1
|
Wang T, Bachs ES, de Grooth J, de Vos WM. Advanced Oxidation Processes Coupled to Nanofiltration Membranes with Catalytic Fe 0 Nanoparticles in Symmetric and Asymmetric Polyelectrolyte Multilayers. MEMBRANES 2023; 13:388. [PMID: 37103815 PMCID: PMC10141899 DOI: 10.3390/membranes13040388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
The in situ synthesis of Fe0 particles using poly-(acrylic acid) (PAA) is an effective tool for fabricating catalytic membranes relevant to advanced oxidation processes (AOPs). Through their synthesis in polyelectrolyte multilayer-based nanofiltration membranes, it becomes possible to reject and degrade organic micropollutants simultaneously. In this work, we compare two approaches, where Fe0 nanoparticles are synthesized in or on symmetric multilayers and asymmetric multilayers. For the membrane with symmetric multilayers (4.0 bilayers of poly (diallyldimethylammonium chloride) (PDADMAC)/PAA), the in situ synthesized Fe0 increased its permeability from 1.77 L/m2/h/bar to 17.67 L/m2/h/bar when three Fe2+ binding/reducing cycles were conducted. Likely, the low chemical stability of this polyelectrolyte multilayer allows it to become damaged through the relatively harsh synthesis. However, when the in situ synthesis of Fe0 was performed on top of asymmetric multilayers, which consist of 7.0 bilayers of the very chemically stable combination of PDADMAC and poly(styrene sulfonate) (PSS), coated with PDADMAC/PAA multilayers, the negative effect of the Fe0 in situ synthesized can be mitigated, and the permeability only increased from 1.96 L/m2/h/bar to 2.38 L/m2/h/bar with three Fe2+ binding/reducing cycles. The obtained membranes with asymmetric polyelectrolyte multilayers exhibited an excellent naproxen treatment efficiency, with over 80% naproxen rejection on the permeate side and 25% naproxen removal on the feed solution side after 1 h. This work demonstrates the potential of especially asymmetric polyelectrolyte multilayers to be effectively combined with AOPs for the treatment of micropollutants (MPs).
Collapse
Affiliation(s)
| | | | | | - Wiebe M. de Vos
- MESA+ Institute of Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
| |
Collapse
|
2
|
Influence of pressure and cell design on the production of ozone and organic degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
Maldonado S, López-Vizcaíno R, Rodrigo MA, Cañizares P, Navarro V, Roa G, Barrera C, Sáez C. Scale-up of electrokinetic permeable reactive barriers for the removal of organochlorine herbicide from spiked soils. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126078. [PMID: 33992923 DOI: 10.1016/j.jhazmat.2021.126078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/30/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
This work aims to shed light on the scale-up a combined electrokinetic soil flushing process (EKSF) with permeable reactive barriers (PRB) for the treatment of soil spiked with clopyralid. To do this, remediation tests at lab (3.45 L), bench (175 L) and pilot (1400 L) scales have been carried out. The PRB selected was made of soil merged with particles of zero valent iron (ZVI) and granular activated carbon (GAC). Results show that PRB-EKSF involved electrokinetic transport and dehalogenation as the main mechanisms, while adsorption on GAC was not as relevant as initially expected. Clopyralid was not detected in the electrolyte wells and only in the pilot scale, significant amounts of clopyralid remained in the soil after 600 h of operation. Picolinic acid was the main dehalogenated product detected in the soil after treatment and mobilized by electro-osmosis, mostly to the cathodic well. The transport of volatile compounds into the atmosphere was promoted at pilot scale because of the larger soil surface exposed to the atmosphere and the electrical heating caused by ohmic losses and the larger interelectrode gap.
Collapse
Affiliation(s)
- S Maldonado
- Department of Environmental Chemistry, College of Chemistry, Autonomous University of the State of Mexico, 50120 Toluca de Lerdo, Mexico
| | - R López-Vizcaíno
- Geo-Environmental Group, Universidad de Castilla-La Mancha, Avda. Camilo José Cela s/n, Ciudad Real 13071, Spain
| | - M A Rodrigo
- Department of Chemical Engineering, College of Chemical Sciences and Technologies, University of Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| | - P Cañizares
- Department of Chemical Engineering, College of Chemical Sciences and Technologies, University of Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| | - V Navarro
- Geo-Environmental Group, Universidad de Castilla-La Mancha, Avda. Camilo José Cela s/n, Ciudad Real 13071, Spain
| | - G Roa
- Department of Environmental Chemistry, College of Chemistry, Autonomous University of the State of Mexico, 50120 Toluca de Lerdo, Mexico
| | - C Barrera
- Department of Environmental Chemistry, College of Chemistry, Autonomous University of the State of Mexico, 50120 Toluca de Lerdo, Mexico
| | - C Sáez
- Department of Chemical Engineering, College of Chemical Sciences and Technologies, University of Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain.
