components of Chlorella pyrenoidosa were investigated. Results showed that the growth of C. pyrenoidosa was inhibited by about 20% under high SDZ stress, but there was little impact on photosynthesis. Cellular damage and antioxidant capacity were evaluated using malondialdehyde (MDA) content and superoxide dismutase (SOD) activity to further explain the toxicity tolerance of mixotrophic microalgae. The SDZ stress not only increased lipid and carbohydrate content, respectively attaining to the maximum of 390.0 and 65.4 mg/L, but also improved the biodiesel quality of C. pyrenoidosa. The findings show the potential of mixotrophic microalgae for biodiesel production and wastewater treatment.
Collapse
Affiliation(s)
- Hutao Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Caiye Hu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yi Wang
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Zonglian She
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
14
|
Xie Z, Wang X, Gan Y, Cheng H, Fan S, Li X, Tang J. Ecotoxicological effects of the antidepressant fluoxetine and its removal by the typical freshwater microalgae Chlorella pyrenoidosa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114045. [PMID: 36055042 DOI: 10.1016/j.ecoenv.2022.114045] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
The antidepressant fluoxetine (FLX) has gained increasing attention due to its frequent detection in aquatic environments and negative effects on non-target organisms. However, knowledge on the ecotoxicological effects of FLX and its removal by microalgae is still limited. In this study, the ecotoxicological effects of FLX (10 -1000 μg/L) were assessed using batch cultures of the freshwater microalgae Chlorella pyrenoidosa for 10 days based on changes in growth, antioxidant response, and photosynthetic process. The removal efficiency, removal mechanism, and degradation pathway of FLX by C. pyrenoidosa were also investigated. The results showed that the growth of C. pyrenoidosa was inhibited by FLX with a 4 d EC50 of 0.464 mg/L. Additionally, FLX significantly inhibited photosynthesis and caused oxidative stress on day 4. However, C. pyrenoidosa can produce resistance and acclimatize to FLX, as reflected by the declining growth inhibition rate, recovered photosynthetic efficiency, and disappearance of oxidative stress on day 10. Despite the toxicity of FLX, C. pyrenoidosa showed 41.2%- 100% removal of FLX after 10 days of exposure. Biodegradation was the primary removal mechanism, accounting for 88.2%- 92.8% of the total removal of FLX. A total of five metabolites were found in the degradation processes of FLX, which showed less toxicity than FLX. The main degradation pathways were proposed as demethylation, O-dealkylation, hydroxylation, and N-acylation. Our results not only highlight the potential application of microalgae in FLX purification, but also provide insight into the fate and ecological risk of FLX in aquatic environments.
Collapse
Affiliation(s)
- Zhengxin Xie
- Key Laboratory of Agri-food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China
| | - Xiaoyu Wang
- Key Laboratory of Agri-food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China
| | - Ying Gan
- Key Laboratory of Agri-food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China
| | - Haomiao Cheng
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, PR China
| | - Shisuo Fan
- Key Laboratory of Agri-food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China
| | - Xuede Li
- Key Laboratory of Agri-food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China; Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture and Rural Affairs, PR China
| | - Jun Tang
- Key Laboratory of Agri-food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China.
| |
Collapse
|
15
|
Metabolic and Proteomic Analysis of Chlorella sorokiniana, Chloroidium saccharofilum, and Chlorella vulgaris Cells Cultured in Autotrophic, Photoheterotrophic, and Mixotrophic Cultivation Modes. Molecules 2022; 27:molecules27154817. [PMID: 35956768 PMCID: PMC9369600 DOI: 10.3390/molecules27154817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Chlorella is one of the most well-known microalgal genera, currently comprising approximately a hundred species of single-celled green algae according to the AlgaeBase. Strains of the genus Chlorella have the ability to metabolize both inorganic and organic carbon sources in various trophic modes and synthesize valuable metabolites that are widely used in many industries. The aim of this work was to investigate the impact of three trophic modes on the growth parameters, productivities of individual cell components, and biochemical composition of Chlorella sorokiniana, Chloroidium saccharofilum, and Chlorella vulgaris cells with special consideration of protein profiles detected by SDS-PAGE gel electrophoresis and two-dimensional gel electrophoresis with MALDI-TOF/TOF MS. Mixotrophic conditions with the use of an agro-industrial by-product stimulated the growth of all Chlorella species, which was confirmed by the highest specific growth rates and the shortest biomass doubling times. The mixotrophic cultivation of all Chlorella species yielded a high amount of protein-rich biomass with reduced contents of chlorophyll a, chlorophyll b, carotenoids, and carbohydrates. Additionally, this work provides the first information about the proteome of Chloroidium saccharofilum, Chlorella sorokiniana, and Chlorella vulgaris cells cultured in molasses supplementation conditions. The proteomic analysis of the three Chlorella species growing photoheterotrophically and mixotrophically showed increased accumulation of proteins involved in the cell energy metabolism and carbon uptake, photosynthesis process, and protein synthesis, as well as proteins involved in intracellular movements and chaperone proteins.
