1
|
Rohmatullaili R, Ahmad N, Zultriana Z, Savira D, Erviana D, Mohadi R, Lesbani A. High stability and selectivity of butterfly pea flower extract-NiAl LDH-based catalysts in the tetracycline degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33107-33119. [PMID: 38676870 DOI: 10.1007/s11356-024-33445-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
Layered double hydroxide (LDH) is an applicable material that can be modified in various ways. Modifications using natural extracts fulfill the principles of "green chemistry." The preparation of butterfly pea flower extract (BPE)-modified NiAl LDH was completed using the calcination and restacking method. The characteristics of the prepared composites were identified through analysis of functional groups, crystal phase, bandgap energy, surface area and surface morphology. Fourier transform-infrared (FT-IR) characterization revealed that the active group of the catalyst is -OH except for NiAl layered double oxide (LDO), which has the metal oxide-like functional groups. X-ray diffraction patterns expressed a typical layered material structure of NiAl LDH dan NiAl LDH-BPE, but not for NiAl LDO and NiAl LDO-BPE. Introducing BPE into NiAl LDH and NiAl LDO effectively decreased the bandgap energy and changed the surface morphology. The prepared catalysts were applied in a batch system with pH 5 to degrade tetracycline (TC). NiAl LDO demonstrated the highest activity as a catalyst in TC degradation, with a 93.61% degradation rate. In contrast, NiAl LDO-BPE demonstrated the highest structural stability in TC degradation and repeated use, with an initial degradation percentage of 82.58% and a fifth regeneration percentage of 71.4%.
Collapse
Affiliation(s)
- Rohmatullaili Rohmatullaili
- Doctoral Program, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Padang Selasa No. 524, Palembang, 30139, Indonesia
- Universitas Islam Negeri Raden Fatah Palembang, Jl. Pangeran Ratu, 5 Ulu, Seberang Ulu I, Palembang, 30252, Indonesia
| | - Nur Ahmad
- Doctoral Program, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Padang Selasa No. 524, Palembang, 30139, Indonesia
- Research Center of Inorganic Materials and Complexes, Universitas Sriwijaya, Jl. Padang Selasa Bukit Besar, Palembang, 30139, Indonesia
| | - Zultriana Zultriana
- Universitas Islam Negeri Raden Fatah Palembang, Jl. Pangeran Ratu, 5 Ulu, Seberang Ulu I, Palembang, 30252, Indonesia
| | - Dila Savira
- Universitas Islam Negeri Raden Fatah Palembang, Jl. Pangeran Ratu, 5 Ulu, Seberang Ulu I, Palembang, 30252, Indonesia
| | - Desti Erviana
- Universitas Islam Negeri Raden Fatah Palembang, Jl. Pangeran Ratu, 5 Ulu, Seberang Ulu I, Palembang, 30252, Indonesia
| | - Risfidian Mohadi
- Doctoral Program, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Padang Selasa No. 524, Palembang, 30139, Indonesia
- Magister of Material Science, Graduate Program, Universitas Sriwijaya, Jl. Padang Selasa No. 524, Palembang, 30139, Indonesia
| | - Aldes Lesbani
- Doctoral Program, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Padang Selasa No. 524, Palembang, 30139, Indonesia.
- Magister of Material Science, Graduate Program, Universitas Sriwijaya, Jl. Padang Selasa No. 524, Palembang, 30139, Indonesia.
- Research Center of Inorganic Materials and Complexes, Universitas Sriwijaya, Jl. Padang Selasa Bukit Besar, Palembang, 30139, Indonesia.
