1
|
Xiang Y, Liu Z, Cheng ZL. Diatomite supported highly-dispersed ZnO/Zn-co-embedded ZIF-8 derived porous carbon composites for adsorption desulfurization. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134399. [PMID: 38678713 DOI: 10.1016/j.jhazmat.2024.134399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
The metal organic framework (MOFs)-derived porous carbon materials with highly dispersed metal active sites were of the exclusive application foreground in many field, such as catalyst, electrochemistry, adsorption desulfurization and so on. However, the loss issue of metal active sites in MOFs frame was indispensable during the high temperature carbonization because of the lower boiling point of many metals, thus fundamentally affecting the atom-scale uniform distribution merit of MOFs-derived porous carbon materials. This work was to provide a novel strategy to address the loss issue of the active metal volatilization in the fabrication of MOFs-derived porous carbon materials. The ZnO nanosheets were pre-grown on the surface of diatomite by using in-situ microwave-assisted preparation, and thereafter the Zn-containing ZIF-8 particles covered the surface of ZnO nanosheets by virtue of the ZnO-induced growth. The results affirmed that the high content Zn-doped porous carbon materials were achieved and the Zn volatilization in MOFs was restrained on account of the occurrence of ZnO on diatomite (DE) surface during the carbonization. The adsorption desulfurization performance of the ZnO/Zn-embedded porous carbon materials/DE (ZnO/Zn/C@DE) was examined by the sulfur-containing compounds in simulated oil. The adsorption desulfurization performance investigation indicated that the ZnO/Zn/C@DE had the optimum adsorption capacities of 45.3 mg/g for benzothiophene and 37.4 mg/g for thiophene. Nonetheless, the competitive adsorption desulfurization finding of toluene in simulated oil showed that the adsorption capacities of ZnO/Zn/C@DE for TH and BT were dramatically descended, suggesting the presence of S-M interaction, wherein S stood for the S atom in a thiophene molecule and their analogs, and M for Zn atoms in porous carbon materials.
Collapse
Affiliation(s)
- Yang Xiang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Zan Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Zhi-Lin Cheng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| |
Collapse
|
2
|
Ren T, Zhan H, Xu H, Chen L, Shen W, Xu Y, Zhao D, Shao Y, Wang Y. Recycling and high-value utilization of polyethylene terephthalate wastes: A review. ENVIRONMENTAL RESEARCH 2024; 249:118428. [PMID: 38325788 DOI: 10.1016/j.envres.2024.118428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/09/2024]
Abstract
Polyethelene terephthalate (PET) is a well-known thermoplastic, and recycling PET waste is important for the natural environment and human health. This study provides a comprehensive overview of the recycling and reuse of PET waste through energy recovery and physical, chemical, and biological recycling. This article summarizes the recycling methods and the high-value products derived from PET waste, specifically detailing the research progress on regenerated PET prepared by the mechanical recycling of fiber/yarn, fabric, and composite materials, and introduces the application of PET nanofibers recycled by physical dissolution and electrospinning in fields such as filtration, adsorption, electronics, and antibacterial materials. This article explains the energy recovery of PET through thermal decomposition and comprehensively discusses various chemical recycling methods, including the reaction mechanisms, catalysts, conversion efficiencies, and reaction products, with a brief introduction to PET biodegradation using hydrolytic enzymes provided. The analysis and comparison of various recycling methods indicated that the mechanical recycling method yielded PET products with a wide range of applications in composite materials. Electrospinning is a highly promising recycling strategy for fabricating recycled PET nanofibers. Compared to other methods, physical recycling has advantages such as low cost, low energy consumption, high value, simple processing, and environmental friendliness, making it the preferred choice for the recycling and high-value utilization of waste PET.
