1
|
Su R, Qiu Y, Jin Z, Cui Y, Kong X, Peng F, Zhao Y, Ma W. Electroactive RuPt NPs programmed dual-channel electrochemical sensor for methyl mercaptan monitoring. Talanta 2025; 283:127137. [PMID: 39515050 DOI: 10.1016/j.talanta.2024.127137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/23/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The accurate and sensitive detection of methyl mercaptan (CH3SH) was of great significance for food corruption monitoring. Electroactive labels engineered electrochemical sensors possessed tailorable electrochemical responses, and showed potential prospects for CH3SH monitoring. In comparison to a single electrochemical signal, electroactive nanocomposites with multiple electrochemical responses not only provided multi-channel sensing signals for accurate detection, but also increased the peak intensity for sensitive detection. Herein, RuPt NPs were designed and explored to possess two independent and non-interfering electrochemical oxidation peaks at 0.75 V and -0.73 V. The formation of metal-SH covalent bonds between electroactive sites of RuPt NPs and CH3SH induced the changes of two electrochemical oxidation peaks. By utilizing the sum intensity of two electrochemical peaks as detection signal, a dual-channel electrochemical sensor was established for CH3SH detection in the range of 1 μM-1 mM, and had a low limit of detection (LOD) of 300 nM. This work gave a new insight into promoting more electroactive nanocomposites with multiple signals for accurate and sensitive electrochemical detection applications.
Collapse
Affiliation(s)
- Rui Su
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Food Science and Technology, State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yuruo Qiu
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Food Science and Technology, State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Zhao Jin
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yuqing Cui
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiangqian Kong
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Fang Peng
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yuan Zhao
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Wei Ma
- School of Food Science and Technology, State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
2
|
Khattab TA, Ahmed HM, Zhou Y, Ding X, Abdelrahman MS, Hassabo AG. Development of Betalain-immobilized polylactic acid nanofibers as a green and sustainable sensor for toxic ammonia. Int J Biol Macromol 2024; 294:139343. [PMID: 39743107 DOI: 10.1016/j.ijbiomac.2024.139343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/15/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Ammonia has been an important industrial colorless agent. Exposure to gaseous ammonia results in organ damage or even death. Herein, an environmentally friendly colorimetric detector for aqueous and gaseous ammonia was prepared utilizing vapochromic polylactic acid nanofibers. Betalain (BTN) has been reported as a natural probe that can be extracted from the beetroot plant (Beta vulgaris L.). Mordant (M)/BTN coordinating complex nanoparticles were produced in situ by depositing the Betalain probe onto polylactic acid (PLA) nanofibers. The colorimetric change of the Betalain-dyed PLA nanofibers from red to yellow when exposed to ammonia was examined using both absorbance spectra and coloration parameters. The PLA membrane displayed a detection limit of 5-400 ppm. Upon exposure to ammonia, the absorbance spectra of the nanofibrous membrane showed a hypsochromic shift, moving from 572 nm to 402 nm with an isosbestic wavelength of 466 nm. Scanning electron microscopy (SEM) analysis demonstrated that the nanofibrous membrane had diameters of 100-350 nm. Transmission electron microscopy (TEM) analysis of the M/BTN particles revealed diameters of 10-13 nm. After immobilizing the M/BTN nanoparticles onto the nanofibrous membrane, no substantial variations in the bend length and air permeability were observed. The colorfastness of the Betalain-dyed nanofibrous membrane showed satisfactory results.
Collapse
Affiliation(s)
- Tawfik A Khattab
- Dyeing, Printing and Auxiliaries Department, Textile Research and Technology Institute, National Research Centre, Cairo 12622, Egypt.
