1
|
Pawłowska B, Biczak R. Drugs in the environment - Impact on plants: A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104557. [PMID: 39245245 DOI: 10.1016/j.etap.2024.104557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/19/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024]
Abstract
Medicines, like food, are necessities. Many of the commonly used pharmaceuticals, especially antibiotics and NSAIDs end up in the environment and are detected in it (especially in water) at concentrations in the ng·L-1- μg·L-1 range. Although the concentrations of individual drugs in the environment are low, their high biological activity can cause them to be toxic to the environment. This review analyzes and summarizes the effects of drugs, primarily antibiotics and NSAIDs on photosynthesizing organisms, i.e., algae, aquatic and terrestrial plants. Acute drug toxicity to algae and plants occurs most often at high, often non-existent environmental concentrations, while sublethal effects occur at low drug concentrations. The review also points out the problems associated with ecotoxicological studies and the lack of systemic solutions to better assess the risks associated with the presence of drugs in the environment.
Collapse
Affiliation(s)
- Barbara Pawłowska
- Jan Długosz University in Czestochowa, The Faculty of Science and Technology, 13/15 Armii Krajowej Av., Częstochowa 42-200, Poland.
| | - Robert Biczak
- Jan Długosz University in Czestochowa, The Faculty of Science and Technology, 13/15 Armii Krajowej Av., Częstochowa 42-200, Poland
| |
Collapse
|
2
|
Baldasso V, Sayen S, Gomes CAR, Frunzo L, Almeida CMR, Guillon E. Metformin and lamotrigine sorption on a digestate amended soil in presence of trace metal contamination. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133635. [PMID: 38306838 DOI: 10.1016/j.jhazmat.2024.133635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
The antidiabetic drug metformin and antiepileptic drug lamotrigine are contaminants of emerging concern that have been detected in biowaste-derived amendments and in the environment, and their fate must be carefully studied. This work aimed to evaluate their sorption behaviour on soil upon digestate application. Experiments were conducted on soil and digestate-amended soil as a function of time to study kinetic processes, and at equilibrium also regarding the influence of trace metals (Pb, Ni, Cr, Co, Cu, Zn) at ratio pharmaceutical/metal 1/1, 1/10, and 1/100. Pharmaceutical desorption experiments were also conducted to assess their potential mobility to groundwater. Results revealed that digestate amendment increased metformin and lamotrigine adsorbed amounts by 210% and 240%, respectively, increasing organic matter content. Metformin adsorption kinetics were best described by Langmuir model and those of lamotrigine by Elovich and intraparticle diffusion models. Trace metals did not significantly affect the adsorption of metformin in amended soil while significantly decreased that of lamotrigine by 12-39%, with exception for Cu2+ that increased both pharmaceuticals adsorbed amounts by 5 - 8%. This study highlighted the influence of digestate amendment on pharmaceutical adsorption and fate in soil, which must be considered in the circular economy scenario of waste-to-resource.
Collapse
Affiliation(s)
- Veronica Baldasso
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal; Chemistry and Biochemistry Department, Faculty of Sciences, University of Porto, Porto, Portugal; Molecular Chemistry Institute of Reims, ICMR UMR CNRS 7312, University of Reims Champagne-Ardenne, Reims, France.
| | - Stéphanie Sayen
- Molecular Chemistry Institute of Reims, ICMR UMR CNRS 7312, University of Reims Champagne-Ardenne, Reims, France.
