1
|
Du X, Zhang B, Lian Y, Jiang X, Li Y, Jiang D. A bulit-in self-calibration ratiometric self-powered photoelectrochemical sensor for high-precision and sensitive detection of microcystin-RR. Mikrochim Acta 2024; 191:379. [PMID: 38856817 DOI: 10.1007/s00604-024-06447-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/18/2024] [Indexed: 06/11/2024]
Abstract
A novel high-precision aptasensor of microcystin-RR (MC-RR) is developed based on a ratiometric self-powered photoelectrochemical platform. In detail, the defective MoS2/Ti3C2 nanocomposite with good photoelectric activity was designed to serve as the photoanode of the sensor for enhancing the signal and improving the detection sensitivity. In order to effectively eliminate external interferences, the key point of this ratiometric device is the introduction of the spatial-resolved technique, which includes the detection section and the reference section, generating reference signals and response signals, respectively. Moreover, output power was used as the detection signal, instead of the traditional photocurrent or photovoltage. Further, potassium persulfate was introduced as electron acceptor, which was beneficial for improving the electron transport efficiency, hindering electron-hole recombination, and significantly promoting the performance of the sensor. Finally, aptamer was adopted as recognition element to capture MC-RR molecules. The prepared sensor had a linear range from 10-12 to 10-6 M, and the detection limit was 5.6 × 10-13 M (S/N = 3). It has good precision, selectivity, and sensitivity, which shows great prospects in the on-site accurate analysis of samples with high energy output in the self-powered sensing field.
Collapse
Affiliation(s)
- Xiaojiao Du
- School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou, 213032, Jiangsu, P.R. China.
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, 212013, P.R. China.
| | - Bing Zhang
- School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou, 213032, Jiangsu, P.R. China
| | - Yuebin Lian
- School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou, 213032, Jiangsu, P.R. China
| | - Xiaoyan Jiang
- School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou, 213032, Jiangsu, P.R. China
| | - Yan Li
- School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou, 213032, Jiangsu, P.R. China
| | - Ding Jiang
- Jiangsu Key Laboratory of Materials Surface Science and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, Jiangsu, P.R. China.
| |
Collapse
|
2
|
Li H, Wang D, Zhang D, Zhou J, Yang W, Su Z, Sun W, Li C. Light-Initiated Imprinted Membrane-Based Biomimetic SERS Sensor toward Selective Detection of Trace MC-LR. Anal Chem 2024; 96:5887-5896. [PMID: 38567874 DOI: 10.1021/acs.analchem.3c05856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Microcystin-LR (MC-LR) is a severe threat to human and animal health; thus, monitoring it in the environment is essential, especially in water quality protections. Herein, in this work, we synthesize PVDF/CNT/Ag molecular imprinted membranes (PCA-MIMs) via an innovative combination of surface-enhanced Raman spectroscopy (SERS) detection, membrane separation, and molecular-imprinted technique toward the analysis of MC-LR in water. In particular, a light-initiated imprint is employed to protect the chemical structure of the MC-LR molecules. Furthermore, in order to ensure the detection sensitivity, the SERS substrates are combined with the membrane via the assistance of magnetism. The effect of synthesis conditions on the SERS sensitivity was investigated in detail. It is demonstrated from the characteristic results that the PCA-MIMs present high sensitivity to the MC-LR molecules with excellent selectivity against the interfere molecules. Results clearly show that the as-prepared PCA-MIMs hold great potential applications to detect trace MC-LR for the protection of water quality.
