1
|
Xu M, Zhou Y, Xu Y, Shao A, Han H, Ye J. Supramolecular Engineering of Nanoceria for Management and Amelioration of Age-Related Macular Degeneration via the Two-Level Blocking of Oxidative Stress and Inflammation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2408436. [PMID: 39792775 DOI: 10.1002/advs.202408436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/21/2024] [Indexed: 01/12/2025]
Abstract
Age-related macular degeneration (AMD), characterized by choroidal neovascularization (CNV), is the global leading cause of irreversible blindness. Current first-line therapeutics, vascular endothelial growth factor (VEGF) antagonists, often yield incomplete and suboptimal vision improvement, necessitating the exploration of novel and efficacious therapeutic approaches. Herein, a supramolecular engineering strategy to construct moringin (MOR) loaded α-cyclodextrin (α-CD) coated nanoceria (M@CCNP) is constructed, where the hydroxy and newly formed carbonyl groups of α-CD interact with the nanoceria surface via O─Ce conjunction and the isothiocyanate group of MOR inserts deeply into the α-CD cavity via host-guest interaction. By exploiting the recycling reactive oxygen species (ROS) scavenging capability of nanoceria and the anti-inflammation properties of MOR, the two-level strike during AMD pathogenesis can be precisely blocked by M@CCNP. Remarkably, excellent therapeutic efficacy to CNV is observed in vivo, achieving over 80% reduction in neovascularization and over 60% reduction in leakage area. In summary, the supramolecular engineered nanoceria provides an efficient approach for amelioration of AMD by blocking the two-level strike, and presents significant potential as an exceptional drug delivery platform, particularly for ROS-related diseases.
Collapse
Affiliation(s)
- Mingyu Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, China
| | - Yifan Zhou
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, China
| | - Yufeng Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, China
| | - An Shao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, China
| | - Haijie Han
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, China
| | - Juan Ye
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, China
| |
Collapse
|
2
|
Udoh II, Ekerenam OO, Daniel EF, Ikeuba AI, Njoku DI, Kolawole SK, Etim IIN, Emori W, Njoku CN, Etim IP, Uzoma PC. Developments in anticorrosive organic coatings modulated by nano/microcontainers with porous matrices. Adv Colloid Interface Sci 2024; 330:103209. [PMID: 38848645 DOI: 10.1016/j.cis.2024.103209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/02/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
The durability and functionality of many metallic structures are seriously threatened by corrosion, which makes the development of anticorrosive coatings imperative. This state-of-the-art survey explores the recent developments in the field of anticorrosive organic coatings modulated by innovations involving nano/microcontainers with porous matrices. The integration of these cutting-edge delivery systems seeks to improve the protective properties of coatings by enabling controlled release, extended durability, targeted application of corrosion inhibitors, and can be co-constructed to achieve defect filling by polymeric materials. The major highlight of this review is an in-depth analysis of the functionalities provided by porous nano/microcontainers in the active protection and self-healing of anticorrosive coatings, including their performance evaluation. In one case, after 20 days of immersion in 0.1 M NaCl, a scratched coating containing mesoporous silica nanoparticles loaded with an inhibitor benzotriazole and shelled with polydopamine (MSNs-BTA@PDA) exhibited coating restoration indicated by a sustained corrosion resistance rise over an extended period monitored by impedance values at 0.01 Hz frequency, rising from 8.3 × 104 to 7.0 × 105 Ω cm2, a trend assigned to active protection by the release of inhibitors and self-healing capabilities. Additionally, some functions related to anti-fouling and heat preservation by nano/microcontainers are highlighted. Based on the literature survey, some desirable properties, current challenges, and prospects of anticorrosive coatings doped with nano/microcontainers have been summarized. The knowledge gained from this survey will shape future research directions and applications in a variety of industrial areas, in addition to advancing smart corrosion prevention technology.