| | - Carlos A R Gomes
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal; Chemistry and Biochemistry Department, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Luigi Frunzo
- Department of Mathematics and Applications Renato Caccioppoli, University of Naples Federico II, Napoli, Italy
| | - C Marisa R Almeida
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal; Chemistry and Biochemistry Department, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Emmanuel Guillon
- Molecular Chemistry Institute of Reims, ICMR UMR CNRS 7312, University of Reims Champagne-Ardenne, Reims, France
| |
Collapse
|
3
|
Montemurro N, Manasfi R, Chiron S, Perez S. Evaluation of different QuEChERS-based methods for the extraction of 48 wastewater-derived organic contaminants from soil and lettuce root using high-resolution LC-QTOF with MRM HR and SWATH acquisition modes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20258-20276. [PMID: 38372911 PMCID: PMC10927905 DOI: 10.1007/s11356-024-32423-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
The reuse of treated wastewater in agriculture is an important route of introducing a large number of organic contaminants into the agroecosystem. In this study, a modified QuEChERS-based approach was developed for rapid, simple, and simultaneous extraction of 48 organic wastewater-derived contaminants from soil and lettuce root. Twenty-two different (modification) scenarios of the known (or original) QuEChERS method have been tested, in order to obtain best and well-compromised recoveries for all target compounds for soil and roots. Finally, a common method was chosen for both matrices consisting of a single extraction step using EDTA-Mcllvaine buffer and the unbuffered Original QuEChERS salts. Method performance was accomplished by liquid chromatography coupled with high-resolution mass spectrometry on a QToF-MS system using two different acquisition modes, the ultra-fast high-resolution multiple reaction monitoring (MRMHR) mode and the innovative Sequential Window Acquisition of All Theoretical Fragment-Ion (SWATH) mode. Performance characterization was evaluated in terms of recovery, linearity, intra-day precision, method detection limits (MDLs), method quantification limits (MQLs), and matrix effect (ME). Recoveries in MRMHR mode ranged from 63 to 111% and 54 to 104% for lettuce root and soil, respectively, for most of compounds in MRMHR mode and from 56 to 121% and 54 to 104% for lettuce root and soil, respectively, for most of compounds in SWATH. Whereas, MQLs ranged from 0.03 to 0.92 ng g-1 in MRMHR and from 0.03 to 82 ng g-1 in SWATH for lettuce root, and from 0.02 to 0.44 ng g-1 in MRMHR and 0.02 to 0.14 ng g-1 in SWATH for soil. The method was then applied to follow the target compounds in soil and lettuce root, where the system lettuce-soil was irrigated with treated wastewater under real greenhouse conditions. Five and 17 compounds were detected in lettuce root and soil, respectively.
Collapse
Affiliation(s)
- Nicola Montemurro
- Environmental and Water Chemistry for Human Health (ONHEALTH), Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/Jordi Girona 18-26, 08034, Barcelona, Spain.
| | - Rayana Manasfi
- Environmental and Water Chemistry for Human Health (ONHEALTH), Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/Jordi Girona 18-26, 08034, Barcelona, Spain
- HydroSciences Montpellier (HSM), University of Montpellier, Building 39 - CC57 300, Avenue du Professeur Emile Jeanbrau, 34090, Montpellier, France
| | - Serge Chiron
- HydroSciences Montpellier (HSM), University of Montpellier, Building 39 - CC57 300, Avenue du Professeur Emile Jeanbrau, 34090, Montpellier, France
| | - Sandra Perez
- Environmental and Water Chemistry for Human Health (ONHEALTH), Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/Jordi Girona 18-26, 08034, Barcelona, Spain
| |
Collapse
|
4
|
Mansilla S, Escolà M, Piña B, Portugal J, Iakovides IC, Beretsou VG, Christou A, Fatta-Kassinos D, Bayona JM, Matamoros V. Linking the use of reclaimed water to indicators of crop stress by metabolomic and transcriptomic analyses. A tool to compare water irrigation quality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168182. [PMID: 37907106 DOI: 10.1016/j.scitotenv.2023.168182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 11/02/2023]
Abstract
The occurrence of contaminants of emerging concern (CECs) or heavy metals in reclaimed water used for agricultural irrigation may affect crop morphology and physiology. Here, we analyzed lettuce (Lactuca sativa) grown in outdoor lysimeters and irrigated with either tap water, used as a control, or reclaimed water: CAS-reclaimed water, an effluent from a conventional activated sludge system (CAS) followed by chlorination and sand filtration, or MBR-reclaimed water, an effluent from a membrane biological reactor (MBR). Chemical analyses identified seven CECs in the reclaimed waters, but only two of them were detected in lettuce (carbamazepine and azithromycin). Metabolomic and transcriptomic analyses revealed that irrigation with reclaimed water increased the concentrations of several crop metabolites (5-oxoproline, leucine, isoleucine, and fumarate) and of transcripts codifying for the plant stress-related genes Heat-Shock Protein 70 (HSP70) and Manganese Superoxide Dismutase (MnSOD). In both cases, MBR-water elicited the strongest response in lettuce, perhaps related to its comparatively high sodium adsorption ratio (4.5), rather than to its content in CECs or heavy metals. Our study indicates that crop metabolomic and transcriptomic profiles depend on the composition of irrigating water and that they could be used for testing the impact of water quality in agriculture.