Collapse
Affiliation(s)
- Hongji Li
- Hainan Engineering Research Center of Tropical Ocean Advanced Opto-electrical Functional Materials, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, Hainan Normal University, Haikou 571158, China
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Dandan Wang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Dan Zhang
- Hainan Engineering Research Center of Tropical Ocean Advanced Opto-electrical Functional Materials, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, Hainan Normal University, Haikou 571158, China
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Juan Zhou
- Hainan Engineering Research Center of Tropical Ocean Advanced Opto-electrical Functional Materials, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, Hainan Normal University, Haikou 571158, China
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Weiting Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Zhongmin Su
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Wei Sun
- Hainan Engineering Research Center of Tropical Ocean Advanced Opto-electrical Functional Materials, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, Hainan Normal University, Haikou 571158, China
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Changming Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
3
|
Zhang WQ, Tu YD, Liu H, Liu R, Zhang XJ, Jiang L, Huang Y, Xia F. A Single Set of Well-Designed Aptamer Probes for Reliable On-site Qualitative and Ultra-Sensitive Quantitative Detection. Angew Chem Int Ed Engl 2024; 63:e202316434. [PMID: 38192021 DOI: 10.1002/anie.202316434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
Aptamer-based probes are pivotal components in various sensing strategies, owing to their exceptional specificity and versatile programmable structure. Nevertheless, numerous aptamer-based probes usually offer only a single function, limiting their capacity to meet the diverse requirements of multi-faceted sensing systems. Here, we introduced supersandwich DNA probes (SSW-DNA), designed and modified on the outer surface of nanochannels with hydrophobic inner walls, enabling dual functionality: qualitative detection for on-site analysis and quantitative detection for precise analysis. The fragmented DNAs resulting from the target recognition, are subsequently identified through lateral flow assays, enabling robust on-site qualitative detection of microcystin-LR with an impressively low limit of detection (LOD) at 0.01 μg/L. Meanwhile, the nanochannels enable highly sensitive quantification of microcystin-LR through the current analysis, achieving an exceptionally low LOD at 2.5×10-7 μg/L, with a broad dynamic range spanning from 1×10-6 to 1×102 μg/L. Furthermore, the process of target recognition introduces just a single potential error propagation, which reduces the overall risk of errors during the entire qualitative and quantitative detection process. This sensing strategy broadens the scope of applications for aptamer-based composite probes, holding promising implications across diverse fields, such as medical diagnosis, food safety, and environmental protection.
Collapse
Affiliation(s)
- Wei-Qi Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Yi-Dan Tu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Hong Liu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Rui Liu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Xiao-Jin Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yu Huang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| |
Collapse
|
4
|
Wang C, Sun S, Wang P, Zhao H, Li W. Nanotechnology-based analytical techniques for the detection of contaminants in aquatic products. Talanta 2024; 269:125462. [PMID: 38039671 DOI: 10.1016/j.talanta.2023.125462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/26/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Food safety of aquatic products has attracted considerable attention worldwide. Although a series of conventional bioassays and instrumental methods have been developed for the detection of pathogenic bacteria, heavy metal residues, marine toxins, and biogenic amines during the production and storage of fish, shrimp, crabs et al., the nanotechnology-based analyses still have their advantages and are promising since they are cost-efficient, highly sensitive and selective, easy to conduct, facial design, often require no sophisticated instruments but with excellent detection performance. This review aims to summarize the advances of various biosensing strategies for bacteria, metal ions, and small molecule contaminants in aquatic products during the last five years, The review highlights the development in nanotechnologies applied for biorecognition process, signal transduction and amplification methods in each novel approach, the nuclease-mediated DNA amplification, nanomaterials (noble metal nanoparticle, metal-organic frameworks, carbon dots), lateral flow-based biosensor, surface-enhanced Raman scattering, microfluidic chip, and molecular imprinting technologies were especially emphasized. Moreover, this study provides a view of current accomplishments, challenges, and future development directions of nanotechnology in aquatic product safety evaluation.
Collapse
Affiliation(s)
- Chengke Wang
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai, 264025, PR China; Institute of Bio-Nanotechnology, Ludong University, Yantai, 264025, PR China.
| | - Shuyang Sun
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai, 264025, PR China; Institute of Bio-Nanotechnology, Ludong University, Yantai, 264025, PR China.
| | - Ping Wang
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai, 264025, PR China; Institute of Bio-Nanotechnology, Ludong University, Yantai, 264025, PR China
| | - Huawei Zhao
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai, 264025, PR China; Institute of Bio-Nanotechnology, Ludong University, Yantai, 264025, PR China
| | - Wenling Li
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai, 264025, PR China
| |
Collapse
|
5
|
Feng J, Dong L, Wang H, Xie Y, Wang H, Ding L, Song G, Zhang J, Li T, Shen Q, Zhang Y. Application of aptamer-conjugated graphene oxide for specific enrichment of microcystin-LR in Achatina fulica prior to matrix-assisted laser desorption ionization mass spectrometry. Electrophoresis 2024; 45:275-287. [PMID: 37768831 DOI: 10.1002/elps.202300107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023]
Abstract
Microcystin-LR (MC-LR), as a hepatotoxin, can cause liver swelling, hepatitis, and even liver cancer. In this study, MC-LR aptamer (Apt-3) modified graphene oxide (GO) was designed to enrich MC-LR in white jade snail (Achatina fulica) and pond water, followed by matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) analysis. Results indicated that the Apt-3/PEG/GO nanocomposites were highly specific to MC-LR, and the detection limit of MALDI-MS was 0.50 ng/mL. Moreover, the MC-LR can be released from nanocomposites at 75°C, thus, the reuse of Apt-3/PEG/GO is realized. Real sample analysis indicated that the Apt-3/PEG/GO nanocomposites coupled with MALDI-MS were efficient in detecting trace amounts of MC-LR in real samples. With the merits of being low cost, reusable, and easy to besynthesized, this Apt-3/PEG/GO MALDI-MS is expected to be comprehensively applied by anchoring suitable aptamers for different targets.
