1
|
Zheng R, Wang B, Wang J, Cheng X, Ye Q. Absorption, transportation, residual distribution of chiral 14C-dufulin in garlics and metabolism of its racemate. Food Chem 2025; 463:141151. [PMID: 39255711 DOI: 10.1016/j.foodchem.2024.141151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
Dufulin is a novel chiral plant antiviral agent. In this study, we investigated the uptake, translocation and accumulation of 14C-dufulin stereoisomers in different tissues of garlic via leaf introduction and root uptake. The behavior of dufulin enantiomers in plants is not stereoselective, and dufulin is more likely to be absorbed by leaves than by roots. The metabolites of 14C-dufulin with high specific activity in garlic were qualitatively and quantitatively analyzed by HPLC-QTOF-MS, and the metabolic pathway involved was elucidated. In the leaf and bulb, dufulin underwent phase I and phase II metabolism and produced four metabolites. The ratios and concentrations of these four metabolites in the bulb, but not in the leaf, met the residue criterion. Overall, our results provide relatively accurate predictions for the risk assessment of dufulin, which will help guide its rational use and ensure its ecological safety and human health.
Collapse
Affiliation(s)
- Ruonan Zheng
- Zhejiang Key Laboratory of Drug Prevention and Control Technology, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310051, Zhejiang, China.
| | - Binjie Wang
- Zhejiang Key Laboratory of Drug Prevention and Control Technology, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310051, Zhejiang, China.
| | - Jiye Wang
- Zhejiang Key Laboratory of Drug Prevention and Control Technology, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310051, Zhejiang, China.
| | - Xi Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China.
| | - Qingfu Ye
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Sevgen S, Kara G, Kir AS, Şahin A, Boyaci E. A critical review of bioanalytical and clinical applications of solid phase microextraction. J Pharm Biomed Anal 2025; 252:116487. [PMID: 39378761 DOI: 10.1016/j.jpba.2024.116487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/07/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024]
Abstract
Studying the functions, mechanisms, and effects of drugs and other exogenous compounds on biological systems, together with investigations performed to understand biosystems better, comprises one of the most fascinating areas of research. Although classical sample preparation techniques are dominantly used to infer the relevant information from the investigated system, they fail to meet various imperative requirements, such as being environmentally friendly, applicable in-vivo, and compatible with online analysis. As a chameleon in the analytical toolbox, solid phase microextraction (SPME) is one of the best tools available for studying biological systems in unconventional ways. In this review, SPME is spotlighted, and its capability for bioanalytical applications, including drug analysis, untargeted and targeted metabolomics, in-vivo and clinical studies, is scrutinized based on studies reported in the past five years. In addition, novel extractive phases and instrumental coupling strategies developed to serve bioanalytical research are discussed to give the perspective for state-of-the-art and future developments. The literature assessment showed that SPME could act as a critical tool to investigate in-vivo biological systems and provide information about the elusive portion of the metabolome. Moreover, recently introduced miniaturized SPME probes further improved the low-invasive nature of the sampling and enabled sampling even from a single cell. The coupling of SPME directly to mass spectrometry significantly reduced the total analytical workflow and became one of the promising tools suitable for fast diagnostic purposes and drug analysis. The numerous applications and advancements reported in bioanalysis using SPME show that it will continue to be an indispensable technique in the future.
Collapse
Affiliation(s)
- Sılanur Sevgen
- Department of Chemistry, Middle East Technical University, Ankara 06800, Türkiye
| | - Gökşin Kara
- Department of Chemistry, Middle East Technical University, Ankara 06800, Türkiye
| | - Aysegul Seyma Kir
- Department of Chemistry, Middle East Technical University, Ankara 06800, Türkiye
| | - Alper Şahin
- Department of Chemistry, Middle East Technical University, Ankara 06800, Türkiye
| | - Ezel Boyaci
- Department of Chemistry, Middle East Technical University, Ankara 06800, Türkiye.