| |
Collapse
|
2
|
Zango ZU, Lawal MA, Usman F, Sulieman A, Akhdar H, Eisa MH, Aldaghri O, Ibnaouf KH, Lim JW, Khoo KS, Cheng YW. Promoting the suitability of graphitic carbon nitride and metal oxide nanoparticles: A review of sulfonamides photocatalytic degradation. CHEMOSPHERE 2024; 351:141218. [PMID: 38266876 DOI: 10.1016/j.chemosphere.2024.141218] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/24/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
The widespread consumption of pharmaceutical drugs and their incomplete breakdown in organisms has led to their extensive presence in aquatic environments. The indiscriminate use of antibiotics, such as sulfonamides, has contributed to the development of drug-resistant bacteria and the persistent pollution of water bodies, posing a threat to human health and the safety of the environment. Thus, it is paramount to explore remediation technologies aimed at decomposing and complete elimination of the toxic contaminants from pharmaceutical wastewater. The review aims to explore the utilization of metal-oxide nanoparticles (MONPs) and graphitic carbon nitrides (g-C3N4) in photocatalytic degradation of sulfonamides from wastewater. Recent advances in oxidation techniques such as photocatalytic degradation are being exploited in the elimination of the sulfonamides from wastewater. MONP and g-C3N4 are commonly evolved nano substances with intrinsic properties. They possessed nano-scale structure, considerable porosity semi-conducting properties, responsible for decomposing wide range of water pollutants. They are widely applied for photocatalytic degradation of organic and inorganic substances which continue to evolve due to the low-cost, efficiency, less toxicity, and more environmentally friendliness of the materials. The review focuses on the current advances in the application of these materials, their efficiencies, degradation mechanisms, and recyclability in the context of sulfonamides photocatalytic degradation.
Collapse
Affiliation(s)
- Zakariyya Uba Zango
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, 2137, Katsina, Nigeria; Institute of Semi-Arid Zone Studies, Al-Qalam University Katsina, 2137, Katsina, Nigeria
| | | | - Fahad Usman
- Engineering Unit, Department of Mathematics, Connecticut State Community College Norwalk, Connecticut State Colleges and Universities (CSCU), United States
| | - Abdelmoneim Sulieman
- Department of Radiology and Medical Imaging, Prince Sattam bin Abdulaziz University, PO Box 422, Alkharj, 11942, Kingdom of Saudi Arabia
| | - Hanan Akhdar
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Saudi Arabia.
| | - M H Eisa
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Saudi Arabia
| | - Osamah Aldaghri
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Saudi Arabia
| | - Khalid Hassan Ibnaouf
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Saudi Arabia
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| | - Yoke Wang Cheng
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower, #15-02, 138602, Singapore, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), 138602, Singapore, Singapore
| |
Collapse
|
3
|
Zhang Y, Chen P, Lv W, Xiao Z, Zhang J, Wu J, Lin Z, Zhang G, Yu Z, Liu H, Liu G. Key role of Fe(VI)-activated Bi 2WO 6 in the photocatalytic oxidation of sulfonamides: Mediated electron transfer mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132009. [PMID: 37429189 DOI: 10.1016/j.jhazmat.2023.132009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/19/2023] [Accepted: 07/04/2023] [Indexed: 07/12/2023]
Abstract
The widespread use of sulfonamides (SAs) in animals and human infections has raised significant concerns regarding their presence in ambient waterways and potential for inducing antimicrobial resistance. Herein, we report on the capacity of ferrate (VI) (FeVIO42-, Fe(VI)) to facilitate the photocatalytic degradation of sulfamethazine (SMT) via bismuth tungstate (Bi2WO6, BWO) under blue LED light (Vis/BWO/Fe(VI)) exposure, at rates that were 45-fold faster than BWO photocatalysis. Both the stepwise and time-series addition of Fe(VI) contributed to the degradation. Multiple lines of evidence confirmed that the common reactive species (RSs) in BWO-based photocatalytic systems and Fe(VI)-involved systems (e.g., •OH/h+, O2•-, 1O2 and Fe(V)/Fe(IV)) played subtle roles in our study system. Herein, for the first time, it was discovered that the precursor complex (BWO-Fe(V)/Fe(IV)* )) was the main contributor to induce electron transfer of SAs through the "conductive bridge" effect of BWO. The studied system was able to effectively degrade SMT in synthetic hydrolyzed urine (SHU) with low interference from background substances in water. This work not only offers a novel facilitation strategy for BWO, but also holds a great application prospect for contamination remediation in urine.