Collapse
Affiliation(s)
- Tianxiang Ren
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Zhejiang Sub-center of National Carbon Fiber Engineering Technology Research Center, Shaoxing Sub-center of National Engineering Research Center for Fiber-based Composites, Shaoxing Key Laboratory of High Performance fibers & products, College of Textile and Garment, Shaoxing University, Shaoxing, 312000, China
| | - Haihua Zhan
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Zhejiang Sub-center of National Carbon Fiber Engineering Technology Research Center, Shaoxing Sub-center of National Engineering Research Center for Fiber-based Composites, Shaoxing Key Laboratory of High Performance fibers & products, College of Textile and Garment, Shaoxing University, Shaoxing, 312000, China
| | - Huaizhong Xu
- Department of Biobased Materials Science, Kyoto Institute of Technology, Matsugasaki, Sakyo-Ku, Kyoto, 606-8585, Japan
| | - Lifeng Chen
- Shaoxing Baojing Composite Materials Co., Ltd., Shaoxing, 312000, China
| | - Wei Shen
- Shaoxing Baojing Composite Materials Co., Ltd., Shaoxing, 312000, China
| | - Yudong Xu
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, China
| | - Defang Zhao
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Zhejiang Sub-center of National Carbon Fiber Engineering Technology Research Center, Shaoxing Sub-center of National Engineering Research Center for Fiber-based Composites, Shaoxing Key Laboratory of High Performance fibers & products, College of Textile and Garment, Shaoxing University, Shaoxing, 312000, China; School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China; Hailiang Group Co., Ltd., Hangzhou, 310000, China.
| | - Yuanyi Shao
- College of Textiles, Donghua University, Shanghai, 201620, China.
| | - Yongtao Wang
- School of Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
3
|
Fang X, Zou J, Mi X, Ma N, Dai W. Synergistic Boosting Capture Ability of Thiophene Sulfur with a Novel Dual-Amino-Functionalized MOF-on-MOF Adsorbent. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2405-2415. [PMID: 38233372 DOI: 10.1021/acs.langmuir.3c03891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
A single metal-organic framework (MOF) exhibits some drawbacks in deep adsorptive desulfurization such as insufficient functional active sites, water instability, low surface area, etc. Herein, a dual-amino-functionalized (ZIF-8-NH2)-PVP-(Cu-BTC-NH2) core-shell dual MOF adsorbent was first synthesized by the hydrothermal growth method. The adsorption performance of thiophene sulfur (ThS) is systematically investigated and evaluated at mild temperatures through batch tests. The (ZIF-8-NH2)-PVP-(Cu-BTC-NH2) exhibits good adsorption ability toward ThS, which is attributed to the associative effects of dual MOFs with structure features such as hydrogen bond, open metal active sites, suitable pore sizes and π-π conjugation, etc. Meanwhile, the (ZIF-8-NH2)-PVP-(Cu-BTC-NH2) embedded 25 wt % water still remains crystal intact and good adsorption desulfurization performance, which is attributed to the NH2- functional groups. After five recycles, more than 90% ThS uptake onto (ZIF-8-NH2)-PVP-(Cu-BTC-NH2) could be recovered, exhibiting good reuse performance. This study presents a new strategy for grafting MOF-on-MOF with specific functional groups to improve the abilities of desulfurization and water resistance.
Collapse
Affiliation(s)
- Xiuxuan Fang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Jiaying Zou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Xichen Mi
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Na Ma
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Wei Dai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| |
Collapse
|
4
|
Xiang Y, Liu Z, Cheng Z. Cu +-Doped PVA-Derived Mesoporous Carbon@Diatomite Adsorbent for Selective Adsorption Desulfurization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14595-14604. [PMID: 37811633 DOI: 10.1021/acs.langmuir.3c01839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Herein, we successfully constructed a Cu+-doped PVA-derived mesoporous carbon@diatomite (DE) composite by virtue of N2-suffered carbonization and self-reduction at a high temperature. The structure and composition of C/Cu@DE composite adsorbents were determined by a series of characterizations. The results affirmed that Cu+ species are highly scattered in PVA-derived mesoporous carbon, which covered the DE surface. The effect of carbonization temperature on the structure and composition of the C/Cu@DE composite adsorbents were intensively investigated, indicating that the C/Cu@DE composite at an 800 °C carbonization temperature (C/Cu@DE-800 °C) showed the formation of many Cu+ species and preferable hierarchical pore properties. The adsorption experiments of benzothiophene (BT) indicated that C/Cu@DE-800 °C possessed a better adsorption capacity. The adsorption behavior of BT onto C/Cu@DE-800 °C was investigated by a variety of adsorption times, initial concentrations, and recycle times, of which the largest adsorption capacity for BT attained 34.2 mg/g. Furthermore, the adsorption kinetics, intraparticle diffusion, adsorption isotherms, and adsorption thermodynamics of BT onto C/Cu@DE-800 °C was deeply studied, which contributed to the proposed adsorption mechanism.
