1
|
Liao Y, Zhao K, Chen K, Sun C, Fu D. Unique Cluster-Support Effect of a Co 3O 4/TiO 2-3DHS Nanoreactor for Efficient Plasma-Catalytic Oxidation Performance. ACS OMEGA 2023; 8:26045-26054. [PMID: 37521609 PMCID: PMC10372939 DOI: 10.1021/acsomega.3c02132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023]
Abstract
For environmental catalysis, a central topic is the design of high-performance catalysts and advanced mechanism studies. In the case of the removal of flue gas pollutants from coal-fired power plants, highly selective nanoreactors have been widely utilized together with plasma discharge characteristics, such as the catalytic oxidation of NO. Herein, a novel reactor with a three-dimensional hollow structure of TiO2 confining Co3O4 nanoclusters (Co3O4/TiO2-3DHS) has been developed for plasma-catalytic oxidation of NO, whose performance was compared with that of the commercial TiO2 confining Co3O4 cluster (Co3O4/TiO2). Specifically, Co3O4/TiO2-3DHS presented a higher efficiency (almost 100%) within lower peak-peak voltage (VP-P). More importantly, the NO oxidation efficiency was between 91.5 and 94.5% after a long time of testing, indicating that Co3O4/TiO2-3DHS exhibits more robust sulfur and water tolerance. Density functional theory calculations revealed that such impressive performance originates from the unique cluster-support effect, which changes the distribution of the active sites on the catalyst surface, resulting in the selective adsorption of flue gas. This investigation provides a new strategy for constructing a three-dimensional hollow nanoreactor for the plasma-catalytic process.
Collapse
Affiliation(s)
- Yujie Liao
- Hebei
Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department
of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, P. R. China
- MOE
Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, P. R. China
| | - Kun Zhao
- Hebei
Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department
of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, P. R. China
- MOE
Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, P. R. China
| | - Ke Chen
- Hebei
Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department
of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, P. R. China
- MOE
Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, P. R. China
| | - Chenghua Sun
- Department
of Chemistry and Biology, Swinburne University
of Technology, Hawthorn, Victoria 3122, Australia
| | - Dong Fu
- Hebei
Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department
of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, P. R. China
- MOE
Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, P. R. China
| |
Collapse
|
2
|
Wang Y, Jin Y, Jia M, Ruan H, Tao X, Liu X, Lu G, Zhang X. Enhanced Visible-Light Photocatalytic Activities of CeVO4-V2O3 Composite: Effect of Ethylene Glycol. Catalysts 2023. [DOI: 10.3390/catal13040659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
CeVO4-V2O3 composites were prepared by simple hydrothermal method, and the effects of ethylene glycol(EG) on the products were studied by XRD, N2 adsorption–desorption, SEM, EDS, XPS, PL and UV-vis spectra. The characterization reveals a slight decrease in surface area and a slight enhancement of visible light absorption in the final sample, while the crystalline phase, morphology and separation efficiency of the collective carriers are severely affected by the EG. At the same time, the photocatalytic effect of CeVO4-V2O3 composites was evaluated by the degradation rate of methylene blue (MB) under simulated visible light. The sample for 10 mL EG obtained the highest efficiency of 96.9%, while the one for 15 mL EG showed the lowest efficiency of 67.5% within 300 min. The trapping experiments and ESR experiment showed that the contribution of active species to the photocatalytic degradation of MB was ∙OH > h+ > ∙O2− in descending order, and a possible degradation mechanism was proposed.
Collapse
|
3
|
Cao G, Ye X, Duan S, Cao Z, Zhang C, Yao C, Li X. Plasmon enhanced Sn:In2O3/attapulgite S-scheme heterojunction for efficient photothermal reduction of CO2. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
4
|
Nickel Nanoparticles Anchored on Activated Attapulgite Clay for Ammonia Decomposition to Hydrogen. Symmetry (Basel) 2022. [DOI: 10.3390/sym14122627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ammonia decomposition to hydrogen technique is an effectively way to solve the problems associated with the storage and transportation of hydrogen, but the development of a high-performance catalyst for ammonia decomposition is a great challenge. Ni species supported on activated attapulgite clay (AATP) is prepared by a homogeneous precipitation method for ammonia decomposition to COx-free H2. The structural properties of the Ni/AATP catalysts are characterized by thermogravimetric analysis, X-ray diffraction, scanning and transmission electron microscopy, H2 temperature-programmed reduction, and N2 sorption technique. It is revealed that the porous structure and high surface area of rod-like symmetric AATP results in highly dispersed NiO particles because the presence of a strong interaction between AATP and NiO particles. In particular, the Si-OH in AATP can react with Ni species, forming Si-O-Ni species at the interface between Ni and AATP. The Ni/AAPT catalysts are used for ammonia decomposition, the 20%-Ni/ATTP catalyst shows a 95.3% NH3 conversion with 31.9 mmol min−1 gcat−1 H2 formation rate at 650 °C. This study opens a new way to utilize natural minerals as an efficient support of catalysts towards ammonia decomposition reaction.