Collapse
Affiliation(s)
- Yudan Zhang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Ping Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenying Lv
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Zhenjun Xiao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jinfan Zhang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jianqing Wu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zili Lin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guangzhi Zhang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zongshun Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Haijin Liu
- Key Laboratory for Yellow River and Huaihe River Water Environment and Pollution Control, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Guoguang Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
4
|
Cai Z, Hu X, Li Z, He H, Li T, Yuan H, Zhang Y, Tan B, Wang J. Hypercrosslinking porous polymer layers on TiO 2-graphene photocatalyst: Enhanced adsorption of water pollutants for efficient degradation. WATER RESEARCH 2022; 227:119341. [PMID: 36399844 DOI: 10.1016/j.watres.2022.119341] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/20/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Solar-driven photocatalysis offers an environmentally friendly and sustainable approach for the degradation of organic pollutants in water without chemical additives, but the low specific surface area and adsorption capacity of common photocatalysts restricts the surface reactions with the contaminants. Herein, we hypercrosslinked polymer layers on TiO2-graphene surface to enlarge the specific surface area from 136 to 988 m2/g, leading to a high adsorption capacity of sulfadiazine as 54.3 mg/g, which is 15.5 times that of TiO2-graphene (3.5 mg/g). The adsorption kinetics reveals the combination of physical and chemical adsorption by porous benzene-based polymer for sulfadiazine enrichment. Besides, the polymer layers with broad light absorption enable the composite to function efficiently as visible-light-driven photocatalysts. Thus, the as-designed composite exhibits excellent performance for sulfadiazine removal by integrating the adsorptive and photocatalytic processes, especially for the diluted sulfadiazine solution. More importantly, the porous polymer layer can function as a filter for weakening the interference of TiO2 surface with the natural matters from complex water matrices. Based on the identification of dominant reactive species, the possible attacking pathway and the sulfadiazine subsequent degradation are presented. Further, the enhanced adsorption and photodegradation efficiency can also be achieved for the removal of other typical pollutants such as 4-chlorophenol and methylene blue. This study highlights an adsorption-enhanced-degradation mechanism for water pollutants that can direct the design of high-performance photocatalysts under visible light.
Collapse
Affiliation(s)
- Zhongjie Cai
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiantao Hu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhong'an Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huijie He
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tao Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hong Yuan
- Key Laboratory of Pesticide & Chemical Biology (Ministry of Education), College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yanrong Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jingyu Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
5
|
Bai X, Chen W, Wang B, Sun T, Wu B, Wang Y. Photocatalytic Degradation of Some Typical Antibiotics: Recent Advances and Future Outlooks. Int J Mol Sci 2022; 23:ijms23158130. [PMID: 35897716 PMCID: PMC9331861 DOI: 10.3390/ijms23158130] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 12/04/2022] Open
Abstract
The existence of antibiotics in the environment can trigger a number of issues by fostering the widespread development of antimicrobial resistance. Currently, the most popular techniques for removing antibiotic pollutants from water include physical adsorption, flocculation, and chemical oxidation, however, these processes usually leave a significant quantity of chemical reagents and polymer electrolytes in the water, which can lead to difficulty post-treating unmanageable deposits. Furthermore, though cost-effectiveness, efficiency, reaction conditions, and nontoxicity during the degradation of antibiotics are hurdles to overcome, a variety of photocatalysts can be used to degrade pollutant residuals, allowing for a number of potential solutions to these issues. Thus, the urgent need for effective and rapid processes for photocatalytic degradation leads to an increased interest in finding more sustainable catalysts for antibiotic degradation. In this review, we provide an overview of the removal of pharmaceutical antibiotics through photocatalysis, and detail recent progress using different nanostructure-based photocatalysts. We also review the possible sources of antibiotic pollutants released through the ecological chain and the consequences and damages caused by antibiotics in wastewater on the environment and human health. The fundamental dynamic processes of nanomaterials and the degradation mechanisms of antibiotics are then discussed, and recent studies regarding different photocatalytic materials for the degradation of some typical and commonly used antibiotics are comprehensively summarized. Finally, major challenges and future opportunities for the photocatalytic degradation of commonly used antibiotics are highlighted.