Collapse
Affiliation(s)
- Yang Xiang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Zan Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Zhilin Cheng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
5
|
Xiao G, Xie Q, He Y, Huang X, Richardson JJ, Dai M, Hua J, Li X, Guo J, Liao X, Shi B. Synergistic Adsorption and In Situ Catalytic Conversion of SO 2 by Transformed Bimetal-Phenolic Functionalized Biomass. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12911-12921. [PMID: 37459229 DOI: 10.1021/acs.est.3c03827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
SO2 removal is critical to flue gas purification. However, based on performance and cost, materials under development are hardly adequate substitutes for active carbon-based materials. Here, we engineered biomass-derived nanostructured carbon nanofibers integrated with highly dispersed bimetallic Ti/CoOx nanoparticles through the thermal transition of metal-phenolic functionalized industrial leather wastes for synergistic SO2 adsorption and in situ catalytic conversion. The generation of surface-SO32- and peroxide species (O22-) by Ti/CoOx achieved catalytic conversion of adsorbed SO2 into value-added liquid H2SO4, which can be discharged from porous nanofibers. This approach can also avoid the accumulation of the adsorbed SO2, thereby achieving high desulfurization activity and a long operating life over 6000 min, preceding current state-of-the-art active carbon-based desulfurization materials. Combined with the techno-economic and carbon footprint analysis from 36 areas in China, we demonstrated an economically viable and scalable solution for real-world SO2 removal on the industrial scale.
Collapse
Affiliation(s)
- Gao Xiao
- Department of Environmental Science and Engineering, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- National Engineering Technology Research Center for Flue Gas Desulfurization, Sichuan University, Chengdu, Sichuan 610065, China
| | - Qiuping Xie
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yunxiang He
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xin Huang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan 610065, China
| | - Joseph J Richardson
- Department of Chemical and Environmental Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Manna Dai
- Computing and Intelligence Department, Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), 138632 Singapore, Republic of Singapore
| | - Jian Hua
- National Engineering Technology Research Center for Flue Gas Desulfurization, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xin Li
- China National Chemical Engineering Group (CNCEC), Chongqing 408000, China
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Xuepin Liao
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan 610065, China
| | - Bi Shi
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
6
|
Li Y, Yuan X, Guan X, Bai J, Wang H. One-pot synthesis of siliceous ferrihydrite - coated halloysite nanorods in alkaline medium: Structure, properties and cadmium adsorption performance. J Colloid Interface Sci 2023; 636:435-449. [PMID: 36641819 DOI: 10.1016/j.jcis.2023.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
The application of amorphous ferrihydrite (Fh) for Cd(II) removal is restricted by its unstable and easily transformable nature. Although doping with silicates stabilized ferrihydrite, its product siliceous ferrihydrite (SiFh) again suffered from the disadvantage of spontaneous agglomeration. Herein, ferrihydrite was hybridized with halloysite nanotubes (HNTs) to prepare a novel siliceous ferrihydrite - coated halloysite nanorods (SiFh@HNTs) in alkaline medium, to break through the current barriers. The characterization results showed that SiFh@HNTs could simultaneously overcome the defects of easy phase transformation of ferrihydrite and easy aggregation of SiFh nanoparticles (NPs). Meanwhile, the optimal SiFh@HNT40 with halloysite content of 40 % formed a well-developed mesoporous structure and exhibited the desired surface properties: a high specific surface area of 303.4 m2/g, an isoelectric point as low as pHiep = 4.5, and rich functional Fe - OH groups. The formation mechanism of such excellent sturcture-properties of SiFh@HNT40 were mainly attributed to two factors: the generation of smaller (∼5 nm) SiFh NPs induced by the integration of halloysite-derived SiO44- into ferrihydrite, and the dispersion of SiFh NPs on clay nanotubes. Furthermore, the adsorption capacity of SiFh@HNT40 for Cd(II) was up to 137.8 mg/g at 30 °C and pH 6, which was much higher than that of aggregated ferrihydrite (11.2 mg/g), halloysite (18.8 mg/g) and goethite (49.4 mg/g). The adsorption thermodynamics study revealed the adsorption of Cd(II) on SiFh@HNT40 was clearly chemisorption with a (ΔHads)q of 43.3 kJ/mol. Characterization results of XPS and FTIR confirmed that the rich Fe - OH groups on SiFh@HNT40 was the main adsorption sites, and Cd(II) was specifically adsorbed by inner-sphere surface complexation. In addition, SiFh@HNT40 had application potential in the mixed-metal wastewaters treatment. Cyclic regeneration experiments showed that SiFh@HNT40 had good regeneration performance and could be reused many times.