Collapse
Affiliation(s)
- Inime I Udoh
- The Hempel Foundation Coatings Science and Technology Centre (CoaST), Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU), 2800 Kgs. Lyngby, Denmark; Nigerian Alumni Association of the Institute of Metal Research, Chinese Academy of Sciences (NAAIMCAS), Nigeria.
| | - Okpo O Ekerenam
- Department of Biochemistry, School of Pure & Applied Sciences, Federal University of Technology, Ikot Abasi, Akwa Ibom State, Nigeria; Nigerian Alumni Association of the Institute of Metal Research, Chinese Academy of Sciences (NAAIMCAS), Nigeria
| | - Enobong F Daniel
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; Nigerian Alumni Association of the Institute of Metal Research, Chinese Academy of Sciences (NAAIMCAS), Nigeria
| | - Alexander I Ikeuba
- Materials Chemistry Research Group, Department of Pure and Applied Chemistry, University of Calabar, Calabar, Nigeria; Nigerian Alumni Association of the Institute of Metal Research, Chinese Academy of Sciences (NAAIMCAS), Nigeria.
| | - Demian I Njoku
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, SAR, China; Nigerian Alumni Association of the Institute of Metal Research, Chinese Academy of Sciences (NAAIMCAS), Nigeria; Africa Center of Excellence in Future Energies and Electrochemical Systems (ACEFUELS), Federal University of Technology, Owerri, Nigeria; Centre for Corrosion and Protection of Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; Department of Industrial Chemistry, Madonna University, Elele, Nigeria.
| | - Sharafadeen K Kolawole
- Mechanical Engineering Department, School of Engineering and Technology, Federal Polytechnic, P.M.B 420 Offa, Nigeria; Nigerian Alumni Association of the Institute of Metal Research, Chinese Academy of Sciences (NAAIMCAS), Nigeria.
| | - Ini-Ibehe N Etim
- Marine Chemistry and Corrosion Research Group, Department of Marine Science, Akwa Ibom State University, P. M. B. 1167, Nigeria; Nigerian Alumni Association of the Institute of Metal Research, Chinese Academy of Sciences (NAAIMCAS), Nigeria; Africa Center of Excellence in Future Energies and Electrochemical Systems (ACEFUELS), Federal University of Technology, Owerri, Nigeria
| | - Wilfred Emori
- School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, Sichuan, PR China; Nigerian Alumni Association of the Institute of Metal Research, Chinese Academy of Sciences (NAAIMCAS), Nigeria
| | - Chigoziri N Njoku
- Environmental, Composite and Optimization Research Group, Department of Chemical Engineering, Federal University of Technology, PMB 1526 Owerri, Nigeria; Nigerian Alumni Association of the Institute of Metal Research, Chinese Academy of Sciences (NAAIMCAS), Nigeria; Africa Center of Excellence in Future Energies and Electrochemical Systems (ACEFUELS), Federal University of Technology, Owerri, Nigeria.
| | - Iniobong P Etim
- Department of Physics, University of Calabar, Calabar, Nigeria; Nigerian Alumni Association of the Institute of Metal Research, Chinese Academy of Sciences (NAAIMCAS), Nigeria
| | - Paul C Uzoma
- ZJU-UIUC Institute, International Campus, Zhejiang University, Haining 314400, China; Nigerian Alumni Association of the Institute of Metal Research, Chinese Academy of Sciences (NAAIMCAS), Nigeria; Department of Polymer and Textile Engineering, Federal University of Technology, P.M.B. 1526, Owerri, Nigeria
| |
Collapse
|
3
|
Panigrahi AR, Sahu A, Yadav P, Beura SK, Singh J, Mondal K, Singh SK. Nanoinformatics based insights into the interaction of blood plasma proteins with carbon based nanomaterials: Implications for biomedical applications. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 139:263-288. [PMID: 38448137 DOI: 10.1016/bs.apcsb.2023.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
In the past three decades, interest in using carbon-based nanomaterials (CBNs) in biomedical application has witnessed remarkable growth. Despite the rapid advancement, the translation of laboratory experimentation to clinical applications of nanomaterials is one of the major challenges. This might be attributed to poor understanding of bio-nano interface. Arguably, the most significant barrier is the complexity that arises by interplay of several factors like properties of nanomaterial (shape, size, surface chemistry), its interaction with suspending media (surface hydration and dehydration, surface reconstruction and release of free surface energy) and the interaction with biomolecules (conformational change in biomolecules, interaction with membrane and receptor). Tailoring a nanomaterial that minimally interacts with protein and lipids in the medium while effectively acts on target site in biological milieu has been very difficult. Computational methods and artificial intelligence techniques have displayed potential in effectively addressing this problem. Through predictive modelling and deep learning, computer-based methods have demonstrated the capability to create accurate models of interactions between nanoparticles and cell membranes, as well as the uptake of nanomaterials by cells. Computer-based simulations techniques enable these computational models to forecast how making particular alterations to a material's physical and chemical properties could enhance functional aspects, such as the retention of drugs, the process of cellular uptake and biocompatibility. We review the most recent progress regarding the bio-nano interface studies between the plasma proteins and CBNs with a special focus on computational simulations based on molecular dynamics and density functional theory.
