1
|
Zhou X, Liu S, Yang C, Qin J, Hu Y. Photocatalytic hydrogen energy recovery from sulfide-containing wastewater using thiol-UiO-66 modified Mn0.5Cd0.5S nanocomposites. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
2
|
Fan X, Ma L, Liu S, Xie Y, Lu S, Tan Z, Ji J, Fu ML, Yuan B, Hu YB. Facile synthesis of lattice-defective and recyclable zirconium hydroxide coated nanoscale zero-valent iron for robust arsenite removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
3
|
Wang Z, Cui H, Xu H, Sheng Y. Decorated reduced graphene oxide transfer sulfides into sulfur and sulfone in wastewater. RSC Adv 2022; 12:28586-28598. [PMID: 36320494 PMCID: PMC9539723 DOI: 10.1039/d2ra04323h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/21/2022] [Indexed: 11/12/2022] Open
Abstract
Sulfides cannot be completely removed using oxidation due to the production of sulfate. In this work, a reduced graphene oxide (RGO)/Fe3O4 hybrid material was synthesized via a simple in situ chemical method for sulfide removal. The adsorption capacity of RGO/Fe3O4 was evaluated by sulfide removal from aqueous solution, and different experimental parameters including contact time, solution pH, adsorbent dosage, ion strength and temperature were investigated. The equilibrium data were in accordance with the Langmuir linear isotherm with a maximum uptake capacity of 173 mg g-1. The adsorption of sulfide by the RGO/Fe3O4 hybrid material can be attributed to the synergistic effect of both chemical and physical adsorption according to kinetic, adsorption isotherm and thermodynamic studies. The RGO/Fe3O4 material with oxygenated functional groups could convert sulfides to stable elemental sulfur and sulfone organics. The external magnetic field could easily separate the magnetic RGO/Fe3O4 adsorbent from the liquid. This research provides a novel strategy for the green and low-cost treatment of sulfide-containing wastewater by the RGO/Fe3O4 hybrid material.
Collapse
Affiliation(s)
- Zheng Wang
- School of Chemistry and Chemical Engineering, Yantai University Yantai 264005 China
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences Yantai 264003 China +86-0535-2109265
| | - Hongtao Cui
- School of Chemistry and Chemical Engineering, Yantai University Yantai 264005 China
| | - Hengduo Xu
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences Yantai 264003 China +86-0535-2109265
| | - Yanqing Sheng
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences Yantai 264003 China +86-0535-2109265
| |
Collapse
|
4
|
Abdulbaki Danhassan U, Zhang X, Qi R, Ali MM, Sheng K, Lin H. Nickel-Catalyzed mesoporous biochar for enhanced adsorptive oxidation of aqueous Sulfide: An investigation of influencing factors and mechanisms. BIORESOURCE TECHNOLOGY 2022; 362:127877. [PMID: 36049710 DOI: 10.1016/j.biortech.2022.127877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Biochar (BC) is a low-cost and electroactive adsorbent for removing sulfide in aqueous media, which toxifies aquatic organisms and corrodes water treatment facilities. However, it lacks a pore structure for sulfide ion (S2-) mass transfer to active sites. Herein, it is shown that nickel-modified biochar (BC-Ni) adsorbed S2- 2.72-fold faster than BC alone and attained a 1244 ± 252 mg-sulfide/g maximum adsorption capacity due to markedly increased mesopores, while BC attained 583 ± 250 mg-sulfide/g. Factors influencing S2-sorption and theoretical sorption kinetics and isotherms models were evaluated. Structural and surface compositions of BC and BC-Ni were examined using state-of-the-art characterizations. The results suggest that S2- was adsorbed via pore diffusion, pore filling, and cation bridging and oxidized to elemental sulfur and sulfate with quinone and hydrogen peroxide generated from dehydrogenation of hydroquinone on the BC-Ni by metallic nickel in the carbon matrix. This study would spur biomass valorization and desulfurization.
Collapse
Affiliation(s)
- Umar Abdulbaki Danhassan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture and Rural Affairs, PR China; Department of Agricultural and Bio-Environmental Engineering, SCA/DAC Ahmadu Bello University, Zaria 810107, Nigeria
| | - Xin Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture and Rural Affairs, PR China; Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, PR China
| | - Riying Qi
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture and Rural Affairs, PR China; Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, PR China
| | - Mahmoud M Ali
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture and Rural Affairs, PR China; Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, PR China
| | - Kuichuan Sheng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture and Rural Affairs, PR China; Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, PR China
| | - Hongjian Lin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture and Rural Affairs, PR China; Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, PR China.