Collapse
Affiliation(s)
- Junli Feng
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Linpei Dong
- Institute of Forensic Science, Ministry of Public Security, Beijing, P. R. China
| | - Haixing Wang
- Key Laboratory of Drug Monitoring and Control of Zhejiang Province, National Anti-Drug Laboratory Zhejiang Regional Center, Hangzhou, P. R. China
| | - Yihong Xie
- Heart Center, Department of Cardiovascular Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, P. R. China
| | - Huizi Wang
- Heart Center, Department of Cardiovascular Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, P. R. China
| | - Lan Ding
- Heart Center, Department of Cardiovascular Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, P. R. China
| | - Gongshuai Song
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Jian Zhang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Ting Li
- Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Qing Shen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Yunfeng Zhang
- Institute of Forensic Science, Ministry of Public Security, Beijing, P. R. China
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, P. R. China
| |
Collapse
|
6
|
Stoll S, Hwang JH, Fox DW, Kim K, Zhai L, Lee WH. Cost-effective screen-printed carbon electrode biosensors for rapid detection of microcystin-LR in surface waters for early warning of harmful algal blooms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124854-124865. [PMID: 36194320 DOI: 10.1007/s11356-022-23300-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Microcystins (MCs) are toxins produced by cyanobacteria commonly found in harmful algal blooms (HABs). Due to their toxicity to humans and other organisms, the World Health Organization (WHO) sets a guideline of 1 μg L-1 for microcystin-leucine-arginine (MC-LR) in drinking water. However, current analytical techniques for the detection of MC-LR such as liquid chromatography-mass spectrometry (LC-MS) and ELISA are costly, bulky, time-consuming, and mostly conducted in a laboratory, requiring highly trained personnel. An analytical method that can be used in the field for rapid determination is essential. In this study, an anti-MC-LR/MC-LR/cysteamine-coated screen-printed carbon electrode (SPCE) biosensor was newly developed to detect MC-LR, bioelectrochemically, in water. The functionalization of the electrode surface was confirmed with surface characterization methods. The sensor performance was evaluated by electrochemical impedance spectroscopy (EIS), obtaining a linear working range of MC-LR concentrations between 0.1 and 100 μg L-1 with a limit of detection (LOD) of 0.69 ng L-1. Natural water samples experiencing HABs were collected and analyzed using the developed biosensor, demonstrating the excellent performance of the biosensor with a relative standard deviation (RSD) of 0.65%. The interference tests showed minimal error and RSD values against other common MCs and possible coexisting ions found in water. The biosensor showed acceptable functionality with a shelf life of up to 12 weeks. Overall, the anti-MC-LR/MC-LR/cysteamine/SPCE biosensors can be an innovative solution with characteristics that allow for in situ, low-cost, and easy-to-use capabilities which are essential for developing an overarching and integrated "smart" environmental management system.
Collapse
Affiliation(s)
- Stephanie Stoll
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL, 32816, USA
| | - Jae-Hoon Hwang
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL, 32816, USA
| | - David W Fox
- Nanoscience Technology Center and Department of Chemistry, University of Central Florida, Orlando, FL, 32816, USA
| | - Keugtae Kim
- Department of Environmental and Energy Engineering, The University of Suwon, 17 Wauan-gil, Bongdam-eup, Hwaseong-si, Gyeonggi-do, 18323, South Korea
| | - Lei Zhai
- Nanoscience Technology Center and Department of Chemistry, University of Central Florida, Orlando, FL, 32816, USA
| | - Woo Hyoung Lee
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL, 32816, USA.