| | - Hend M Ahmed
- Dyeing, Printing and Auxiliaries Department, Textile Research and Technology Institute, National Research Centre, Cairo 12622, Egypt
| | - Yang Zhou
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Xianting Ding
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Meram S Abdelrahman
- Dyeing, Printing and Auxiliaries Department, Textile Research and Technology Institute, National Research Centre, Cairo 12622, Egypt
| | - Ahmed G Hassabo
- National Research Centre (Scopus Affiliation ID 60014618), Textile Industries Research Division, Pre-treatment and Finishing of Cellulose Based Textiles Department, 33 El-Buhouth St., (former El-Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| |
Collapse
|
3
|
Gao G, Li M, Qi X, Cao Y, Zhang W, Ma Y, Tang B. A Highly Selective Ammonia Ratiometric Fluorescence Sensor Based on Multifunctional Metal-Organic Framework Platform with Rich Brønsted Acidic Metal Clusters. Anal Chem 2024; 96:19706-19713. [PMID: 39585964 DOI: 10.1021/acs.analchem.4c04858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Ammonia is a critical chemical in industry and our daily life, but its corrosiveness and toxicity also require enough attention. With the increasing pursuit of beauty, the safety of cosmetics has aroused widespread concern. Aqueous ammonia has been widely used as a universal additive in cosmetics, especially in different types of hair dye products. However, a high concentration of ammonia is toxic to human beings. In addition, improper treatment and discharge of substances with high ammonia content can also cause pollution of human domestic water. Therefore, it is of great significance to accurately monitor the level of aqueous ammonia in relative cosmetics for safe beauty and in our domestic water for daily health. In this work, a highly selective and sensitive ratiometric fluorescent sensor UiO-66-NH2@O170 was carefully designed to quickly and accurately detect the concentration of aqueous ammonia in different brands of hair dyes and human domestic water. The detection limit was as low as 83.5 nM, and the recovery rate ranged from 98.2 to 102.9%. In addition, while evaluating the actual application performance of the sensor, a novel detection mechanism based on the rich Brønsted acidic response sites on the metal clusters of the fluorescent MOF materials was demonstrated here.
Collapse
Affiliation(s)
- Guorui Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Mengnan Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Xin Qi
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Yanyu Cao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Wanting Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Yu Ma
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
- Laoshan Laboratory, Qingdao 266200, P. R. China
| |
Collapse
|
4
|
Wang G, Zhou G, Zhang Q, He D, Zhao C, Suo H. Sensitive Electrochemical Detection of Ammonia Nitrogen via a Platinum-Zinc Alloy Nanoflower-Modified Carbon Cloth Electrode. SENSORS (BASEL, SWITZERLAND) 2024; 24:915. [PMID: 38339633 PMCID: PMC10857239 DOI: 10.3390/s24030915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
As a common water pollutant, ammonia nitrogen poses a serious risk to human health and the ecological environment. Therefore, it is important to develop a simple and efficient sensing scheme to achieve accurate detection of ammonia nitrogen. Here, we report a simple fabrication electrode for the electrochemical synthesis of platinum-zinc alloy nanoflowers (PtZn NFs) on the surface of carbon cloth. The obtained PtZn NFs/CC electrode was applied to the electrochemical detection of ammonia nitrogen by differential pulse voltammetry (DPV). The enhanced electrocatalytic activity of PtZn NFs and the larger electrochemical active area of the self-supported PtZn NFs/CC electrode are conducive to improving the ammonia nitrogen detection performance of the sensitive electrode. Under optimized conditions, the PtZn NFs/CC electrode exhibits excellent electrochemical performance with a wide linear range from 1 to 1000 µM, a sensitivity of 21.5 μA μM-1 (from 1 μM to 100 μM) and a lower detection limit of 27.81 nM, respectively. PtZn NFs/CC electrodes show excellent stability and anti-interference. In addition, the fabricated electrochemical sensor can be used to detect ammonia nitrogen in tap water and lake water samples.
Collapse
Affiliation(s)
| | | | | | | | - Chun Zhao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China; (G.W.); (G.Z.); (Q.Z.); (D.H.); (H.S.)