| |
Collapse
|
4
|
Escalona-Durán F, Muñoz-Morales M, Souza FL, Sáez C, Cañizares P, Martínez-Huitle CA, Rodrigo MA. Cobalt mediated electro-scrubbers for the degradation of gaseous perchloroethylene. CHEMOSPHERE 2021; 279:130525. [PMID: 33866102 DOI: 10.1016/j.chemosphere.2021.130525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
This work focuses on the treatment of gaseous perchloroethylene (PCE) using electro-scrubbing with diamond electrodes and cobalt mediators. PCE was obtained by direct desorption from an aqueous solution containing 150 mg L-1, trying to a real pollution case. The electro-scrubber consisted of a packed absorption column connected with an undivided electrochemical cell. Diamond anodes supported on two different substrates (tantalum and silicon) were used and the results indicated that Ta/BDD was more successful in the production of Co (III) species and in the degradation of PCE. Three experimental systems were studied for comparison purposes: absorbent free of Co (III) precursors, absorbent containing Co (III) precursors, and absorbent containing Co (III) precursors undergoing previous electrolysis to the electro-scrubbing to facilitate the accumulation of oxidants. The most successful option was the last, confirming the important role of mediated electrochemical processes in the degradation of PCE. Trichloroacetic acid (TCA) and carbon tetrachloride (CCl4) were found as the primary reaction products and ethyl chloroacetate esters were also identified. A comprehensive mechanism of the processes happening inside electro-scrubber is proposed.
Collapse
Affiliation(s)
- F Escalona-Durán
- Institute of Chemistry, Environmental and Applied Electrochemical Laboratory, Federal University of Rio Grande Do Norte, Lagoa Nova, CEP 59078-970, Natal, RN, Brazil
| | - M Muñoz-Morales
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, University of Castilla La Mancha, Campus Universitario S/n, 13071, Ciudad Real, Spain
| | - F L Souza
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, University of Castilla La Mancha, Campus Universitario S/n, 13071, Ciudad Real, Spain
| | - C Sáez
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, University of Castilla La Mancha, Campus Universitario S/n, 13071, Ciudad Real, Spain
| | - P Cañizares
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, University of Castilla La Mancha, Campus Universitario S/n, 13071, Ciudad Real, Spain
| | - C A Martínez-Huitle
- Institute of Chemistry, Environmental and Applied Electrochemical Laboratory, Federal University of Rio Grande Do Norte, Lagoa Nova, CEP 59078-970, Natal, RN, Brazil
| | - M A Rodrigo
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, University of Castilla La Mancha, Campus Universitario S/n, 13071, Ciudad Real, Spain.
| |
Collapse
|
5
|
Goulart LA, Santos GOS, Eguiluz KIB, Salazar-Banda GR, Lanza MRV, Saez C, Rodrigo MA. Towards a higher photostability of ZnO photo-electrocatalysts in the degradation of organics by using MMO substrates. CHEMOSPHERE 2021; 271:129451. [PMID: 33450425 DOI: 10.1016/j.chemosphere.2020.129451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
In this work, it is proposed a novel strategy to increase the photostability of the ZnO photoelectrocatalyst under prolonged light irradiation, without the addition or deposition of metals and/or semiconductor oxides during their synthesis. This strategy is based on the use of a mixed metal oxide (MMO-Ru0.3Ti0.7O2) coating as the substrate for the electrodeposition of ZnO. To assess it, the electrodeposition of ZnO films on Ti and Ti/MMO substrates and the photoelectrocatalytic activity of these materials for the degradation of the herbicide clopyralid were studied. The results showed that the substrate directly influenced the photo-stability of the ZnO film. Under the incidence of UV light and polarization, the novel Ti/MMO/ZnO electrode showed greater photocurrent stability as compared to Ti/ZnO, which is a very important outcome because the behavior of these electrodes was similar when compared in terms of the degradation of clopyralid. Single electrolysis was not able to degrade efficiently clopyralid at the different potentials studied. However, the irradiation of UV light on the polarized surface of the Ti/ZnO and Ti/MMO/ZnO electrodes increased markedly the degradation rate of clopyralid. A synergistic effect was observed between light and electrode polarization, since the rate of degradation of clopyralid was twice as high in photoelectrocatalysis (PhEC) than in photocatalysis (PhC) and different intermediates were formed. From these results, mechanisms of degradation of clopyralid for the PhC and PhEC systems with the Ti/ZnO and Ti/MMO/ZnO electrodes were presented. Therefore, the Ti/MMO/ZnO electrode could be a cheap and simple alternative to be applied in the efficient photodegradation of organic pollutants, presenting the great advantage of having a facile synthesis and high capacity to work at relatively low potentials.