| |
Collapse
|
7
|
Zhou B, Yang R, Sohail M, Kong X, Zhang X, Fu N, Li B. CRISPR/Cas14 provides a promising platform in facile and versatile aptasensing with improved sensitivity. Talanta 2023; 254:124120. [PMID: 36463799 DOI: 10.1016/j.talanta.2022.124120] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/13/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
CRISPR is reshaping biosensing technology due to its programmability, sensitivity, and specificity. Most current CRISPR-based biosensors are developed based on Cas12 and Cas13, while the biosensing potentials of the newly discovered Cas14 have not been fully elucidated yet. Herein, a fluorometric biosensor named HARRY (highly sensitive aptamer-regulated Cas14 R-loop for bioanalysis) was developed. The diblock ssDNA is designed to contain the activator sequence of Cas14 and the aptamer sequence of specific targets. In the absence of targets, the ssDNA activates Cas14a, then the Cas14a trans-cleavages the fluorescent reporter, causing fluorescence enhancement. In the presence of the targets, ssDNA-target assembly is formed via aptamer interaction, resulting in the inhibition of Cas14a activation. HARRY can detect ATP, Cd2+, histamine, aflatoxin B1, and thrombin with detection limits at the low-nanomolar level, which shows improvement compared with Cas12a-based aptasensors in sensitivity and versatility. We reasoned that the improvement is derived from the ssDNA specificity of Cas14a and found that the detection limit of HARRY is correlated to the binding affinities of aptamers. This study unlocks the potential of Cas14a in versatile aptasensing, which may inspire the development of CRISPR-based biosensors from the Cas14a branch.
Collapse
Affiliation(s)
- Bin Zhou
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Runlin Yang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Muhammad Sohail
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China; College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Xiaoxue Kong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Ninghua Fu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
8
|
Li B, Wang Q, Sohail M, Zhang X, He H, Lin L. Facilitating the determination of microcystin toxins with bio-inspired sensors. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Recent developments in biosensing strategies for the detection of small molecular contaminants to ensure food safety in aquaculture and fisheries. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
10
|
Zhang D, Yuan L, Zhang L, Qiu T, Liao Q, Xiang J, Luo L, Xiong X. Pathological and biochemical characterizations of microcystin-LR-induced liver and kidney damage in chickens after acute exposure. Toxicon 2022; 220:106952. [DOI: 10.1016/j.toxicon.2022.106952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/22/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
|
11
|
Agathokleous E, Peñuelas J. Monitoring, Regulation, and Mitigation of Cyanotoxins in the Environment to Protect Human Health and Wildlife. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14225-14227. [PMID: 36173711 DOI: 10.1021/acs.est.2c06618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Affiliation(s)
- Evgenios Agathokleous
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, People's Republic of China
- Research Center for Global Changes and Ecosystem Carbon Sequestration & Mitigation, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, People's Republic of China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia 08193, Spain
- CREAF, Cerdanyola del Vallès, Catalonia 08193, Spain
| |
Collapse
|
12
|
Tang YY, Chen JS, Liu XP, Mao CJ, Jin BK. An ultrasensitive photoelectrochemical aptasensor based on ZnIn2S4/CdSe heterojunction for the detection of microcystine-LR. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Kang Y, Su G, Yu Y, Cao J, Wang J, Yan B. CRISPR-Cas12a-Based Aptasensor for On-Site and Highly Sensitive Detection of Microcystin-LR in Freshwater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4101-4110. [PMID: 35263090 DOI: 10.1021/acs.est.1c06733] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
On-site monitoring of trace organic pollutants with facile methods is critical to environmental pollutant prevention and control. Herein, we proposed a CRISPR-Cas12a-based aptasensor platform (named as MC-LR-Casor) for on-site and sensitive detection of microcystin-LR (MC-LR). After hybridization with blocker DNA, the MC-LR aptamers were conjugated to magnetic beads (MBs) to get the MB aptasensor. In the presence of MC-LR, their interactions with aptamers were triggered and the specific binding caused the release of blocker DNA. Using the programmability of the CRISPR-Cas system, the released blocker DNA was designed to activate a Cas12a-crRNA complex. Single strand DNA reporters were rapidly cleaved by the complex. Signal readout could be achieved by fluorometer or lateral flow strips, which were positively correlated to MC-LR concentration. Benefiting from the CRISPR-Cas12a amplification system, the proposed sensing platform exhibited high sensitivity and reached the limit of detection of ∼3 × 10-6 μg/L (fluorescence method) or 1 × 10-3 μg/L (lateral flow assay). In addition, the MC-LR-Casor showed excellent selectivity and good recovery rates, demonstrating their good applicability for real water sample analysis. During the whole assay, only two steps of incubation at a constant temperature were required and the results could be visualized when employing flow strips. Therefore, the proposed assay offered a simple and convenient alternative for in situ MC-LR monitoring, which may hold great promise for future environmental surveillance.