| |
Collapse
|
3
|
Zheng J, Chen C, Huang Y, Fang S, Guo P, Liu S, Ouyang G. A fast solid-phase microextraction scheme for in vivo monitoring of bio-accumulation and bio-transformation of arbidol in living plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177175. [PMID: 39461518 DOI: 10.1016/j.scitotenv.2024.177175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Large quantity of the antiviral drug arbidol is used for resisting virus infection like the Corona Virus Disease 2019 and influenza, resulting in unanticipated environmental pollution. Herein, to investigate the environmental risks of the unanticipated arbidol contamination, a novel in vivo sampling probe was developed based on a bromo-substituted porous organic polymer (Br-POP) and then adopted for tracking the bio-accumulation and bio-transformation of arbidol in living plants by coupling with a nano-electrospray ionization fourier-transform ion cyclotron resonance mass spectrometry (Nano-ESI-FT-ICR-MS) method. The established method showed good extraction performance towards arbidol with limit of detection (LOD) of 0.48 ng g-1, and relative standard deviation (RSD) of single-and multiple- probe of 2.2 and 14 %. Owing to the interactions between the Br-POP and the target analytes, as well as the fast analysis process of Nano-ESI-FT-ICR-MS, <6 min was cost for total sampling and analysis duration, achieving hourly tracking of arbidol and its metabolites in this work. During 21-d in vivo tracking, the concentration of arbidol in living plant stems increased rapidly within 6 h and peaked at 413.93 ± 47.09 ng g-1. Meanwhile, it was found that dissolved organic matters (DOM) had significant effect on arbidol behaviors in living plants, resulting in a decrease of the maximum concentration of arbidol in plant stems (152.70 ± 42.44 ng g-1) and the change of dominant metabolite of arbidol that the S-oxidation rather than N-demethylation product of arbidol was dominant with DOM participation. Additionally, the plant root secretion was found to be significantly altered by arbidol exposure. To summarized, the combination of in vivo SPME and the FT-ICR-MS analysis provide new and important information regarding arbidol contamination and related alternation of plant root metabolism.
Collapse
Affiliation(s)
- Jiating Zheng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Chao Chen
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Yiquan Huang
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Shuting Fang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Pengran Guo
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Shuqin Liu
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| | - Gangfeng Ouyang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| |
Collapse
|
4
|
Zhang Y, Zhao A, Mu L, Teng X, Ma Y, Li R, Lei K, Ji L, Wang X, Li P. First Clarification of the Involvement of Glycosyltransferase MdUGT73CG22 in the Detoxification Metabolism of Nicosulfuron in Apple. PLANTS (BASEL, SWITZERLAND) 2024; 13:1171. [PMID: 38732386 PMCID: PMC11085047 DOI: 10.3390/plants13091171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024]
Abstract
Nicosulfuron, an acetolactate synthase (ALS) inhibitor herbicide, is a broad-spectrum and highly effective post-emergence herbicide. Glycosyltransferases (GTs) are widely found in organisms and transfer sugar molecules from donors to acceptors to form glycosides or sugar esters, thereby altering the physicochemical properties of the acceptor molecule, such as participating in detoxification. In this study, nine glycosyltransferases in group D of the apple glycosyltransferase family I were predicted to possibly be involved in the detoxification metabolism of ALS-inhibiting herbicides based on gene chip data published online. In order to confirm this, we analysed whether the expression of the nine glycosyltransferase genes in group D was induced by the previously reported ALS-inhibiting herbicides by real-time PCR (polymerase chain reaction). It was found that the ALS-inhibiting herbicide nicosulfuron significantly increased the expression of the MdUGT73CG22 gene in group D. Further investigation of the mechanism of action revealed that the apple glycosyltransferase MdUGT73CG22 glycosylated and modified nicosulfuron both in vivo and ex vivo to form nicosulfuron glycosides, which were involved in detoxification metabolism. In conclusion, a new glycosyltransferase, MdUGT73CG22, was identified for the first time in this study, which can glycosylate modifications of the ALS-inhibiting herbicide nicosulfuron and may be involved in the detoxification process in plants, which can help to further improve the knowledge of the non-targeted mechanism of herbicides.
Collapse
Affiliation(s)
- Yuefeng Zhang
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China; (Y.Z.); (A.Z.); (L.M.); (Y.M.); (R.L.); (K.L.); (L.J.)
| | - Aijuan Zhao
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China; (Y.Z.); (A.Z.); (L.M.); (Y.M.); (R.L.); (K.L.); (L.J.)
| | - Lijun Mu
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China; (Y.Z.); (A.Z.); (L.M.); (Y.M.); (R.L.); (K.L.); (L.J.)
| | - Xiao Teng
- Rizhao Research Institute of Agricultural Science, Rizhao 276500, China;
| | - Yingxin Ma
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China; (Y.Z.); (A.Z.); (L.M.); (Y.M.); (R.L.); (K.L.); (L.J.)