Collapse
Affiliation(s)
- Ying Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Xingzhong Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Xian Guan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Jing Bai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Hou Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
7
|
Fabrication and Characterization of MXene/Carbon Composite-Based Nanofibers (MXene/CNFs) Membrane: An Efficient Adsorbent Material for Removal of Pb+2 and As+3 Ions from Water. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
8
|
Magnetic fluorescent probe of hydroxylated-halloysite and nitrogen-doped graphene quantum dots in molecularly imprinted polymer to enrich and determine marbofloxacin. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Engineering the electronic and geometric structure of VOx/BN@TiO2 heterostructure for efficient aerobic oxidative desulfurization. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2242-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Le Q, Cheng Z. Template-synthesized nano-Ag2O@HNTs-constructed hierarchical porous-structured PAN composite nanofiber membrane towards selective adsorption desulfurization. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
11
|
Wang Z, Cui H, Xu H, Sheng Y. Decorated reduced graphene oxide transfer sulfides into sulfur and sulfone in wastewater. RSC Adv 2022; 12:28586-28598. [PMID: 36320494 PMCID: PMC9539723 DOI: 10.1039/d2ra04323h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/21/2022] [Indexed: 11/12/2022] Open
Abstract
Sulfides cannot be completely removed using oxidation due to the production of sulfate. In this work, a reduced graphene oxide (RGO)/Fe3O4 hybrid material was synthesized via a simple in situ chemical method for sulfide removal. The adsorption capacity of RGO/Fe3O4 was evaluated by sulfide removal from aqueous solution, and different experimental parameters including contact time, solution pH, adsorbent dosage, ion strength and temperature were investigated. The equilibrium data were in accordance with the Langmuir linear isotherm with a maximum uptake capacity of 173 mg g-1. The adsorption of sulfide by the RGO/Fe3O4 hybrid material can be attributed to the synergistic effect of both chemical and physical adsorption according to kinetic, adsorption isotherm and thermodynamic studies. The RGO/Fe3O4 material with oxygenated functional groups could convert sulfides to stable elemental sulfur and sulfone organics. The external magnetic field could easily separate the magnetic RGO/Fe3O4 adsorbent from the liquid. This research provides a novel strategy for the green and low-cost treatment of sulfide-containing wastewater by the RGO/Fe3O4 hybrid material.
Collapse
Affiliation(s)
- Zheng Wang
- School of Chemistry and Chemical Engineering, Yantai University Yantai 264005 China
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences Yantai 264003 China +86-0535-2109265
| | - Hongtao Cui
- School of Chemistry and Chemical Engineering, Yantai University Yantai 264005 China
| | - Hengduo Xu
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences Yantai 264003 China +86-0535-2109265
| | - Yanqing Sheng
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences Yantai 264003 China +86-0535-2109265
| |
Collapse
|
12
|
Hu S, Chen R, Lu P, Zheng Z, Gu G, Wang M, Zhang X. Electrospun PAN-HNTs composite nanofiber membranes for efficient electrostatic capture of particulate matters. NANOTECHNOLOGY 2022; 33:265702. [PMID: 35290964 DOI: 10.1088/1361-6528/ac5df4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
The fine particulate matter (PM) pollution has become a serious concern to public health. As the core part of PM air filters, high-performance electrostatic nanofiber membranes are urgently needed. However, the existing air filters remain challenging to further decrease the pressure drop to improve the wearer comfort. On the other hand, the rapidly disappearing static electricity of the existing electrostatic nanofiber inevitably gives rise to a relatively short service life. Here, we demonstrate a novel and enhanced electrostatic nanofiber membrane by introducing the halloysite nanotubes (HNTs) to the traditional electrospun PAN nanofiber membrane. The optimal PAN-HNTs nanofiber membrane shows a high removal efficiency of 99.54%, a low pressure drop of 39 Pa, and a high quality factor of 0.89 Pa-1. This greatly improved filtration performance can be attributed to the increased surface area and diameter of nanofiber after introducing the HNTs as additives with suitable doping concentrations. More importantly, compared with the pure PAN nanofiber membrane, the electrostatic capacity of the PAN-HNTs nanofiber membrane is significantly enhanced, which is confirmed by the leaf electroscope. After introducing the HNTs as additives, the surface of the PAN-HNTs nanofiber membrane becomes hydrophilic, which benefits for preventing foulants from attaching to the surface. We anticipate that the PAN-HNTs nanofibers as high-performance membrane air filters will bring great benefits to public health.