| | | |
Collapse
|
5
|
Ding L, Xie Z, Yu S, Wang W, Terekhov AY, Canfield BK, Capuano CB, Keane A, Ayers K, Cullen DA, Zhang FY. Electrochemically Grown Ultrathin Platinum Nanosheet Electrodes with Ultralow Loadings for Energy-Saving and Industrial-Level Hydrogen Evolution. NANO-MICRO LETTERS 2023; 15:144. [PMID: 37269447 PMCID: PMC10239421 DOI: 10.1007/s40820-023-01117-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/26/2023] [Indexed: 06/05/2023]
Abstract
Nanostructured catalyst-integrated electrodes with remarkably reduced catalyst loadings, high catalyst utilization and facile fabrication are urgently needed to enable cost-effective, green hydrogen production via proton exchange membrane electrolyzer cells (PEMECs). Herein, benefitting from a thin seeding layer, bottom-up grown ultrathin Pt nanosheets (Pt-NSs) were first deposited on thin Ti substrates for PEMECs via a fast, template- and surfactant-free electrochemical growth process at room temperature, showing highly uniform Pt surface coverage with ultralow loadings and vertically well-aligned nanosheet morphologies. Combined with an anode-only Nafion 117 catalyst-coated membrane (CCM), the Pt-NS electrode with an ultralow loading of 0.015 mgPt cm-2 demonstrates superior cell performance to the commercial CCM (3.0 mgPt cm-2), achieving 99.5% catalyst savings and more than 237-fold higher catalyst utilization. The remarkable performance with high catalyst utilization is mainly due to the vertically well-aligned ultrathin nanosheets with good surface coverage exposing abundant active sites for the electrochemical reaction. Overall, this study not only paves a new way for optimizing the catalyst uniformity and surface coverage with ultralow loadings but also provides new insights into nanostructured electrode design and facile fabrication for highly efficient and low-cost PEMECs and other energy storage/conversion devices.
Collapse
Affiliation(s)
- Lei Ding
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | - Zhiqiang Xie
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | - Shule Yu
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | - Weitian Wang
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | - Alexander Y Terekhov
- Center for Laser Applications, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | - Brian K Canfield
- Center for Laser Applications, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | | | - Alex Keane
- Nel Hydrogen, Wallingford, CT, 06492, USA
| | | | - David A Cullen
- Oak Ridge National Laboratory, Center for Nanophase Materials Sciences, Oak Ridge, TN, 37831, USA
| | - Feng-Yuan Zhang
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA.
| |
Collapse
|
6
|
Zhou Y, Wang J. Detection and removal technologies for ammonium and antibiotics in agricultural wastewater: Recent advances and prospective. CHEMOSPHERE 2023; 334:139027. [PMID: 37236277 DOI: 10.1016/j.chemosphere.2023.139027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
With the extensive development of industrial livestock and poultry production, a considerable part of agricultural wastewater containing tremendous ammonium and antibiotics have been indiscriminately released into the aquatic systems, causing serious harms to ecosystem and human health. In this review, ammonium detection technologies, including spectroscopy and fluorescence methods, and sensors were systematically summarized. Antibiotics analysis methodologies were critically reviewed, including chromatographic methods coupled with mass spectrometry, electrochemical sensors, fluorescence sensors, and biosensors. Current progress in remediation methods for ammonium removal were discussed and analyzed, including chemical precipitation, breakpoint chlorination, air stripping, reverse osmosis, adsorption, advanced oxidation processes (AOPs), and biological methods. Antibiotics removal approaches were comprehensively reviewed, including physical, AOPs, and biological processes. Furthermore, the simultaneous removal strategies for ammonium and antibiotics were reviewed and discussed, including physical adsorption processes, AOPs, biological processes. Finally, research gaps and the future perspectives were discussed. Through conducting comprehensive review, future research priorities include: (1) to improve the stabilities and adaptabilities of detection and analysis techniques for ammonium and antibiotics, (2) to develop innovative, efficient, and low cost approaches for simultaneous removal of ammonium and antibiotics, and (3) to explore the underlying mechanisms that governs the simultaneous removal of ammonium and antibiotics. This review could facilitate the evolution of innovative and efficient technologies for ammonium and antibiotics treatment in agricultural wastewater.