Collapse
Affiliation(s)
- Sylvia Mansilla
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Mònica Escolà
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Benjamin Piña
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - José Portugal
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Iakovos C Iakovides
- Department of Civil and Environmental Engineering, School of Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus; Nireas-International Water Research Centre, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Vasiliki G Beretsou
- Department of Civil and Environmental Engineering, School of Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus; Nireas-International Water Research Centre, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Anastasis Christou
- Agricultural Research Institute, Ministry of Agriculture, Rural Development and Environment, P.O. Box 22016, 1516 Nicosia, Cyprus
| | - Despo Fatta-Kassinos
- Department of Civil and Environmental Engineering, School of Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus; Nireas-International Water Research Centre, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Josep M Bayona
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Víctor Matamoros
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
5
|
Madmon M, Zvuluni Y, Mordehay V, Hindi A, Malchi T, Drug E, Shenker M, Weissberg A, Chefetz B. Pharmacokinetics of the Recalcitrant Drug Lamotrigine: Identification and Distribution of Metabolites in Cucumber Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20228-20237. [PMID: 37935215 PMCID: PMC11137871 DOI: 10.1021/acs.est.3c06685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2023]
Abstract
Treated wastewater is an important source of water for irrigation. As a result, irrigated crops are chronically exposed to wastewater-derived pharmaceuticals, such as the anticonvulsant drug lamotrigine. Lamotrigine is known to be taken up by plants, but its plant-derived metabolites and their distribution in different plant organs are unknown. This study aimed to detect and identify metabolites of lamotrigine in cucumber plants grown for 35 days in a hydroponic solution by using LC-MS/MS (Orbitrap) analysis. Our data showed that 96% of the lamotrigine taken up was metabolized. Sixteen metabolites possessing a lamotrigine core structure were detected. Reference standards confirmed two; five were tentatively identified, and nine molecular formulas were assigned. The data suggest that lamotrigine is metabolized via N-carbamylation, N-glucosidation, N-alkylation, N-formylation, N-oxidation, and amidine hydrolysis. The metabolites LTG-N2-oxide, M284, M312, and M370 were most likely produced in the roots and were translocated to the leaves. Metabolites M272, M312, M314, M354, M368, M370, and M418 were dominant in leaves. Only a few metabolites were detected in the fruits. With an increasing exposure time, lamotrigine leaf concentrations decreased because of continuous metabolism. Our data showed that the metabolism of lamotrigine in a plant is fast and that a majority of metabolites are concentrated in the roots and leaves.
Collapse
Affiliation(s)
- Moran Madmon
- Department
of Analytical Chemistry, Israel Institute
for Biological Research, 7410001 Ness Ziona, Israel
- Department
of Soil and Water Sciences, Institute of Environmental Sciences, Faculty
of Agriculture, Food and Environment, The
Hebrew University of Jerusalem, 7610001 Jerusalem, Israel
| | - Yifat Zvuluni
- Department
of Soil and Water Sciences, Institute of Environmental Sciences, Faculty
of Agriculture, Food and Environment, The
Hebrew University of Jerusalem, 7610001 Jerusalem, Israel
| | - Vered Mordehay
- Department
of Soil and Water Sciences, Institute of Environmental Sciences, Faculty
of Agriculture, Food and Environment, The
Hebrew University of Jerusalem, 7610001 Jerusalem, Israel
| | - Ariel Hindi
- Department
of Soil and Water Sciences, Institute of Environmental Sciences, Faculty
of Agriculture, Food and Environment, The
Hebrew University of Jerusalem, 7610001 Jerusalem, Israel
| | - Tomer Malchi
- Department
of Soil and Water Sciences, Institute of Environmental Sciences, Faculty
of Agriculture, Food and Environment, The
Hebrew University of Jerusalem, 7610001 Jerusalem, Israel
| | - Eyal Drug
- Department
of Analytical Chemistry, Israel Institute
for Biological Research, 7410001 Ness Ziona, Israel
| | - Moshe Shenker
- Department
of Soil and Water Sciences, Institute of Environmental Sciences, Faculty
of Agriculture, Food and Environment, The
Hebrew University of Jerusalem, 7610001 Jerusalem, Israel
| | - Avi Weissberg
- Department
of Analytical Chemistry, Israel Institute
for Biological Research, 7410001 Ness Ziona, Israel
| | - Benny Chefetz
- Department
of Soil and Water Sciences, Institute of Environmental Sciences, Faculty