Collapse
Affiliation(s)
- Shiqian Hu
- Department of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Ruowang Chen
- Key Laboratory of MEMS of Ministry of Education, School of Electronics Science and Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Peng Lu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Zida Zheng
- Department of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Gangwei Gu
- Department of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Mingyuan Wang
- Key Laboratory of MEMS of Ministry of Education, School of Electronics Science and Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Xiaowei Zhang
- Department of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, People's Republic of China
- National Laboratory of Solid State Microstructures, Department of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, People's Republic of China
| |
Collapse
|
13
|
Lv Y, Jiao J, Wang R, Jiao W. Silicotungstic acid-supported C@SiO2 nanospheres as an efficient oxidative desulfurization catalyst. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117225] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
He Z, Wang H, Li M, Feng L, Niu J, Li Z, Jia X, Hu G. Amorphous cobalt oxide decorated halloysite nanotubes for efficient sulfamethoxazole degradation activated by peroxymonosulfate. J Colloid Interface Sci 2021; 607:857-868. [PMID: 34534769 DOI: 10.1016/j.jcis.2021.08.168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/15/2021] [Accepted: 08/25/2021] [Indexed: 11/15/2022]
Abstract
In this study, a new hollow nanotube material, 30% Co-CHNTs was prepared by the impregnation-chemical reduction-calcination method. This material can be used as a peroxymonosulfate (PMS) activator to catalyse the degradation of sulfamethoxazole (SMX). The best reaction conditions that correspond to the degradation rate of SMX, up to 97.5%, are as follows: the concentration of SMX is 10 mg L-1, the amount of catalyst is 0.20 g L-1, the dosage is 1.625 mM, and the solution pH is 6.00. X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma optical emission spectrometry (ICP-OES) show that the calcined composites mainly stimulate an increase in the content of bivalent cobalt in PMS and reduce the leaching of cobalt ions after the reaction. Additionally, the 30% Co-CHNTs + PMS reaction system exhibits a reasonable SMX degradation rate in a natural organic matter solution and excellent stability after three repeated experiments. Furthermore, the possible degradation mechanism in the 30% Co-CHNTs + PMS reaction system was analysed through electron paramagnetic resonance (EPR) and free-radical capture experiments, and it was observed that the non-radical degradation of 1O2 plays a leading role in SMX degradation. Finally, according to the nine degradation intermediates detected by liquid chromatography-mass spectrometry (LC-MS), four possible SMX degradation routes were proposed. This study proved that a 30% Co-CHNTs heterogeneous catalyst is easily prepared, inexpensive, and environmentally friendly and has potential application in antibiotic wastewater treatment.
Collapse
Affiliation(s)
- Zhuang He
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Institute for Ecological Research and Pollution Control of Plateau Lakes, Institute of International Rivers and Eco-Security, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Huaisheng Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Meng Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Jianrui Niu
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Zaixing Li
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Xiuxiu Jia
- Institute for Ecological Research and Pollution Control of Plateau Lakes, Institute of International Rivers and Eco-Security, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Guangzhi Hu
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Institute for Ecological Research and Pollution Control of Plateau Lakes, Institute of International Rivers and Eco-Security, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
| |
Collapse
|
15
|
Electrical Conductivity, Oil Absorption and Electric Heating of Carbon Black-modified Carbon Nanofibers. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1109-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Zhang X, Ponce V, Galvez-Aranda DE, Zhou G, Zhou H, Seminario JM. CS 2 Removal from C 5 Distillates by Reactive Molecular Dynamics Simulations. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiance Zhang
- College of New Energy and Materials, China University of Petroleum-Beijing, Beijing 102249, China
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Victor Ponce
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Diego E. Galvez-Aranda
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Guanglin Zhou
- College of New Energy and Materials, China University of Petroleum-Beijing, Beijing 102249, China
| | - Hongjun Zhou
- College of New Energy and Materials, China University of Petroleum-Beijing, Beijing 102249, China
| | - Jorge M. Seminario
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
17
|
Kesavan G, Chen S. Manganese oxide anchored on carbon modified halloysite nanotubes: An electrochemical platform for the determination of chloramphenicol. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126243] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|