Collapse
Affiliation(s)
| | - Abhinandana Sahu
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Pooja Yadav
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Samir Kumar Beura
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Jyoti Singh
- Department of Applied Agriculture, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | | | - Sunil Kumar Singh
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India; Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
4
|
Huang H, Xie L, Chen X, Li W, Marzouki R. Insights into the Corrosion Inhibition Mechanism of Canavalia gladiata Leaf Extract for Copper in Sulfuric Acid Medium. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38320302 DOI: 10.1021/acs.langmuir.3c03124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Canavalia gladiata leaf extract (CGLE) is extracted from crop waste employing a water decoction method. By employing electrochemical techniques, morphology analysis, quantum chemical calculations, and other methods, we extensively investigated the anticorrosion efficacy of CGLE on copper within a H2SO4 solution. The outcomes reveal that at 298 K, a CGLE concentration of 800 mg/L attains a remarkable inhibition efficiency (IE) of 96.8%. Additionally, we examined the impact of CGLE on the corrosion resistance of copper at varying temperatures. Even with rising temperatures, CGLE manages to sustain an IE of over 95%. This indicates that CGLE is mainly chemisorption based on the copper, leading to a strong adsorption. The surface test results show a noteworthy decrease in the extent of copper surface corrosion upon the introduction of CGLE. The study of the adsorption model demonstrates the alignment of CGLE adsorption onto the copper with the Langmuir adsorption.
Collapse
Affiliation(s)
- Hui Huang
- Ningbo University of Technology, Ningbo, Zhejiang 315211, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| | - Lihao Xie
- Ningbo University of Technology, Ningbo, Zhejiang 315211, China
| | - Xinhuan Chen
- Ningbo University of Technology, Ningbo, Zhejiang 315211, China
| | - Wenlong Li
- Ningbo University of Technology, Ningbo, Zhejiang 315211, China
| | - Riadh Marzouki
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
5
|
Dardeer HM, Abdel-Hakim M, Aly KI, Sayed MM. Modification of conducting arylidene copolymers by formation of inclusion complexes: synthesis, characterization, and applications as highly corrosion inhibitors for mild steel. BMC Chem 2023; 17:77. [PMID: 37454143 PMCID: PMC10349478 DOI: 10.1186/s13065-023-00992-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 06/30/2023] [Indexed: 07/18/2023] Open
Abstract
Modifying the metal surface is one solution to the industry's growing corrosion problem. Thus, via threading approach and insertion of copolymers (CoP5-7) containing polyarylidenes through the internal cavity beta-cyclodextrin β-CD, novel pseudopolyrotaxanes copolymers (PC5-7) are developed, resulting in mild steel corrosion inhibition. Inhibitors of corrosion based on β-CD molecules adsorb strongly to metal surfaces because of their many polar groups, adsorption centers, many linkages of side chains, and benzene rings. The corrosion inhibition efficiencies IE % statistics have been revised via the Tafel polarization method and Spectroscopy based on the electrochemical impedance (EIS), with PC7 achieving the highest 99.93% in 1.0 M H2SO4; they are mixed-type inhibitors. The chemical composition of the resulting PCs is determined with Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) is utilized to examine the morphological structure of the produced polymers, and X-ray diffraction is employed to identify crystallinity. Encapsulating CoP5-7 with β-CD changes the morphological structures and increases the generated PCs' crystallinity. The thermal stability of PCs is studied, indicating the presence of these CoPs within the β-CD cavities enhances their thermal stability. This research will be a stepping stone for developing high-efficiency anti-corrosion coatings and various industrial applications.