Collapse
Affiliation(s)
- Yuliang Kang
- School of Pharmacy, Nantong University, Nantong 226001, China
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Yanyan Yu
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Jiajia Cao
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Jiali Wang
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Bing Yan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
14
|
Wu P, Ye X, Wang D, Gong F, Wei X, Xiang S, Zhang J, Kai T, Ding P. A novel CRISPR/Cas14a system integrated with 2D porphyrin metal-organic framework for microcystin-LR determination through a homogeneous competitive reaction. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127690. [PMID: 34799170 DOI: 10.1016/j.jhazmat.2021.127690] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/25/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
Selective and sensitive detection of microcystin-LR (MC-LR) is of vital importance because of its high toxicity and broad distribution. Herein, a novel and versatile fluorescence sensor (Cas14-pMOFs fluorescence sensor) was developed by combining the CRISPR/Cas14a system with a 2D porphyrin metal-organic framework nanosheets (2D-pMOFs) for MC-LR determination. The designed CRISPR/Cas14a system was activated by the unbound complementary DNA (cDNA), which was positively correlated with MC-LR concentration. Furthermore, the activated Cas14a protein was utilized to indiscriminately cleave the FAM-labeled single-stranded DNA (ssDNA-FAM), which was pre-absorbed on Cu-TCPP(Fe) nanosheets. Because of the desorption of the cleaved ssDNA-FAM, the pre-quenched fluorescence signal was recovered. Owing to the excellent performance in quantifying cDNA using this Cas14-pMOFs fluorescence sensor with a limit of detection (LOD) of 0.12 nM, this Cas14-pMOFs fluorescence sensor was able to detect MC-LR in a range from 50 pg/mL to 1 μg/mL with the LOD of 19 pg/mL. This work not only provided a new insight for the exploration of fluorescence sensors based on 2D-pMOFs coupled with CRISPR/Cas14a, but also, demonstrated its universality in both nucleic acid and non-nucleic acid targets determination.
Collapse
Affiliation(s)
- Pian Wu
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China
| | - Xiaosheng Ye
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China
| | - Danqi Wang
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China
| | - Fangjie Gong
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China
| | - Xiaoqian Wei
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China
| | - Shan Xiang
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China
| | - Jingwen Zhang
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China
| | - Tianhan Kai
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China.
| | - Ping Ding
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China.
| |
Collapse
|
15
|
Xie S, Qin C, Zhao F, Shang Z, Wang P, Sohail M, Zhang X, Li B. The DNA-Cu nanocluster and exonuclease I integrated label-free reporting system for CRISPR/Cas12a-based SARS-CoV-2 detection with minimized background signal. J Mater Chem B 2022; 10:6107-6117. [DOI: 10.1039/d2tb00857b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CRISPR-driven biosensing is developing rapidly, but current works mostly adopt dye-labeled ssDNA as the signal reporter, which is costly and unstable. Herein, we developed a label-free and low-background reporter for...
Collapse
|
16
|
García Y, Vera M, Giraldo JD, Garrido-Miranda K, Jiménez VA, Urbano BF, Pereira ED. Microcystins Detection Methods: A Focus on Recent Advances Using Molecularly Imprinted Polymers. Anal Chem 2021; 94:464-478. [PMID: 34874146 DOI: 10.1021/acs.analchem.1c04090] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yadiris García
- Departamento de Química Analítica e Inorgánica Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile
| | - Myleidi Vera
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile
| | - Juan D Giraldo
- Instituto de Acuicultura, Universidad Austral de Chile, Sede Puerto Montt, Los Pinos s/n Balneario Pelluco, 5480000 Puerto Montt, Chile
| | - Karla Garrido-Miranda
- Center of Waste Management and Bioenergy, Scientific and Technological Bioresource Nucleus, BIOREN-UFRO, Universidad de La Frontera, P.O. Box 54-D, 4811230 Temuco, Chile
| | - Verónica A Jiménez
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Sede Concepción, Autopista Concepción-Talcahuano, 4260000 Talcahuano, Chile
| | - Bruno F Urbano
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile
| | - Eduardo D Pereira
- Departamento de Química Analítica e Inorgánica Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile
| |
Collapse
|
17
|
Fu B, Lin HC, Liu YC, Lin JR, Xiong WM, Deng SJ, Chen N, Liang R, Zhao P. VEGF aptamer/i-motif-grafted multi-functional SPION nanocarrier for chemotherapeutic/phototherapeutic synergistic research. J Biomater Appl 2021; 36:1277-1288. [PMID: 34689658 DOI: 10.1177/08853282211049620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chemotherapeutic agents and photosensitizers often suffer from poor tumor selectivity, high side toxicity, or low water solubility. To address these problems, various drug delivery systems (DDS) have been explored but most of them are toxic, difficult to synthesize, or of single function. In order to design a highly biocompatible, conveniently prepared, multi-functional drug delivery system, herein, an aptamer of vascular endothelial growth factor (VEGF) and a cytosine (C)-DNA fragment were grafted on the surface of superparamagnetic iron oxide nanoparticles (SPION), and then a chemotherapeutic agent daunomycin (DNM) and a photosensitizer 5, 10, 15, 20-tetra (phenyl-4-N-methyl-4-pyridyl) porphyrin (TMPyP) were self-assembled with the hybridized VEGF-based DNA structure. By loading DNM and TMPyP, the DDS displayed strong chemotherapeutic/phototherapeutic capability against cancer cells via mechanisms such as mitochondrial dysfunction and ROS elevation, which triggered the apoptosis of the tumor cells. The dual delivery of chemotherapeutical agents and photosensitizers with aptamer/C-rich DNA successfully integrated the functions of pH stimuli-responsive drug release and chemotherapeutic/phototherapeutic modalities into one single system and thus could be considered as an ideal drug delivery vehicle with great potential in clinic.