Collapse
Affiliation(s)
- Xue Bai
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, School of Health Science, University of Manchester, Oxford Road, Manchester M13 9PT, UK;
| | - Wanyu Chen
- Faculty of Biology, Medicine and Health, School of Health Science, University of Manchester, Oxford Road, Manchester M13 9PT, UK;
| | - Bao Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China;
| | - Tianxiao Sun
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin, Germany; (T.S.); (B.W.)
| | - Bin Wu
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin, Germany; (T.S.); (B.W.)
| | - Yuheng Wang
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, School of Health Science, University of Manchester, Oxford Road, Manchester M13 9PT, UK;
- Correspondence:
| |
Collapse
|
6
|
Qi K, Ye Y, Wei B, Li M, Lun Y, Xie X, Xie H. N-CQDs from reed straw enriching charge over BiO 2-x/BiOCl p-n heterojunction for improved visible-light-driven photodegradation of organic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128759. [PMID: 35349850 DOI: 10.1016/j.jhazmat.2022.128759] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/06/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Green bismuth-based photocatalysts have attracted extensive attention in the field of PPCPs photodegradation. The improved carrier separation efficiency still remains a key factor to enhance photocatalytic performance. Herein, N-doped biomass carbon quantum dots (N-CQDs) decorated p-n heterojunction photocatalyst BiO2-x/BiOCl was prepared using a facile ion-etching strategy, and it displayed a markedly enhanced catalytic activity in the photodegradation of sulfonamide antibiotics. Calculated by the differential charge density, the doped N-CQDs could gather photogenerated electrons, which indicated that the introduction of N-CQDs into BiO2-x/BiOCl would effectively inhibit the recombination of photogenerated charge carriers. In addition, photocatalytic performance and density functional theory (DFT) calculation results revealed that the photogenerated electrons tended to transfer from p-BiOCl to n-BiO2-x through N-CQDs, which could generate ·O2- and photogenerated h+ to oxidize the target pollutants. Benefiting from the synergistic effect of accelerated separation of e--h+ in p-n heterojunction and the electron-rich performance of N-CQDs, the superb TOC removal efficiencies (89.40% within 120 min visible-light irradiation) and toxicity reduction performance of photodegradation intermediates were achieved. As a consequence, this work will provide a design of high-quality photocatalysts and a green-promising strategy for bismuth-based photocatalysts in the water treatment of PPCPs.
Collapse
Affiliation(s)
- Kemin Qi
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, China
| | - Yuping Ye
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, China
| | - Bin Wei
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, China
| | - Mengxin Li
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, China
| | - Yanxin Lun
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, China
| | - Xiaoyun Xie
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, China.
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou, Zhejiang Province, China
| |
Collapse
|
7
|
Wu J, Zheng X, Wang Y, Liu H, Wu Y, Jin X, Chen P, Lv W, Liu G. Activation of peracetic acid via Co 3O 4 with double-layered hollow structures for the highly efficient removal of sulfonamides: Kinetics insights and assessment of practical applications. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128579. [PMID: 35247737 DOI: 10.1016/j.jhazmat.2022.128579] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Sulfonamides (SAs) have been of ecotoxicological concern for ambient ecosystems due to their widespread application in the veterinary industry. Herein, we developed a powerful advanced oxidation peracetic acid (PAA) activation process for the remediation of SAs by Co3O4 with double-layered hollow structures (Co3O4 DLHSs). Systematic characterization results revealed that the polyporous hollow hierarchical structure endows Co3O4 DLHSs with abundant active reaction sites and enhanced mass transfer rate, which were conducive for improving the PAA activation efficiency. Laser flash photolysis experiment and mechanism studies indicated that organic radical species were dominant reactive species for SAs removal. The present system is also highly effective under natural water matrices and trace SAs concentration (20 μg/L) condition. More importantly, the chlorella acute toxicity of the SAs solution was eliminated during mineralization process, supporting this catalytic system may be efficaciously applied for the remediation of SAs contamination in ambient waterways.