Collapse
Affiliation(s)
- Hemat M Dardeer
- Chemistry Department, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - Mohamed Abdel-Hakim
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt.
| | - Kamal I Aly
- Polymer Research Laboratory, Chemistry Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| | - Marwa M Sayed
- Chemistry Department, Faculty of Science, The New Valley University, El-Kharja, 72511, Egypt
| |
Collapse
|
6
|
Chen Y, Sun Y, Wang R, Waterhouse GIN, Xu Z. One-pot synthesis of a novel conductive molecularly imprinted gel as the recognition element and signal amplifier for the selective electrochemical detection of amaranth in foods. Biosens Bioelectron 2023; 228:115185. [PMID: 36878068 DOI: 10.1016/j.bios.2023.115185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/18/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023]
Abstract
Herein, we prepared a self-crosslinked conductive molecularly imprinted gel (CMIG) using cationic guar gum (CGG), chitosan (CS), β-cyclodextrin (β-CD), amaranth (AM) and multi-walled carbon nanotubes (MWCNTs) by a simple one-pot low temperature magnetic stirring method. The imine bonds, hydrogen-bonding interactions and electrostatic attractions between CGG, CS and AM facilitated CMIG gelation, while β-CD and MWCNTs enhanced the adsorption capacity and conductivity of CMIG, respectively. Next, the CMIG was deposited onto the surface of a glassy carbon electrode (GCE). After selective removal of AM, a highly sensitive and selective CMIG-based electrochemical sensor was obtained for AM determination in foods. The CMIG allowed specific recognition of AM and could also be used for signal amplification, thus improving the sensitivity and selectivity of the sensor. Due to the high viscosity and self-healing properties of the CMIG, the developed sensor was very durable retaining a 92.1% of original current after 60 consecutive measurements. Under optimal conditions, the CMIG/GCE sensor showed a good linear response for AM detection (0.02-150 μM) with a limit of detection of 0.003 μM. AM recovery tests were performed in milk powder and white vinegar samples, yielding satisfactory recoveries (89.00%-111.00%). Furthermore, the levels of AM in two kinds of carbonated drinks were analyzed with the constructed sensor and an ultraviolet spectrophotometry method, with no significant difference found of the two methods. This work demonstrates that CMIG based electrochemical sensing platforms allow the cost-effective detection of AM, with the CMIG technology likely being widely applicable to the detection of other analytes.