| | - Ru Li
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China; (Y.Z.); (A.Z.); (L.M.); (Y.M.); (R.L.); (K.L.); (L.J.)
| | - Kang Lei
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China; (Y.Z.); (A.Z.); (L.M.); (Y.M.); (R.L.); (K.L.); (L.J.)
| | - Lusha Ji
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China; (Y.Z.); (A.Z.); (L.M.); (Y.M.); (R.L.); (K.L.); (L.J.)
| | - Xuekun Wang
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China; (Y.Z.); (A.Z.); (L.M.); (Y.M.); (R.L.); (K.L.); (L.J.)
| | - Pan Li
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China; (Y.Z.); (A.Z.); (L.M.); (Y.M.); (R.L.); (K.L.); (L.J.)
| |
Collapse
|
5
|
Zheng R, Shao S, Li X, Zhang W, Zhang S, Yu Z, Ye Q. Understanding the metabolism of the novel plant antiviral agent dufulin by different positional 14C labeling in cherry radishes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159396. [PMID: 36244481 DOI: 10.1016/j.scitotenv.2022.159396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Dufulin is a new type of plant antiviral agent. However, its metabolism in plants, which is very important for environmental risk assessment, is still unclear. In this study, we used 14C markers at different positions and high-performance liquid chromatography-quadrupole time-of-flight-mass spectrometry (HPLC-QTOF-MS) to qualitatively and quantitatively analyze dufulin metabolites in cherry radish. By combining ion pairs with unique abundance ratios, we clarified the metabolite structures, inferred the metabolic pathway of dufulin, and clarified the criteria for residues. The extractable residue of dufulin from cherry radish stem and leaf tissues was above 98 % and that in the succulent root was above 87 %. In the stem and leaf tissues and succulent root, dufulin underwent both phase I and phase II metabolism, and four metabolites were produced, including a conjugate of glucose malonate and hydroxylated dufulin, which was confirmed by comparison with a standard. However, the proportions and concentrations of the four metabolites did not meet the residue criteria, so only the dufulin precursor compound was included as a residue. This study provides reliable data for evaluating the impacts of dufulin on the environment and human health and for objectively examining the safety of dufulin.
Collapse
Affiliation(s)
- Ruonan Zheng
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Siyao Shao
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Xiaofeng Li
- Institute of Catalysis, Key Laboratory of Applied Chemistry of Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Weiwei Zhang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Sufen Zhang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Zhiyang Yu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Qingfu Ye
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Zheng J, Peng X, Zhu T, Huang S, Chen C, Chen G, Liu S, Ouyang G. Detection of bile acids in small volume human bile samples via an amino metal-organic framework composite based solid-phase microextraction probe. J Chromatogr A 2022; 1685:463634. [DOI: 10.1016/j.chroma.2022.463634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
7
|
Zhang P, Yang F, Shi L, Yang C, Chen Q, Hu X, Zhang Z, Qian K, Xu Z, He L. Enantiomer-Specific Study of Fenpropathrin in Soil-Earthworm Microcosms: Enantioselective Bioactivity, Bioaccumulation, and Toxicity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13152-13164. [PMID: 36194681 DOI: 10.1021/acs.jafc.2c04624] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this study, the enantiomer-specific bioactivity, bioaccumulation, and toxicity of fenpropathrin (FEN) enantiomers were investigated in soil-earthworm microcosms. The bioactivity order was S-FEN > rac-FEN > R-FEN for Spodoptera litura and Conogethes punctiferalis. Moreover, S-FEN was 12.0 and 32.2 times more toxic than rac-FEN and R-FEN to earthworms, respectively. S-FEN degraded faster than R-FEN with the enrichment of R-FEN in the soil environment. Furthermore, the peak-shaped accumulation curves for FEN enantiomers were observed, and R-FEN was preferentially bioaccumulated by earthworms. As compared to R-FEN, S-FEN induced greater changes in the activities of detoxification enzymes, antioxidant enzymes, and malondialdehyde content, which suggested that earthworms exhibited enantioselective defense responses to S-FEN and R-FEN. Integrated biomarker response results indicated that S-FEN exhibited higher toxic effects on earthworms than R-FEN. Finally, molecular simulation revealed that the greater interaction forces between S-FEN and sodium channel protein could be the primary reason for the enantioselective bioactivity and toxicity of FEN enantiomers. This study comprehensively highlights the enantiomer-specific bioactivity, bioaccumulation, toxicity, and mechanism of FEN in soil-earthworm microcosms at the enantiomer level. Our findings will contribute to a better risk assessment of FEN in the soil ecosystem.