Collapse
Affiliation(s)
- Jianqing Wu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoshan Zheng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yingfei Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China.
| | - Haijin Liu
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huaihe River Water Environment and Pollution Control, Xinxiang 453007, China
| | - Yuliang Wu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoyu Jin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Ping Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenying Lv
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guoguang Liu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
8
|
Liu M, Liu G, Liu X, Wang X, Chen Y, Yang W, Gao C, Wang G, Teng Z. One-pot synthesis of m-Bi2O4/Bi2O4−x/BiOCl with enhanced photocatalytic activity for BPA and CIP under visible-light. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Sun W, Hu X, Xiang Y, Ye N. Adsorption behavior and mechanism of sulfonamides on controllably synthesized covalent organic frameworks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:18680-18688. [PMID: 34697714 DOI: 10.1007/s11356-021-17169-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
In this work, four kinds of covalent organic framework (COF) materials (TpPa-1, TpBD, TpDT, and TFBBD) with different pore sizes or functional groups were synthesized by an ultrasonic method for the adsorption of five sulfonamides. Optimization experiments regarding the adsorption time, vortex speed, and pH were carried out to improve adsorption efficiency. In addition, kinetic and thermodynamic experiments were conducted to explore the adsorption mechanism of the sulfonamides on the different COFs. The adsorption processes of the five sulfonamides on the four COFs fit the pseudo-second-order kinetic model and Langmuir adsorption isotherm model. Additionally, pore filling, hydrogen bond interactions, and electrostatic attraction were found to be the main adsorption mechanisms.
Collapse
Affiliation(s)
- Wenjing Sun
- Department of Chemistry, Capital Normal University, Beijing, 100048, People's Republic of China
| | - Xiaoyu Hu
- Department of Chemistry, Capital Normal University, Beijing, 100048, People's Republic of China
| | - Yuhong Xiang
- Department of Chemistry, Capital Normal University, Beijing, 100048, People's Republic of China.
| | - Nengsheng Ye
- Department of Chemistry, Capital Normal University, Beijing, 100048, People's Republic of China.
| |
Collapse
|
10
|
Náfrádi M, Alapi T, Farkas L, Bencsik G, Kozma G, Hernádi K. Wavelength Dependence of the Transformation Mechanism of Sulfonamides Using Different LED Light Sources and TiO 2 and ZnO Photocatalysts. MATERIALS (BASEL, SWITZERLAND) 2021; 15:49. [PMID: 35009197 PMCID: PMC8745830 DOI: 10.3390/ma15010049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 05/04/2023]
Abstract
The comparison of the efficiency of the commercially available photocatalysts, TiO2 and ZnO, irradiated with 365 nm and 398 nm light, is presented for the removal of two antibiotics, sulfamethazine (SMT) and sulfamethoxypyridazine (SMP). The •OH formation rate was compared using coumarin, and higher efficiency was proved for TiO2 than ZnO, while for 1,4-benzoquinone in O2-free suspensions, the higher contribution of the photogenerated electrons to the conversion was observed for ZnO than TiO2, especially at 398 nm irradiation. An extremely fast transformation and high quantum yield of SMP in the TiO2/LED398nm process were observed. The transformation was fast in both O2 containing and O2-free suspensions and takes place via desulfonation, while in other cases, mainly hydroxylated products form. The effect of reaction parameters (methanol, dissolved O2 content, HCO3- and Cl-) confirmed that a quite rarely observed energy transfer between the excited state P25 and SMP might be responsible for this unique behavior. In our opinion, these results highlight that "non-conventional" mechanisms could occur even in the case of the well-known TiO2 photocatalyst, and the effect of wavelength is also worth investigating.