Collapse
Affiliation(s)
- Yongfeng Chen
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Yufeng Sun
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Ruiqiang Wang
- Shandong Cayon Testing Co., LTD, Jining, 272000, People's Republic of China
| | | | - Zhixiang Xu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| |
Collapse
|
7
|
Liu X, Zhang Y, Pan X, Wang Z. Rare earth cerium-phenanthroline binary complex as a new corrosion inhibitor for carbon steel in acidic medium. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04918-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Dehghani A, Sanaei Z, Fedel M, Ramezanzadeh M, Mahdavian M, Ramezanzade B. Fabrication of an Intelligent Anti-corrosion surface silane film using a MoO42− Loaded Micro/Mesoporous ZIF67-MOF/Multi-Walled-CNT/APTES Core-shell Nano-container. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Yang Y, Lu R, Chen W, Mei P, Lai L. Amphiphilic carbon dots as high-efficiency corrosion inhibitor for N80 steel in HCl solution: Performance and mechanism investigation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Wu Y, Zhang XQ, Guo XJ, Kong LH, Shen RF, Hu JT, Yan X, Chen Y, Lang WZ. Construction of stable beta-cyclodextrin grafted polypropylene nonwoven fabrics for the adsorption of bisphenol A. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Motamedi M, Mohammadkhah S, Ramezanzadeh M, Eivaz Mohammadloo H, Ramezanzadeh B. Designing Hybrid Mesoporous Pr/Tannate-Inbuilt ZIF8-Decorated MoS 2 as Novel Nanoreservoirs toward Smart pH-Triggered Anti-corrosion/Robust Thermomechanical Epoxy Nanocoatings. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31170-31193. [PMID: 35762777 DOI: 10.1021/acsami.2c08781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
For the first time, organic tannic acid (TA) molecules and then inorganic praseodymium (Pr) cations as corrosion inhibitors were successfully loaded into a zeolitic imidazolate framework (ZIF8)-type porous coordination polymer (PCP) decorated on molybdenum disulfide, MoS2, (MS)-based transition metal dichalcogenides (TMDs) to create novel hybrid mesoporous Pr/TA-ZIF8@MS nanoreservoirs. Thereafter, the hybrid nanoreservoirs were embedded into the epoxy matrix for the preparation of smart pH-triggered nanocoatings. Characterizations of the Pr/TA-ZIF8@MS nanoreservoirs via Fourier transform infrared (FT-IR), X-ray diffraction (XRD), thermogravimetric (TG), Brunauer-Emmett-Teller (BET), and field emission-scanning electron microscopy (FE-SEM)/energy-dispersive X-ray spectroscopy (EDS) experiments confirmed the fabrication of mesoporous structures comprising Pr/TA interfacial interactions with ZIF8-decorated MS nanoplatelets possessing high thermal stability and compact/dense configuration features with a framework reorientation. A remarkable smart release of the inhibited cations (Pr3+ and Zn2+) in the presence of inbuilt TA at both acidic and alkaline media was achieved under inductively coupled plasma (ICP) examination. The superior pH-triggered self-healing inhibition through the smart controlled-release of Pr, tannate, Zn, and imidazole inhibited species/complexes from EP/Pr-TA-ZIF8@MS via ligand exchange was obtained from electrochemical impedance spectroscopy (EIS) assessments of the scratched coatings during 72 h of saline immersion. In addition, the long-term barrier-induced corrosion prevention (log |Z|10 mHz = 10.49 Ω·cm2 after 63 days) of the EP/Pr-TA-ZIF8@MS was actualized. Moreover, efficient increments of the coating cross-link density (56.45%), tensile strength (63.6%), and toughness value (56.5%) compared to the Neat epoxy coating revealed noticeable thermomechanical properties of the EP/Pr-TA-ZIF8@MS.
Collapse
Affiliation(s)
- Milad Motamedi
- Department of Surface Coating and Corrosion, Institute for Color Science and Technology, Tehran, P.O. Box 16765-654, Iran
| | - Sahel Mohammadkhah
- Department of Surface Coating and Corrosion, Institute for Color Science and Technology, Tehran, P.O. Box 16765-654, Iran
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Mohammad Ramezanzadeh
- Department of Surface Coating and Corrosion, Institute for Color Science and Technology, Tehran, P.O. Box 16765-654, Iran
| | - Hossein Eivaz Mohammadloo
- Color, Resin & Surface Coatings Department, Iran Polymer and Petrochemical Institute, Tehran, P.O. Box 14965-115, Iran
| | - Bahram Ramezanzadeh
- Department of Surface Coating and Corrosion, Institute for Color Science and Technology, Tehran, P.O. Box 16765-654, Iran
| |
Collapse
|
12
|
AhadiParsa M, Dehghani A, Ramezanzadeh M, Ramezanzadeh B. Rising of MXenes: Novel 2D-functionalized nanomaterials as a new milestone in corrosion science - a critical review. Adv Colloid Interface Sci 2022; 307:102730. [PMID: 35868175 DOI: 10.1016/j.cis.2022.102730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 11/01/2022]