Collapse
|
16
|
Li Z, Li S, Li T, Gao X, Zhu L. Physiological and transcriptomic responses of Chlorella sorokiniana to ciprofloxacin reveal molecular mechanisms for antibiotic removal. iScience 2022; 25:104638. [PMID: 35800754 PMCID: PMC9254343 DOI: 10.1016/j.isci.2022.104638] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/09/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022] Open
Abstract
Microalgae-based technology is an effective and environmentally friendly method for antibiotics-contaminated wastewater treatment. To assess the tolerance and removal ability of Chlorella sorokiniana to ciprofloxacin (CIP), this study comprehensively revealed the responses of C. sorokiniana to CIP exposure and its degradation processes through physiological and transcriptomic analyses. Although the photosynthetic system was inhibited, the growth of C. sorokiniana was not negatively affected by CIP. Dissolved organic matter was analyzed and indicated that humic-like substances were released to alleviate the stress of CIP. In addition, the maximum removal of CIP was 83.3% under 20 mg L-1 CIP exposure. HPLC-MS/MS and RNA-Seq analyses suggested that CIP could be bioaccumulated and biodegraded by C. sorokiniana through the reactions of hydroxylation, demethylation, ring cleavage, oxidation, dehydrogenation, and decarboxylation with the help of intracellular oxidoreductases, especially cytochrome P450. Collectively, this research shows that C. sorokiniana have a great potential for removing CIP from wastewater.
Collapse
Affiliation(s)
- Zhuo Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, P.R. China
| | - Shuangxi Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, P.R. China
| | - Tianrui Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, P.R. China
| | - Xinxin Gao
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, P.R. China
| | - Liandong Zhu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, P.R. China
| |
Collapse
|
17
|
Guo R, Lu D, Liu C, Hu J, Wang P, Dai X. Toxic effect of nickel on microalgae Phaeodactylum tricornutum (Bacillariophyceae). ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:746-760. [PMID: 35364763 DOI: 10.1007/s10646-022-02532-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Nickel acts as an essential trace nutrient or toxicant for organisms, depending on its concentration. The increased concentrations of nickel, due to anthropogenic activity, in the aquatic environment are potential threats to aquatic organisms. However, the knowledge on toxic mechanisms of nickel to microalgae remains incompletely understood. In the present study, we investigated the toxic effects of nickel in the cosmopolitan diatom Phaeodactylum tricornutum via evaluation of physiological and transcriptome responses. The results showed that the median effective concentration-72 h (EC50-72 h) and EC50-96 h of nickel was 2.48 ± 0.33 and 1.85 ± 0.17 mg/L, respectively. The P. tricornutum cell abundance and photosynthesis significantly decreased by 1 mg/L of nickel. Results from photosynthetic parameters including efficiency of the oxygen evolving complex (OEC) of photosystem II (PSII) (Fv/F0), maximum photosynthetic efficiency of PS II (Fv/Fm), electron transport rate (ETR), actual photosynthetic efficiency of PS II (Y(II)), non-photochemical quenching (NPQ), and photochemical quenching (qP) indicated that OEC of PS II might be impaired by nickel. The transcriptome data also reveal that OEC apparatus coding gene PS II oxygen-evolving enhancer protein 2 (PsbP) was regulated by nickel. Moreover, induced reactive oxygen species (ROS) production and chlorophyll a content were also detected under nickel stress. Transcriptome analysis revealed that nickel affected a variety of differentially expressed genes (DEGs) that involved in redox homeostasis, nitrogen metabolisms, fatty acids, and DNA metabolism. However, thiol-disulfide redox system might play important roles in nickel-induced oxidative stress resistance. This study improved the understanding of the toxic effect of nickel on the diatom P. tricornutum.
Collapse
Affiliation(s)
- Ruoyu Guo
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, 36 Baochubei Road, Hangzhou, 310012, PR China.
- Observation and Research Station of Marine Ecosystem in the Yangtze River Delta, Ministry of Natural Resources, 99 South Haida Road, Zhoushan, 316053, PR China.
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Haijing Road, Beihai, 536000, PR China.
| | - Douding Lu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, 36 Baochubei Road, Hangzhou, 310012, PR China
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Haijing Road, Beihai, 536000, PR China
| | - Chenggang Liu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, 36 Baochubei Road, Hangzhou, 310012, PR China
- Observation and Research Station of Marine Ecosystem in the Yangtze River Delta, Ministry of Natural Resources, 99 South Haida Road, Zhoushan, 316053, PR China
| | - Jiarong Hu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, 36 Baochubei Road, Hangzhou, 310012, PR China
| | - Pengbin Wang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, 36 Baochubei Road, Hangzhou, 310012, PR China.
- Observation and Research Station of Marine Ecosystem in the Yangtze River Delta, Ministry of Natural Resources, 99 South Haida Road, Zhoushan, 316053, PR China.
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Haijing Road, Beihai, 536000, PR China.
| | - Xinfeng Dai
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, 36 Baochubei Road, Hangzhou, 310012, PR China.