Collapse
Affiliation(s)
- Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China; Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
7
|
Zhao H, Li Y, Cong A, Tong J, Bian C. Ultramicro Interdigitated Array Electrode Chip with Optimized Construction for Detection of Ammonia Nitrogen in Water. MICROMACHINES 2023; 14:629. [PMID: 36985036 PMCID: PMC10059921 DOI: 10.3390/mi14030629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Ammonia nitrogen is a common contaminant in water and its determination is important for environmental protection. In this paper, an electrochemical sensor based on an ultramicro interdigitated array electrode (UIAE) chip with optimized construction was fabricated with Micro-Electro-Mechanical System (MEMS) technology and developed to realize the detection of ammonia nitrogen in water. The effects of spacing-to-width ratio and width of the working electrode on UIAE's electrochemical characteristics and its ammonia nitrogen detection performance were studied by finite element simulation and experiment. The results demonstrated that the smaller the spacing-to-width ratio, the stronger generation-collection effect, and the smaller the electrode width, the stronger the edge effect, which led to an easier steady-state reach, a higher response current, and better ammonia nitrogen determination performance. The fabricated UIAE chip with optimized construction showed the linear detection range of 0.15 mg/L~2.0 mg/L (calculated as N), the sensitivity of 0.4181 μA·L·mg-1, and good anti-interference performance, as well as a long lifetime. UIAE based on bare Pt was successfully applied to ammonia nitrogen detection in water by optimizing structure, which might broaden the methods of ammonia nitrogen detection in water.
Collapse
Affiliation(s)
- Haifei Zhao
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (H.Z.); (Y.L.); (A.C.); (J.T.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Li
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (H.Z.); (Y.L.); (A.C.); (J.T.)
| | - Aobo Cong
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (H.Z.); (Y.L.); (A.C.); (J.T.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhua Tong
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (H.Z.); (Y.L.); (A.C.); (J.T.)
| | - Chao Bian
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (H.Z.); (Y.L.); (A.C.); (J.T.)
| |
Collapse
|
8
|
Zhang S, Hu J, Li SFY, Lu H, Wang G, Lu C, Sarwar MT, Tang A, Yang H. Electrochemical sensing mechanism of ammonium ions over an Ag/TiO 2 composite electrode modified by hematite. Chem Commun (Camb) 2023; 59:2636-2639. [PMID: 36779275 DOI: 10.1039/d3cc00240c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Here, we demonstrate a new electrochemical sensing mechanism of ammonium ions (NH4+) involving a two-electron oxygen reduction reaction (ORR) and a hydrazine reaction. The NH4+ are electrooxidized to hydrazine by H2O2 derived from the ORR over a self-supporting Ag/TiO2 nanotube array composite electrode modified by hematite (Ag/Fe2O3/TNTs). The Ag/Fe2O3/TNT sensor exhibits a high sensitivity of 1876 µA mM-1 cm-2 with a detection limit of 0.18 µM under non-alkaline conditions, a short response time of 3 s, good reproducibility, and fine selectivity among various interferents, and is also successfully used in real water bodies to display high accuracy. Furthermore, this new mechanism has a certain universality in a range of Ag (main catalyst)/transition metal oxide (cocatalyst)/TNT sensing systems. This work offers a new design basis for the urgently needed electrochemical ammonia nitrogen sensors.