Abstract
Corrosion is a natural process between a metal and its environment that can gradually cause catastrophic damage to the metal equipment, which would have economic implications. Consequently, several protective methods have been utilized to prevent metals from severe degradation. Organic polymeric coatings have been widely used as the most convenient and cost-effective method to boost metals' anti-corrosion properties. Nonetheless, these coatings have a significant amount of solvent, resulting in shrinkage and micro defects in the films during the curing process. Many studies have verified that transition metal carbides/nitrides (MXenes) can form a "labyrinth effect" in the polymeric coatings due to their "nano-barrier effect". Furthermore, based on their sheet-like structures, they can considerably cover the surface defects of the polymeric films. Therefore, the penetration of corrosive elements can be substantially curbed. It is the first review that specifically focused on the new family of 2D nanomaterials, i.e., MXenes, and discussed their applications in corrosion protection systems. The MXenes' pros and cons in the polymeric matrixes as nanofillers will be clarified. Moreover, the synthesis and functionalization methods of the MXenes, their applications, and corrosion protection mechanism will be explored. Subsequently, the MXenes' superiority over other 2D nanomaterials will be highlighted while their future perspectives and industrial applications will be predicted.
Collapse
Affiliation(s)
- Mobina AhadiParsa
- Department of Surface Coatings and Corrosion, Institute for Color Science and Technology, P.O. Box 16765-654, Tehran, Iran
| | - Ali Dehghani
- Department of Surface Coatings and Corrosion, Institute for Color Science and Technology, P.O. Box 16765-654, Tehran, Iran; Department of Chemical Engineering, Faculty of Engineering, Golestan University, Aliabad Katoul, Iran
| | - Mohammad Ramezanzadeh
- Department of Surface Coatings and Corrosion, Institute for Color Science and Technology, P.O. Box 16765-654, Tehran, Iran
| | - Bahram Ramezanzadeh
- Department of Surface Coatings and Corrosion, Institute for Color Science and Technology, P.O. Box 16765-654, Tehran, Iran.
| |
Collapse
|
13
|
Water-Triggered Self-Healing Composite Coating: Fabrication and Anti-Corrosion Application. Polymers (Basel) 2022; 14:polym14091847. [PMID: 35567016 PMCID: PMC9101054 DOI: 10.3390/polym14091847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/23/2022] Open
Abstract
Self-healing coatings formulated by stimuli-responsive container technology are regarded as a prospective strategy for long-term corrosion protection. However, such types of coatings suffer from low coating adaptability and delays in corrosion protection because the occurrence of corrosion is prior to the release of healants from containers. Herein, we took advantage of the easy hydrolysis of MOF-199 for water-induced self-healing properties. Mixed corrosion inhibitors were loaded into MOF-199 and then incorporated into acrylic coating. The water sensitivity of MOF-199 was investigated and EIS tests were used to evaluate the self-healing performance. Due to the collapse of the porous MOF-199 structure, corrosion inhibitors could be released from MOF-199 with the invasion of water into acrylic coating. The corrosion resistance performance of damaged self-healing coating gradually increased. The metal exposed to artificial defects was well protected due to a barrier formed by corrosion inhibitors. Owing to these merits, this self-healing coating is recommended for use in various fields of engineering for corrosion resistance.
Collapse
|
14
|
Anticorrosive composite self-healing coating enabled by solar irradiation. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2147-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Alizadeh N, Nazari F. Thymol essential oil/ β-cyclodextrin inclusion complex into chitosan nanoparticles: Improvement of thymol properties in vitro studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
16
|
Zhu M, He Z, Guo L, Zhang R, Anadebe VC, Obot IB, Zheng X. Corrosion inhibition of eco-friendly nitrogen-doped carbon dots for carbon steel in acidic media: Performance and mechanism investigation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117583] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
17
|
Mohamadhoseini M, Mohamadnia Z. Supramolecular self-healing materials via host-guest strategy between cyclodextrin and specific types of guest molecules. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213711] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|