Collapse
|
5
|
Zhang P, Yang X, Du S, Yin L, Wang J, Liu P, Hou W. Insight into the Crystal Facet Effect of {101} and {100} Facets of CeVO 4 in the Photochemical Property and Photocatalysis. J Phys Chem Lett 2022; 13:10432-10438. [PMID: 36326452 DOI: 10.1021/acs.jpclett.2c01840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
To investigate the photochemical property of specific crystal facets, two well-defined CeVO4 dodecahedrons with exposed {101} and {100} facets are prepared, which have distinguishing appearances and unequal {101}/{100} area ratios (A{101}/A{100}), i.e., compressed dodecahedra (CeVO4 CD, A{101}/A{100} ≈ 1) and elongated dodecahedra (CeVO4 ED, A{101}/A{100} ≈ 0.3). During the visible-light-irradiated process, the {101} and {100} facets are certified to selectively deposit photogenerated holes (h+) and electrons (e-), thus exhibiting the photooxidability and photoreducibility, respectively. Meanwhile, a surface heterojunction could form at the adjacent facet interface and facilitate the spatial separation of carriers. Benefiting from the large exposure extent of the {101} facet and the rational A{101}/A{100} (∼1), the CeVO4 CD shows a superior photocatalytic performance for the degradation of tetracycline to the CeVO4 ED. Finally, simulation calculations reveal that the energy deviations of the valence band (VB) and conduction band (CB) between CeVO4{101} and CeVO4{100} impel the photogenerated h+ and e- to transfer in opposite directions, resulting in the facet-dependent photoactivity of the CeVO4 dodecahedron.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xiaoyan Yang
- School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shiwen Du
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Liangke Yin
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Jiaren Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Peng Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Wenhua Hou
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
6
|
Zhao Y, Shi L, Shen Y, Zhou J, Jia Z, Yan T, Wang P, Zhang D. Self-Defense Effects of Ti-Modified Attapulgite for Alkali-Resistant NO x Catalytic Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4386-4395. [PMID: 35262342 DOI: 10.1021/acs.est.1c07996] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nowadays, the serious deactivation of deNOx catalysts caused by alkali metal poisoning was still a huge bottleneck in the practical application of selective catalytic reduction of NOx with NH3. Herein, alkali-resistant NOx catalytic reduction over metal oxide catalysts using Ti-modified attapulgite (ATP) as supports has been originally demonstrated. The self-defense effects of Ti-modified ATP for alkali-resistant NOx catalytic reduction have been clarified. Ti-modified ATP with self-defense ability was obtained by removing alkaline metal cation impurities in the natural ATP materials without destroying its initial layered-chain structure through the ion-exchange procedure, accompanied with an obvious enrichment of Brønsted acid and Lewis acid sites. The self-defense effects embodied that both ion-exchanged Ti octahedral centers and abundant Si-OH sites in the Ti-ion-exchange-modified ATP could effectively anchor alkali metals via coordinate bonding or ion-exchange process, which induced alkali metals to be immobilized by the Ti-ion-exchange-modified ATP carrier rather than impair active species. Under this special protection of self-defense effects, Ti-ion-exchange-modified ATP supported catalysts still retained plentiful acidic sites and superior redox ability even after alkali metal poisoning, giving rise to the maintenance of sufficient NHx and NOx adsorption and the subsequent efficient reaction, which in turn resulted in high NOx catalytic reduction capacity of the catalyst. The strategy provided new inspiration for the development of novel and efficient selective catalytic reduction of NOx with NH3 (NH3-SCR) catalysts with high alkali resistance.