Collapse
Affiliation(s)
- Máté Náfrádi
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; (M.N.); (L.F.)
| | - Tünde Alapi
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; (M.N.); (L.F.)
| | - Luca Farkas
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; (M.N.); (L.F.)
| | - Gábor Bencsik
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary;
| | - Gábor Kozma
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary;
| | - Klára Hernádi
- Institute of Physical Metallurgy, Metal Forming and Nanotechnology, University of Miskolc, C/2-5 Building 209, H-3515 Miskolc-Egyetemvaros, Hungary;
| |
Collapse
|
11
|
Qin K, Zhao Q, Yu H, Xia X, Li J, He S, Wei L, An T. A review of bismuth-based photocatalysts for antibiotic degradation: Insight into the photocatalytic degradation performance, pathways and relevant mechanisms. ENVIRONMENTAL RESEARCH 2021; 199:111360. [PMID: 34022231 DOI: 10.1016/j.envres.2021.111360] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/06/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
The intensive production and utilization of antibiotics worldwide has inevitably led to releases of very large amounts of these medicines into the environment, and numerous strategies have recently been developed to eliminate antibiotic pollution. Therefore, bismuth-based photocatalysts have attracted much attention due to their high adsorption of visible light and low production cost. This review summarizes the performance, degradation pathways and relevant mechanisms of typical antibiotics during bismuth-based photocatalytic degradation. First, the band gap and redox ability of the bismuth-based catalysts and modified materials (such as morphology, structure mediation, heterojunction construction and element doping) were compared and evaluated. Second, the performance and potential mechanisms of bismuth oxides, bismuth sulfides, bismuth oxyhalides and bismuth-based metal oxides for antibiotic removal were investigated. Third, we analysed the effect of co-existing interfering substances in a real water matrix on the photocatalytic ability, as well as the coupling processes for degradation enhancement. In the last section, current difficulties and future perspectives on photocatalytic degradation for antibiotic elimination by bismuth-based catalysts are summarized. Generally, modified bismuth-based compounds showed better performance than single-component photocatalysts during photocatalytic degradation for most antibiotics, in which h+ played a predominant role among all the related reactive oxygen species. Moreover, the crystal structures and morphologies of bismuth-based catalysts seriously affected their practical efficiencies.
Collapse
Affiliation(s)
- Kena Qin
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Hang Yu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xinhui Xia
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jianju Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shufei He
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Taicheng An
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
12
|
Fan G, Ning R, Li X, Lin X, Du B, Luo J, Zhang X. Mussel-Inspired Immobilization of Photocatalysts with Synergistic Photocatalytic-Photothermal Performance for Water Remediation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31066-31076. [PMID: 34137247 DOI: 10.1021/acsami.1c02973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The serious problem of pharmaceutical and personal care product pollution places great pressure on aquatic environments and human health. Herein, a novel coating photocatalyst was synthesized by adhering Ag-AgCl/WO3/g-C3N4 (AWC) nanoparticles on a polydopamine (PDA)-modified melamine sponge (MS) through a facile layer-by-layer assembly method to degrade trimethoprim (TMP). The formed PDA coating was used for the anchoring of nanoparticles, photothermal conversion, and hydrophilic modification. TMP (99.9%; 4 mg/L) was removed in 90 min by the photocatalyst coating (AWC/PDA/MS) under visible light via a synergistic photocatalytic-photothermal performance route. The stability and reusability of the AWC/PDA/MS have been proved by cyclic experiments, in which the removal efficiency of TMP was still more than 90% after five consecutive cycles with a very little mass loss. Quantitative structure-activity relationship analysis revealed that the ecotoxicities of the generated intermediates were lower than those of TMP. Furthermore, the solution matrix effects on the photocatalytic removal efficiency were investigated, and the results revealed that the AWC/PDA/MS still maintained excellent photocatalytic degradation efficiency in several actual water and simulated water matrices. This work develops recyclable photocatalysts for the potential application in the field of water remediation.