Collapse
Affiliation(s)
- Shilin Zhang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, P. R. China. .,College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.,Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China.,Department of Chemistry National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.,NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Jinqing Hu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Sam Fong Yau Li
- Department of Chemistry National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.,NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Hongxiu Lu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Gang Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Chang Lu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Muhammad Tariq Sarwar
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, P. R. China. .,Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China.,Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Aidong Tang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, P. R. China. .,College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.,Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China.,Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, P. R. China. .,Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China.,Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan 430074, P. R. China
| |
Collapse
|
9
|
Wang Y, Zhu G, Wang D, Huang M, Yang J, Liu J. One-step synthesis of ultrafine silver-decorated polyaniline nanowire arrays for trace analysis of sulfamethoxazole. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Zhang M, Chen J, Mao X, He Y, Li R, Wang M, Wang Y, He L, Yuan M, Feng X, Hu J, Wu G. Fluorescent nonwoven fabric with synergistic dual fluorescence emission for visible and selective ammonia gas detection. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Zhang Y, Lin T, Shen Y, Li H. A High-Performance Self-Supporting Electrochemical Biosensor to Detect Aflatoxin B1. BIOSENSORS 2022; 12:bios12100897. [PMID: 36291034 PMCID: PMC9599888 DOI: 10.3390/bios12100897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 05/11/2023]
Abstract
High-performance electrochemical biosensors for the rapid detection of aflatoxin B1 (AFB1) are urgently required in the food industry. Herein, a multi-scaled electrochemical biosensor was fabricated by assembling carboxylated polystyrene nanospheres, an aptamer and horseradish peroxidase into a free-standing carbon nanofiber/carbon felt support. The resulting electrochemical biosensor possessed an exceptional performance, owing to the unique structures as well as the synergistic effects of the components. The 3D porous carbon nanofiber/carbon felt support served as an ideal substrate, owing to the excellent conductivity and facile diffusion of the reactants. The integration of carboxylated polystyrene nanospheres with horseradish peroxidase was employed as a signal amplification probe to enhance the electrochemical responses via catalyzing the decomposition of hydrogen peroxide. With the aid of the aptamer, the prepared sensors could quantitatively detect AFB1 in wine and soy sauce samples via differential pulse voltammetry. The recovery rates of AFB1 in the samples were between 87.53% and 106.71%. The limit of detection of the biosensors was 0.016 pg mL-1. The electrochemical biosensors also had excellent sensitivity, reproducibility, specificity and stability. The synthetic strategy reported in this work could pave a new route to fabricate high-performance electrochemical biosensors for the detection of mycotoxins.
Collapse
Affiliation(s)
- Yunfei Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Tingting Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yi Shen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
- Sino-Singapore International Joint Research Institute, Guangzhou Knowledge City, Guangzhou 510663, China
- Correspondence:
| | - Hongying Li
- Institute of High-Performance Computing, Agency for Science, Technology and Research, Singapore 138632, Singapore
| |
Collapse
|
12
|
Korent A, Trafela Š, Soderžnik KŽ, Samardžija Z, Šturm S, Rožman KŽ. Au-decorated electrochemically synthesised polyaniline-based sensory platform for amperometric detection of aqueous ammonia in biological fluids. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Wang G, Gao J, Sun B, He D, Zhao C, Suo H. Enhanced ammonia sensitivity electrochemical sensors based on PtCu alloy nanoparticles in-situ synthesized on carbon cloth electrode. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
14
|
|
15
|
Wireless Volatile Organic Compound Detection for Restricted Internet of Things Environments Based on Cataluminescence Sensors. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10050179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cataluminescence-based sensors do not require external light sources and complex circuitry, which enables them to avoid light scattering with high sensitivity, selectivity, and widely linear range. In this study, a wireless sensor system based on hierarchical CuO microspheres assembled from nano-sheets was constructed for Volatile Organic Compound (VOC) online detection. Through sensor characteristics and data process analysis, the results showed that the luminous sensor system has good luminous characteristics, including the intensity of visible light, high signal/noise (S/N) values, and very short response and recovery times. Different VOC concentration values can be detected on multiple wavelength channels and different Cataluminescence signal spectra separations can process multiple sets of Cataluminescence data combinations concurrently. This study also briefly studied the mechanism action of the Cataluminescence sensor, which can specifically be used for VOC detecting.
Collapse
|
16
|
Zhang L, Ding J, Cui G, Zhao C, Suo H, He D. A novel electrochemical ammonia–nitrogen sensor based on carbon cloth-supported hierarchical Pt nanosheets-Ni(OH)2 nanosheets nanocomposites. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
17
|
Srikhao N, Kasemsiri P, Lorwanishpaisarn N, Okhawilai M. Green synthesis of silver nanoparticles using sugarcane leaves extract for colorimetric detection of ammonia and hydrogen peroxide. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-020-04354-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Liu Q, Yu H, Zeng F, Li X, Sun J, Hu X, Pan Q, Li C, Lin H, min Su Z. Polyaniline as interface layers promoting the in-situ growth of zeolite imidazole skeleton on regenerated cellulose aerogel for efficient removal of tetracycline. J Colloid Interface Sci 2020; 579:119-127. [DOI: 10.1016/j.jcis.2020.06.056] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 01/07/2023]
|