Collapse
Affiliation(s)
- Bo Fu
- College of Health Industry, Zhongshan Torch Polytechnic, Guangdong, China
| | - Hui-Chao Lin
- Cang Zhou People's Hospital, Cangzhou, China.,School of Chemistry and Chemical Engineering, 71237Guangdong Pharmaceutical University, Guangdong, PR China
| | - Ying-Chun Liu
- College of Health Industry, Zhongshan Torch Polytechnic, Guangdong, China
| | - Jie-Rou Lin
- Cang Zhou People's Hospital, Cangzhou, China
| | - Wen-Ming Xiong
- College of Health Industry, Zhongshan Torch Polytechnic, Guangdong, China
| | | | - Nian Chen
- College of Health Industry, Zhongshan Torch Polytechnic, Guangdong, China
| | - Rui Liang
- Cang Zhou People's Hospital, Cangzhou, China
| | - Ping Zhao
- School of Chemistry and Chemical Engineering, 71237Guangdong Pharmaceutical University, Guangdong, PR China
| |
Collapse
|
18
|
Zhang L, Jiang D, Shan X, Du X, Wei M, Zhang Y, Chen Z. Visible light-driven self-powered aptasensors for ultrasensitive Microcystin-LR detection based on the carrier density effect of N-doped graphene hydrogel/hematite Schottky junctions. Analyst 2021; 146:6220-6227. [PMID: 34523620 DOI: 10.1039/d1an01462e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this work, a novel visible light-driven self-powered photoelectrochemical (PEC) platform was designed based on 3D N-doped graphene hydrogel/hematite nanocomposites (NGH/Fe2O3) via a facile one-pot hydrothermal route. The coupling NGH with Fe2O3 could generate a Schottky junction, which promoted the separation of charges. Moreover, Mott-Schottky measurements validated that the carrier concentration achieved by NGH/Fe2O3 was about 3.4 × 103 times in comparison to that of pure Fe2O3, which was beneficial for efficient charge transfer. Owing to the carrier density effect and Schottky junction, the photocurrent of the as-fabricated NGH/Fe2O3 nanocomposites was 6.9-fold higher than that of pure Fe2O3. On the basis of such excellent Schottky junctions, an ultrasensitive visible light-induced self-powered PEC aptasensor was developed using a Microcystin-LR (MC-LR) aptamer. The as-fabricated PEC aptasensor displayed good analytical performance toward MC-LR detection in terms of wide linear range (1 pM-5 nM), low detection limit (0.23 pM, S/N = 3), excellent selectivity and high stability. This new strategy can provide a way for regulating nanostructures for more sensitive PEC sensors by increasing the carrier density.