Collapse
Affiliation(s)
- Gongduan Fan
- College of Civil Engineering, Fuzhou University, 350116 Fujian, China
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 350002 Fujian, China
- Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, 350002 Fujian, China
| | - Rongsheng Ning
- College of Civil Engineering, Fuzhou University, 350116 Fujian, China
| | - Xia Li
- College of Civil Engineering, Fuzhou University, 350116 Fujian, China
| | - Xin Lin
- College of Civil Engineering, Fuzhou University, 350116 Fujian, China
| | - Banghao Du
- College of Civil Engineering, Fuzhou University, 350116 Fujian, China
| | - Jing Luo
- Fujian Jinhuang Environmental Sci-Tech Co., Ltd., 350002 Fujian, China
| | - Xianzhong Zhang
- Shanghai Urban Construction Design and Research Institute Co., Ltd., 200125 Shanghai, China
| |
Collapse
|
13
|
Gao P, Yang Y, Yin Z, Kang F, Fan W, Sheng J, Feng L, Liu Y, Du Z, Zhang L. A critical review on bismuth oxyhalide based photocatalysis for pharmaceutical active compounds degradation: Modifications, reactive sites, and challenges. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125186. [PMID: 33516110 DOI: 10.1016/j.jhazmat.2021.125186] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/03/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Pharmaceutical active compounds (PhACs), as a kind of widely used pharmaceutical drugs, has attracted much attention. The bismuth oxyhalides (BiOX)-based photocatalysis can remove PhACs efficiently due to its unique layered structure, optical and electronic properties. Nevertheless, the rapid recombination of photogenerated electron-hole pairs, and the inherent instability of structure have limited its practical application. In order to solve these problems, recent modification studies tend to focus on facet control, elemental doping, bismuth-rich strategies, defect engineering and heterojunction. Therefore, the objective of this review is to summarize the recent developments in multiply modified strategies for PhACs degradation. The synthesis methods, photocatalytic properties and the enhancement mechanism are elaborated. Besides, based on theoretical calculation, the reactive sites of typical PhACs attacked by different reactive oxygen species were also proposed. Subsequently, challenges and opportunities in applications are also featured which include factors, viz., dissolution of halogen ions, instability under visible light, applications of real water/wastewater, intermediates and byproducts toxicity analysis of BiOX-based photocatalysis. Finally, the perspectives of BiOX-based photocatalysis for PhACs photodegradation in actual water applications are highlighted.
Collapse
Affiliation(s)
- Peng Gao
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, Beijing Forestry University, Beijing 100083, PR China
| | - Yuning Yang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, Beijing Forestry University, Beijing 100083, PR China
| | - Ze Yin
- Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Department of Water Resource and Environment, Hebei GEO University, No. 136 Huai'an Road, Shijiazhuang 050031, Hebei, PR China
| | - Fengxin Kang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, Beijing Forestry University, Beijing 100083, PR China
| | - Waner Fan
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, Beijing Forestry University, Beijing 100083, PR China
| | - Jiayi Sheng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, Beijing Forestry University, Beijing 100083, PR China
| | - Li Feng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, Beijing Forestry University, Beijing 100083, PR China.
| | - Yongze Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, Beijing Forestry University, Beijing 100083, PR China
| | - Ziwen Du
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, Beijing Forestry University, Beijing 100083, PR China
| | - Liqiu Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
14
|
Liu F, Chen H, Xu C, Wang L, Qiu P, Gao S, Zhu J, Zhang S, Guo Z. Monoclinic dibismuth tetraoxide (m-Bi 2O 4) for piezocatalysis: new use for neglected materials. Chem Commun (Camb) 2021; 57:2740-2743. [PMID: 33594998 DOI: 10.1039/d0cc07064e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Piezocatalysis is a promising approach for environmental pollutant removal. Monoclinic dibismuth tetraoxide (m-Bi2O4) was first applied to piezocatalyze organics under ultrasonic vibration. The built-in electric field with ultrasonic stress drives the separation of holes and electrons in m-Bi2O4. Its excellent piezocatalytic activity, reusability and chemical stability make m-Bi2O4 a new candidate of piezocatalysis.
Collapse
Affiliation(s)
- Fengling Liu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | | | | | | | | | | | | | | | | |
Collapse
|