| |
Collapse
|
5
|
Liu T, Wang P, Wang ZL. A high-efficient and recyclable aged nanoscale zero-valent iron compound for V 5+ removal from wastewater: Characterization, performance and mechanism. CHEMOSPHERE 2022; 302:134833. [PMID: 35533941 DOI: 10.1016/j.chemosphere.2022.134833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/29/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
An effective complex of nanoscale zero-valent iron (NZVI) supported on zirconium 1,4-dicarboxybenzene metals-organic frameworks (UIO-66) with strong oxidation resistance was synthesized (NZVI@UIO-66) for V5+ removal from wastewater. The results demonstrated that NZVI was successfully loaded on UIO-66 with a uniform dispersion, and then the composite was aged in the air which was named A-NZVI@UIO-66. V5+ could be removed quickly and completely using A-NZVI@UIO-66 in a wider pH range except for the pH = 1 condition. The reaction between A-NZVI@UIO-66 and V5+ was an endothermic process. Freundlich model with a better-fitted value showed the adsorption of V5+ on A-NZVI@UIO-66 was multi-layer heterogeneous adsorption and the adsorbed amount of V5+ was 397.23 mg V/g NZVI. Nitrate had a competitive inhibition on V5+ removal by A-NZVI@UIO-66. Mechanisms of vanadium elimination from the aqueous phase by A-NZVI@UIO-66 included physical adsorption, reduction, and complex co-precipitation, particularly the reduction dominated. The subsistent Zr-O bond in A-NZVI@UIO-66 provided a possible double reaction path by playing an electron donor, storage, or conductor role. After acid leaching, A-NZVI@UIO-66 represented good reusability in the removal of V5+ from the practical mine sewage.
Collapse
Affiliation(s)
- Tingyi Liu
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin, 300387, PR China; School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin, 300387, PR China.
| | - Peng Wang
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin, 300387, PR China; School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin, 300387, PR China
| | - Zhong-Liang Wang
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin, 300387, PR China; School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300387, PR China.
| |
Collapse
|
6
|
Zhang X, Liu X, Peng Y, Wu X, Tan Y, Zeng Q, Song Z, Li M. Controllable shell corrosion of coated nanoscale zero valent iron induces long-term potentiation of its reactivity for uranium removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Hu YB, Ma L, Yuan B, Li XY. Confining polyacrylic acid on the surface of nanoscale zero-valent iron by aluminum hydroxide for in-situ anti-passivation. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126649. [PMID: 34329076 DOI: 10.1016/j.jhazmat.2021.126649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/30/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Aggregation and surface passivation of nanoscale zero-valent iron (NZVI) particles have limited their reactivity and application for environmental remediation. In this study, an aluminum hydroxide/polyacrylic acid (Al(OH)3/PAA) hybrid shell was homogeneously coated on the NZVI surface to overcome the limitations. PAA molecules were confined onto the NZVI surface by hydration of Al(III) cations. The Al(OH)3/PAA coating shell provided more electrostatic repulsion forces between NZVI particles to hinder the particle aggregation and preserve the NZVI reactivity. On the other hand, the surface-anchored PAA provided a thickened reactive layer for Cr(VI) reduction. Besides, XPS and TEM results showed that the surface carboxylic groups bound produced Cr(III) and Fe(III) cations and inhibited the precipitation of hydroxides on the NZVI surface. The reduced passivation layer increased the longevity of NZVI for surface reactions. As a result, the 24-h Cr(VI) reduction capacity of NZVI particles was improved from 49.4 to 92.6 mg/g with a 2 wt% (Al/Fe) Al(OH)3/PAA coating shell. Overall, this study presented a promising strategy to effectively tune the surface properties of nanoparticles and improve the feasibility of NZVI for environmental remediation.
Collapse
Affiliation(s)
- Yi-Bo Hu
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Lihang Ma
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Baoling Yuan
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Xiao-Yan Li
- Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China; Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
8
|
Zhang Q, Ma W, Peng Q, Shu X. Stabilization and Utilization of Pyrite under Light Irradiation: Discussion of Photocorrosion Resistance. ACS OMEGA 2020; 5:28693-28701. [PMID: 33195922 PMCID: PMC7658925 DOI: 10.1021/acsomega.0c03872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
The control of pyrite (FeS2) oxidation from a source is a problem of great concern on treatment of acid mine drainage (AMD). Compared with air and water, the effect of light on pyrite oxidation has not attracted enough attention. However, we found that pyrite photocorrosion in the light promoted the oxidation of pyrite. Herein, we introduce a method of coating pyrite with graphene oxide (GO), which can inhibit the oxidation and photocorrosion of pyrite while it can also degrade organic pollutants. The characterization results show that a covalent bond forms between the GO and pyrite. The stable and uniform GO coating prevents the permeation of O2 and H2O and promotes the transfer of photogenerated electrons. Moreover, it changes the conduction band (CB) and valence band (VB) levels of GO-pyrite. All of these are vital for preventing the corrosion of pyrite and promoting its photocatalytic ability. More importantly, the effect of CB and VB levels on the oxidized species was discussed. The inhibition of photocorrosion is achieved by the reaction of GO with the photoinduced h+, •OH, and •O2 -. The study provides insights for source treatment of AMD under light and the reuse of massive abandoned pyrite.
Collapse
Affiliation(s)
- Qian Zhang
- School
of Life and Environmental Science, Guilin
University of Electronic Technology, Guilin, Guangxi 541000, China
| | - Weishi Ma
- School
of Life and Environmental Science, Guilin
University of Electronic Technology, Guilin, Guangxi 541000, China
| | - Qiuyan Peng
- School
of Life and Environmental Science, Guilin
University of Electronic Technology, Guilin, Guangxi 541000, China
| | - Xiaohua Shu
- College
of Environmental Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541000, China
| |
Collapse
|