Collapse
Affiliation(s)
- Ping Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing400715, China
| | - Furong Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing400715, China
| | - Linlin Shi
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing400715, China
| | - Cancan Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing400715, China
| | - Qi Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing400715, China
| | - Xueping Hu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao266237, China
| | - Zan Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing400715, China
| | - Kun Qian
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing400715, China
| | - Zhifeng Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing400715, China
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing400715, China
| |
Collapse
|
8
|
Jia W, Zhuang P, Wang Q, Wan X, Mao L, Chen X, Miao H, Chen D, Ren Y, Zhang Y. Urinary non-targeted toxicokinetics and metabolic fingerprinting of exposure to 3-monochloropropane-1,2-diol and glycidol from refined edible oils. Food Res Int 2022; 152:110898. [DOI: 10.1016/j.foodres.2021.110898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 11/04/2022]
|
9
|
Fauzi NIM, Fen YW, Omar NAS, Hashim HS. Recent Advances on Detection of Insecticides Using Optical Sensors. SENSORS (BASEL, SWITZERLAND) 2021; 21:3856. [PMID: 34204853 PMCID: PMC8199770 DOI: 10.3390/s21113856] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023]
Abstract
Insecticides are enormously important to industry requirements and market demands in agriculture. Despite their usefulness, these insecticides can pose a dangerous risk to the safety of food, environment and all living things through various mechanisms of action. Concern about the environmental impact of repeated use of insecticides has prompted many researchers to develop rapid, economical, uncomplicated and user-friendly analytical method for the detection of insecticides. In this regards, optical sensors are considered as favorable methods for insecticides analysis because of their special features including rapid detection time, low cost, easy to use and high selectivity and sensitivity. In this review, current progresses of incorporation between recognition elements and optical sensors for insecticide detection are discussed and evaluated well, by categorizing it based on insecticide chemical classes, including the range of detection and limit of detection. Additionally, this review aims to provide powerful insights to researchers for the future development of optical sensors in the detection of insecticides.
Collapse
Affiliation(s)
- Nurul Illya Muhamad Fauzi
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.I.M.F.); (N.A.S.O.)
| | - Yap Wing Fen
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.I.M.F.); (N.A.S.O.)
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Nur Alia Sheh Omar
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.I.M.F.); (N.A.S.O.)
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Hazwani Suhaila Hashim
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
10
|
Xu L, Xu X, Guo L, Wang Z, Wu X, Kuang H, Xu C. Potential Environmental Health Risk Analysis of Neonicotinoids and a Synergist. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7541-7550. [PMID: 33983014 DOI: 10.1021/acs.est.1c00872] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The extensive use of neonicotinoid pesticides has led to their widespread presence in the environment, resulting in considerable safety risks to the ecosystem and human health. In this study, we investigated the biotransformation behavior of a cocktail of multiple neonicotinoids and piperonyl butoxide (PBO) synergist in vivo and their potential environmental health risk. It was found that neonicotinoids with a cyano group, such as acetamiprid and thiacloprid, tended to accumulate in liver and spleen tissues, while others with nitro groups (imidacloprid, thiamethoxam, clothianidin, dinotefuran, and nitenpyram) were mostly excreted in urine. In the presence of the synergist PBO, the metabolism of neonicotinoids in vivo changed, mainly through the nitro reduction pathway, while a low abundance of related metabolites was observed in the conventional hydroxylation and demethylation metabolic pathways, due to inhibition of CYP450 enzymes by the synergist. Furthermore, DNA methylation damage in vivo was exacerbated by the induction of hydroxylamine metabolites formed in the intermediate process of neonicotinoid metabolism with the synergistic effect of PBO, which resulted in a higher level of the O6-methyldeoxyguanosine (O6-medG) biomarker in the liver. Therefore, during the comprehensive evaluation of pesticide environmental risks, attention should be paid not only to the co-exposure mode under real environmental conditions but also to the potential risks of intermediate metabolism and related intermediate metabolites. This study provides a referential strategy and theoretical support for the health risk assessment of co-exposure of chemicals.
Collapse
Affiliation(s)
- Liwei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Lingling Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zhongxing Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xiaoling Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|