Collapse
Affiliation(s)
- Linhua Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Ding Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China. .,Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Xueling Shan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China. .,Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Xiaojiao Du
- Oakland International Associated Laboratory, School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou, Jiangsu, 213032, P. R. China
| | - Meng Wei
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Yude Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Zhidong Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China. .,Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| |
Collapse
|
19
|
Zhao P, Tang ZW, Lin HC, Djuanda D, Zhu Z, Niu Q, Zhao LM, Qian YN, Cao G, Shen JL, Fu B. VEGF aptamer/i-motif-based drug co-delivery system for combined chemotherapy and photodynamic therapy. Photodiagnosis Photodyn Ther 2021; 36:102547. [PMID: 34562647 DOI: 10.1016/j.pdpdt.2021.102547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Nucleic acids used as drug delivery systems (DDS) have gained attention because of their biosafety and effortless synthesis. G-quadruplex (G4) structured aptamer such as AS1411 was frequently employed to deliver photosensitizers or chemotherapeutic agents while other aptamers were seldomly reported in this field. METHODS Herein, a chemical anticancer drug daunomycin (DNM), and a photosensitizer 5, 10, 15, 20-tetra (phenyl-4-N-methyl-4-pyridyl) porphyrin (TMPyP) were physically assembled with a novel DNA structure composed of an aptamer of vascular endothelial growth factor (VEGF) and a cytosine (C)-rich DNA fragment (gc-34). Spectral and molecular mimicking methods were employed to research the drug loading/releasing process. The in vitro cytotoxicity was studied by MTT, ROS, cell cycle, and cell apoptotic assays and the in vivo anticancer efficiency was evaluated by the inhibitive effect on the cancerous growth of MCF-7 tumor-bearing nude mice. RESULTS The G4-structured VEGF aptamer delivered TMPyP successfully for the first time. The designed DDS displayed sensitive VEGF/pH controlled drug release. The co-delivery of DNM and TMPyP exhibited high ROS production, significant cell cycle arresting and evident cell apoptosis, and displayed superior cytotoxicity against tumor cells compared with individual agents in vitro. In vivo studies showed that the dual-drug loaded system can greatly inhibit tumor growth with chemotherapeutic/photodynamic synergistic effects. CONCLUSION The co-delivery of DNM and TMPyP with aptamer/C-rich DNA successfully integrates the functions of VEGF/pH stimuli-responsive drug release and chemotherapeutic/phototherapeutic modalities into one single system, and may have great potential in cancer treatment.
Collapse
Affiliation(s)
- Ping Zhao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Education Mega Centre, No. 280, Waihuandong Road, Guangzhou 510006, PR China.
| | - Zi-Wei Tang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Education Mega Centre, No. 280, Waihuandong Road, Guangzhou 510006, PR China
| | - Hui-Chao Lin
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Education Mega Centre, No. 280, Waihuandong Road, Guangzhou 510006, PR China
| | - David Djuanda
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhaowei Zhu
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qiang Niu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Education Mega Centre, No. 280, Waihuandong Road, Guangzhou 510006, PR China; Department of plastic surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Li-Min Zhao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Education Mega Centre, No. 280, Waihuandong Road, Guangzhou 510006, PR China
| | - Yu-Na Qian
- Department of plastic surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Gao Cao
- Department of plastic surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Jian-Liang Shen
- Department of plastic surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P. R. China.
| | - Bo Fu
- College of Health Industry, Zhongshan Torch Polytechnic, No. 7 Xingye Road, Zhongshan 528436, Guangdong, China.
| |
Collapse
|
20
|
Li B, Liu Y, Zhang H, Liu Y, Liu Y, Xie P. Research progress in the functionalization of microcystin-LR based on interdisciplinary technologies. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214041] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Ding R, Chen Y, Wang Q, Wu Z, Zhang X, Li B, Lin L. Recent advances in quantum dots-based biosensors for antibiotic detection. J Pharm Anal 2021; 12:355-364. [PMID: 35811614 PMCID: PMC9257440 DOI: 10.1016/j.jpha.2021.08.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 07/21/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Affiliation(s)
- Rui Ding
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yue Chen
- School of Nursing, Nanjing Medical University, Nanjing, 211166, China
| | - Qiusu Wang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Zhengzhang Wu
- Jiangsu Conat Biological Products Co., Ltd., Taixing, Jiangsu, 225400, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
- Corresponding author.
| | - Lei Lin
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
- Corresponding author. .
| |
Collapse
|
22
|
Smith DM, Keller A. DNA Nanostructures in the Fight Against Infectious Diseases. ADVANCED NANOBIOMED RESEARCH 2021; 1:2000049. [PMID: 33615315 PMCID: PMC7883073 DOI: 10.1002/anbr.202000049] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
Throughout history, humanity has been threatened by countless epidemic and pandemic outbreaks of infectious diseases, from the Justinianic Plague to the Spanish flu to COVID-19. While numerous antimicrobial and antiviral drugs have been developed over the last 200 years to face these threats, the globalized and highly connected world of the 21st century demands for an ever-increasing efficiency in the detection and treatment of infectious diseases. Consequently, the rapidly evolving field of nanomedicine has taken up the challenge and developed a plethora of strategies to fight infectious diseases with the help of various nanomaterials such as noble metal nanoparticles, liposomes, nanogels, and virus capsids. DNA nanotechnology represents a comparatively recent addition to the nanomedicine arsenal, which, over the past decade, has made great progress in the area of cancer diagnostics and therapy. However, the past few years have seen also an increasing number of DNA nanotechnology-related studies that particularly focus on the detection and inhibition of microbial and viral pathogens. Herein, a brief overview of this rather young research field is provided, successful concepts as well as potential challenges are identified, and promising directions for future research are highlighted.