Collapse
Affiliation(s)
- Yufei Zhao
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Liyi Shi
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Yongjie Shen
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jialun Zhou
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Zhaozhao Jia
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Tingting Yan
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Penglu Wang
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dengsong Zhang
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
7
|
Liu Y, Zhang C, Shi A, Zuo S, Yao C, Ni C, Li X. Full solar spectrum driven CO2 conversion over S-Scheme natural mineral nanocomposite enhanced by LSPR effect. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2021.11.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
8
|
Liu T, Wang C, Wang M, Bai J, Wang W, Zhang J, Zhou Q. The improved spatial charge separation and antibiotic removal performance on Z-scheme Zn-Fe2O3/ZnIn2S4 architectures. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
9
|
Li W, Yu H, Zhang Z, Hei W, Liang K, Yu H. Electrochemical removal of NO x by La 0.8Sr 0.2Mn 1-xNi xO 3 electrodes in solid electrolyte cells: Role of Ni substitution. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126640. [PMID: 34329099 DOI: 10.1016/j.jhazmat.2021.126640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/29/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
Electrochemical removal of nitrogen oxides (NOx) by solid electrolyte cells (SECs) is a promising technology due to no required reductant. Herein, a series of La0.8Sr0.2Mn1-xNixO3 (0 ≤ x ≤ 0.5) perovskites were first synthesized and utilized as the electrode materials of SECs. The role of Ni substitution in electrode performance and NOx reduction mechanism were revealed by various experimental characterization and first-principle calculations. The results indicate that the moderate Ni substitution (x ≤ 0.3) increased the NOx conversion of electrodes while reduced the polarization resistance. The further investigation shows that this improvement was attributed to the more surface oxygen vacancies, better reducibility and higher Mn4+ proportion of the Ni-substituted perovskites. The electrochemical impedance spectroscopy (EIS) shows that these changes facilitated the NOx adsorption and dissociation processes on the electrode. According to first-principle calculations, the Ni-substituted perovskite had a lower formation energy of surface oxygen vacancy, while the NO molecule adsorbed on defect surface gained more electrons thus was easier to be reduced and dissociated. Finally, the electrode performance at different operating temperatures and the operational stability were verified.
Collapse
Affiliation(s)
- Wenjie Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| | - Han Yu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Lund University, Lund 22100, Sweden.
| | - Zhenzong Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Wanting Hei
- Institute of Environmental Science, College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ke Liang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Hongbing Yu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| |
Collapse
|
10
|
Wei W, Yu D, Huang Q. Preparation of Ag/TiO 2 nanocomposites with controlled crystallization and properties as a multifunctional material for SERS and photocatalytic applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 243:118793. [PMID: 32805508 DOI: 10.1016/j.saa.2020.118793] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/01/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Ag/TiO2 nanocomposites with controlled crystallization and properties were prepared by a simple solvothermal method. By using the same raw materials with different ratio and reaction conditions, the morphologies and crystallization of nanocomposites can be tuned. The components of the products were analyzed by TEM and XRD methods respectively. The as-prepared Ag/TiO2 nanocomposites were used as surface-enhanced Raman spectroscopy (SERS) substrate to be evolved for detection of environmental organic dyes pollutants (CV and RhB) with excellent recyclability. Furthermore, it also showed enhanced catalytic performance of nitrophenol compounds (4-NP). After that, the Ag/TiO2 nanocomposites were also used as an active substrate and a superior catalyst for reduction of 4-NTP monitored by Raman spectroscopy.
Collapse
Affiliation(s)
- Wenxian Wei
- Testing Center, Yangzhou University, Yangzhou City, Jiangsu 225009, China
| | - Dan Yu
- Public Experimental Research Center of Xuzhou Medical University, Xuzhou City, Jiangsu 221004, China
| | - Qingli Huang
- Public Experimental Research Center of Xuzhou Medical University, Xuzhou City, Jiangsu 221004, China.
| |
Collapse
|
11
|
Yuan C, Chen R, Wang J, Wu H, Sheng J, Dong F, Sun Y. La-doping induced localized excess electrons on (BiO) 2CO 3 for efficient photocatalytic NO removal and toxic intermediates suppression. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123174. [PMID: 32569988 DOI: 10.1016/j.jhazmat.2020.123174] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Photocatalysis technology has been extensively adopted to abate typical air pollutants. Nevertheless, it is a challenge to develop photocatalysts aiming to simultaneously improve photocatalytic selectivity and efficiency. In this study, to improve the photocatalytic selectivity and the performance of (BiO)2CO3 in the oxidation of NO to target products (NO2- /NO3-), we developed a novel method to construct La-doped (BiO)2CO3 (La-BOC) for forming localized excess electrons (Ex) on (BiO)2CO3 surface. The results indicate that the Ex could effectively accelerate the activation of reactants and promote charge separation and transfer. Under visible light, the gas molecules could capture the Ex and get activated to produce reactive oxygen species (ROS) with high oxidation ability, which enables complete oxidation of NO to target products instead of producing other toxic by-products. Due to the functionality of the Ex, the photocatalytic selectivity and efficiency of La-BOC have been synchronously improved. Combining experimental and theoretical methods, this work unravels the pathway of charge carriers transportation/transformation and elucidates the photocatalytic NO oxidation mechanism. The present work could provide a novel method to improve photocatalytic selectivity and activity for safe air pollutant abatement.
Collapse
Affiliation(s)
- Chaowei Yuan
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China; School of Resources and Environment, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Ruimin Chen
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China; School of Resources and Environment, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jiaodong Wang
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China; School of Resources and Environment, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Huizhong Wu
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China; School of Resources and Environment, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jianping Sheng
- School of Resources and Environment, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fan Dong
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China; School of Resources and Environment, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yanjuan Sun
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China; School of Resources and Environment, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|