Collapse
Affiliation(s)
- Lorena A Goulart
- Institute of Chemistry - São Carlos, University of São Paulo, P.O. Box 780, CEP-13560-970, São Carlos, SP, Brazil; Department of Chemical Engineering, Universidad de Castilla-La Mancha, Campus Universitario S/n, 13071, Ciudad Real, Spain
| | - Géssica O S Santos
- Processes Engineering Post-graduation - PEP, Universidade Tiradentes, 49037-580, Aracaju, SE, Brazil; Department of Chemical Engineering, Universidad de Castilla-La Mancha, Campus Universitario S/n, 13071, Ciudad Real, Spain
| | - Katlin I B Eguiluz
- Processes Engineering Post-graduation - PEP, Universidade Tiradentes, 49037-580, Aracaju, SE, Brazil; Electrochemistry and Nanotechnology Laboratory, Research and Technology Institute (ITP), Aracaju, SE, Brazil
| | - Giancarlo R Salazar-Banda
- Processes Engineering Post-graduation - PEP, Universidade Tiradentes, 49037-580, Aracaju, SE, Brazil; Electrochemistry and Nanotechnology Laboratory, Research and Technology Institute (ITP), Aracaju, SE, Brazil
| | - Marcos R V Lanza
- Institute of Chemistry - São Carlos, University of São Paulo, P.O. Box 780, CEP-13560-970, São Carlos, SP, Brazil.
| | - Cristina Saez
- Department of Chemical Engineering, Universidad de Castilla-La Mancha, Campus Universitario S/n, 13071, Ciudad Real, Spain
| | - Manuel A Rodrigo
- Department of Chemical Engineering, Universidad de Castilla-La Mancha, Campus Universitario S/n, 13071, Ciudad Real, Spain.
| |
Collapse
|
6
|
Henrique JM, Monteiro MK, Cardozo JC, Martínez-Huitle CA, da Silva DR, dos Santos EV. Integrated-electrochemical approaches powered by photovoltaic energy for detecting and treating paracetamol in water. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114734] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Ecotoxicological Evaluation of Methiocarb Electrochemical Oxidation. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10217435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The ecotoxicity of methiocarb aqueous solutions treated by electrochemical oxidation was evaluated utilizing the model organism Daphnia magna. The electrodegradation experiments were performed using a boron-doped diamond anode and the influence of the applied current density and the supporting electrolyte (NaCl or Na2SO4) on methiocarb degradation and toxicity reduction were assessed. Electrooxidation treatment presented a remarkable efficiency in methiocarb complete degradation and a high potential for reducing the undesirable ecological effects of this priority substance. The reaction rate followed first-order kinetics in both electrolytes, being more favorable in a chloride medium. In fact, the presence of chloride increased the methiocarb removal rate and toxicity reduction and favored nitrogen removal. A 200× reduction in the acute toxicity towards D. magna, from 370.9 to 1.6 toxic units, was observed for the solutions prepared with NaCl after 5 h treatment at 100 A m−2. An increase in the applied current density led to an increase in toxicity towards D. magna of the treated solutions. At optimized experimental conditions, electrooxidation offers a suitable solution for the treatment and elimination of undesirable ecological effects of methiocarb contaminated industrial or agricultural wastewaters, ensuring that this highly hazardous pesticide is not transferred to the aquatic environment.
Collapse
|
8
|
Zhu L, Ji J, Liu J, Mine S, Matsuoka M, Zhang J, Xing M. Designing 3D‐MoS
2
Sponge as Excellent Cocatalysts in Advanced Oxidation Processes for Pollutant Control. Angew Chem Int Ed Engl 2020; 59:13968-13976. [DOI: 10.1002/anie.202006059] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Lingli Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Jiahui Ji
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Jun Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Shinya Mine
- Department of Applied Chemistry Osaka Prefecture University Gakuen-Cho 1-1 Sakai Osaka 599-8531 Japan
| | - Masaya Matsuoka
- Department of Applied Chemistry Osaka Prefecture University Gakuen-Cho 1-1 Sakai Osaka 599-8531 Japan
| | - Jinlong Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Mingyang Xing
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
9
|
Zhu L, Ji J, Liu J, Mine S, Matsuoka M, Zhang J, Xing M. Designing 3D‐MoS
2
Sponge as Excellent Cocatalysts in Advanced Oxidation Processes for Pollutant Control. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006059] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lingli Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Jiahui Ji
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Jun Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Shinya Mine
- Department of Applied Chemistry Osaka Prefecture University Gakuen-Cho 1-1 Sakai Osaka 599-8531 Japan
| | - Masaya Matsuoka
- Department of Applied Chemistry Osaka Prefecture University Gakuen-Cho 1-1 Sakai Osaka 599-8531 Japan
| | - Jinlong Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Mingyang Xing
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|