- Observation and Research Station of Marine Ecosystem in the Yangtze River Delta, Ministry of Natural Resources, 99 South Haida Road, Zhoushan, 316053, PR China.
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Haijing Road, Beihai, 536000, PR China.
| |
Collapse
|
18
|
Li S, Yu Y, Gao X, Yin Z, Bao J, Li Z, Chu R, Hu D, Zhang J, Zhu L. Evaluation of growth and biochemical responses of freshwater microalgae Chlorella vulgaris due to exposure and uptake of sulfonamides and copper. BIORESOURCE TECHNOLOGY 2021; 342:126064. [PMID: 34600091 DOI: 10.1016/j.biortech.2021.126064] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Sulfonamides (SAs) and heavy metals are frequently detected together in livestock wastewater. In this study, evaluations regarding their potentially adverse effects on microalgae and according removals were investigated. Results showed that the growth of C. vulgaris was inhibited by SAs and Cu. There was an obvious recovery period in photosynthetic activity (Fv/Fm), indicating that the damage to the photosystem of microalgae was reversible. The co-existence of SAs and Cu significantly affected the biochemical characteristics, including the activities of antioxidant enzyme and the contents of photosynthetic pigments, proteins and polysaccharides. The addition of Cu obviously promoted the removal efficiencies of SMZ, SMX and SMM, which might be ascribed to the bridging effect of Cu in the bioadsorption of SAs. This study is conducive to understand the changes in the biochemical responses of microalgae under the combined impacts of SAs and Cu, and provides a new insight for the simultaneous removals.
Collapse
Affiliation(s)
- Shuangxi Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Xinxin Gao
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Zhihong Yin
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Jianfeng Bao
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Zhuo Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Ruoyu Chu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Dan Hu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Jin Zhang
- Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, PR China
| | - Liandong Zhu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China.
| |
Collapse
|
19
|
Zhang A, Wen X, Wang K, Huo Y, Geng Y, Ding Y, Li Y. Using surfactants for controlling rotifer contamination in mass cultivation of Chlorella pyrenoidosa. ALGAL RES 2021. [DOI: 10.1016/j.algal.2020.102166] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Chu Y, Zhang C, Ho SH. Computational simulation associated with biological effects of alkyl organophosphate flame retardants with different carbon chain lengths on Chlorella pyrenoidosa. CHEMOSPHERE 2021; 263:127997. [PMID: 32846289 DOI: 10.1016/j.chemosphere.2020.127997] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
The environmental safety of flame retardants has attracted growing attention. Alkyl organophosphorus flame retardants (OPFRs) have been prevalently applied, but the potential risk and the structure effects of different alkyl chain lengths OPFRs on aquatic microalgae remain unknown. This study investigated the biological response of five alkyl-OPFRs to Chlorella pyrenoidosa by computational simulation together with biological approaches. The reduced docking energy had a significantly positive correlation (R2 = 0.9) with the cell inhibition alongside the incremental chain length of alkyl-OPFRs. Molecular docking simulations suggested that the toxicity of alkyl-OPFRs would be highly correlated to their molecular structures. Coincidently, the reactive oxygen species, superoxide dismutase and malondialdehyde were triggered by 85%, 92% and 155% (based on the control group), after exposure to the longest chain length tributyl phosphate (TBPC12), respectively. Furthermore, combining the ultrastructure scrutiny with the photosynthesis analysis, TBPC12 was also found to significantly inhibit the chlorophyll biosynthesis (43%) and restrain the photosynthetic efficiency (26%) when compared with the control group. Overall, this is the first study to comprehensively reveal the biological effects of different alkyl-OPFRs on microalgae via the combination of computational simulation and cellular responses, providing a novel insight into targeted predicting the aquatic ecological risks of OPFRs.
Collapse
Affiliation(s)
- Yuhao Chu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Chaofan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
21
|
Effects of Nitrogen Forms and Supply Mode on Lipid Production of Microalga Scenedesmus obliquus. ENERGIES 2020. [DOI: 10.3390/en13030697] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Optimization of the microalgae culture conditions could significantly reduce the production costs of microalgae-derived biodiesel. In the current study, a new process of adding different forms using the multiple small-dose method was employed. The effects of different forms of nitrogen (NaNO3, NH4Cl, and CH4N2O) and their concentrations (0.1, 0.5, 1, and 2 mg L−1) on the growth and lipid production of Scenedesmus obliquus were studied. Algae density and lipid production increased with increasing nitrogen concentration for all different forms of nitrogen except NH4Cl. The Scenedesmus obliquus growth was promoted by adding NaNO3 and CH4N2O, but was inhibited by adding NH4Cl. Adding 2 mg N L−1 of CH4N2O daily yielded the highest cell density (1.7 × 107 cells mL−1) and lipid production (242.4 mg L−1). These conditions can thus maintain the biomass of Scenedesmus obliquus, increase its lipid accumulation, and decrease the costs of biodiesel production.
Collapse
|