Collapse
Affiliation(s)
- David M. Smith
- DNA Nanodevices UnitDepartment DiagnosticsFraunhofer Institute for Cell Therapy and Immunology IZI04103LeipzigGermany
- Peter Debye Institute for Soft Matter PhysicsFaculty of Physics and Earth SciencesUniversity of Leipzig04103LeipzigGermany
- Institute of Clinical ImmunologyUniversity of Leipzig Medical School04103LeipzigGermany
- Dhirubhai Ambani Institute of Information and Communication TechnologyGandhinagar382 007India
| | - Adrian Keller
- Technical and Macromolecular ChemistryPaderborn UniversityWarburger Str. 10033098PaderbornGermany
| |
Collapse
|
23
|
Fluorometric detection of cancer marker FEN1 based on double-flapped dumbbell DNA nanoprobe functionalized with silver nanoclusters. Anal Chim Acta 2021; 1148:238194. [DOI: 10.1016/j.aca.2020.12.069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/26/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023]
|
24
|
Li B, Xia A, Xie S, Lin L, Ji Z, Suo T, Zhang X, Huang H. Signal-Amplified Detection of the Tumor Biomarker FEN1 Based on Cleavage-Induced Ligation of a Dumbbell DNA Probe and Rolling Circle Amplification. Anal Chem 2021; 93:3287-3294. [PMID: 33529005 DOI: 10.1021/acs.analchem.0c05275] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Flap endonuclease 1 (FEN1), an endogenous nuclease with the ability to cleave the 5' overhang of branched dsDNA, is of significance in DNA replication and repair. The overexpression of FEN1 is common in cancer because of the ubiquitous upregulation of DNA replication; thus, FEN1 has been recognized as a potential biomarker in oncological investigations. However, few analytical methods targeting FEN1 with high sensitivity and simplicity have been developed. This work developed a signal-amplified detection of FEN1 based on the cleavage-induced ligation of a dumbbell DNA probe and rolling circle amplification (RCA). A flapped dumbbell DNA probe (FDP) was rationally designed with a FEN1 cleavable flap at the 5' end. The cleavage generated a nick site with juxtaposed 5' phosphate and 3' hydroxyl ends, which were linkable by T4 DNA ligase to form a closed dumbbell DNA probe (CDP) with a circular conformation. The CDP functioned as a template for RCA, which produced abundant DNA that could be probed using SYBR Green I. The highly sensitive detection of FEN1 with a limit of detection of 15 fM was achieved, and this method showed high specificity, which enabled the quantification of FEN1 in real samples. The inhibitory effects of chemicals on FEN1 were also evaluated. This study represents the first attempt to develop an FEN1 assay that involves signal amplification, and the novel biosensor method enriches the tools for FEN1-based diagnostics.
Collapse
Affiliation(s)
- Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Anqi Xia
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Siying Xie
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Lei Lin
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Zhirun Ji
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Tiying Suo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
25
|
Impedimetric Microcystin-LR Aptasensor Prepared with Sulfonated Poly(2,5-dimethoxyaniline)–Silver Nanocomposite. Processes (Basel) 2021. [DOI: 10.3390/pr9010179] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This paper presents a novel impedimetric aptasensor for cyanobacterial microcystin-LR (L, l-leucine; R, l-arginine) (MC-LR) containing a 5′ thiolated 60-mer DNA aptamer (i.e., 5′-SH-(CH2)6GGCGCCAAACAGGACCACCATGACAATTACCCATACCACCTCATTATGCCCCATCT CCGC-3′). A nanocomposite electrode platform comprising biocompatible poly(2,5-dimethoxyaniline) (PDMA)-poly(vinylsulfonate) (PVS) and silver nanoparticle (Ag0) on a glassy carbon electrode (GCE), i.e., (GCE/PDMA–PVS–Ag0) was used in the biosensor development. Small-angle X-ray scattering (SAXS) spectroscopic analysis revealed that the PDMA–PVS–Ag0 nanocomposites were polydispersed and contained embedded Ag0. Electrochemical impedance spectroscopy (EIS) responses of the aptasensor gave a dynamic linear range (DLR) and limit of detection (LOD) values of 0.01–0.1 ng L−1 MC-LR and 0.003 ng L−1 MC-LR, respectively. The cross-reactivity studies, which was validated with enzyme-linked immunosorbent assay (ELISA), showed that the aptasensor possesses excellent selectivity for MC-LR.
Collapse
|