of Agriculture, Food and Environment, The
Hebrew University of Jerusalem, 7610001 Jerusalem, Israel
| |
Collapse
|
6
|
Bigott Y, Gallego S, Montemurro N, Breuil MC, Pérez S, Michas A, Martin-Laurent F, Schröder P. Fate and impact of wastewater-borne micropollutants in lettuce and the root-associated bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154674. [PMID: 35318055 DOI: 10.1016/j.scitotenv.2022.154674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/24/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
The reuse of water for agricultural practices becomes progressively more important due to increasing demands for a transition to a circular economy. Treated wastewater can be an alternative option of blue water used for the irrigation of crops but its risks need to be evaluated. This study assesses the uptake and metabolization of pharmaceuticals and personal care products (PPCPs) derived from treated wastewater into lettuce as well as the impact on root-associated bacteria under a realistic and worst-case scenario. Lettuce was grown in a controlled greenhouse and irrigated with water or treated wastewater spiked with and without a mixture of fourteen different PPCPs at 10 μg/L or 100 μg/L. After harvesting the plants, the same soil was reused for a consecutive cultivation campaign to test for the accumulation of PPCPs. Twelve out of fourteen spiked PPCPs were detected in lettuce roots, and thirteen in leaves. In roots, highest concentrations were measured for sucralose, sulfamethoxazole and citalopram, while sucralose, acesulfame and carbamazepine were the highest in leaves. Higher PPCP concentrations were found in lettuce roots irrigated with spiked treated wastewater than in those irrigated with spiked water. The absolute bacterial abundance remained stable over both cultivation campaigns and was not affected by any of the treatments (type of irrigation water (water vs. wastewater) nor concentration of PPCPs). However, the irrigation of lettuce with treated wastewater had a significant effect on the microbial α-diversity indices at the end of the second cultivation campaign, and modified the structure and community composition of root-associated bacteria at the end of both campaigns. Five and fourteen bacterial families were shown to be responsible for the observed changes at the end of the first and second cultivation campaign, respectively. Relative abundance of Haliangium and the clade Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium was significantly affected in response to PCPPs exposure. Caulobacter, Cellvibrio, Hydrogenophaga and Rhizobacter were significantly affected in microcosms irrigated with wastewater.
Collapse
Affiliation(s)
- Yvonne Bigott
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München GmbH, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Sara Gallego
- AgroSup Dijon, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Agroécologie, Dijon, France
| | - Nicola Montemurro
- ENFOCHEM, IDAEA-CSIC, c/Jordi Girona 18-26, 08034 Barcelona, (Spain)
| | - Marie-Christine Breuil
- AgroSup Dijon, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Agroécologie, Dijon, France
| | - Sandra Pérez
- ENFOCHEM, IDAEA-CSIC, c/Jordi Girona 18-26, 08034 Barcelona, (Spain)
| | - Antonios Michas
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München GmbH, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Fabrice Martin-Laurent
- AgroSup Dijon, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Agroécologie, Dijon, France
| | - Peter Schröder
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München GmbH, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| |
Collapse
|
7
|
Khalaf DM, Cruzeiro C, Schröder P. Removal of tramadol from water using Typha angustifolia and Hordeum vulgare as biological models: Possible interaction with other pollutants in short-term uptake experiments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151164. [PMID: 34695465 DOI: 10.1016/j.scitotenv.2021.151164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Tramadol (TRD) is widely detected in aquatic ecosystems as a result of massive abuse and insufficient removal from wastewater facilities. As a result, TRD can contaminate groundwater sources and/or agricultural soils. While TRD toxicity has been reported from aquatic biota, data about TRD detection in plants are scarce. Moreover, information regarding plant capability for TRD removal is lacking. To understand the fate of this opioid, we have investigated the uptake, translocation and removal capacity of TRD by plants, addressing short-term and long-term uptake. The uptake rates of TRD, in excised barley and cattail roots, were 5.18 and 5.79 μg g-1 root fresh weight day-1, respectively. However, TRD uptake was strongly inhibited after co-exposing these roots either with the drug venlafaxine (similar molecular structure as TRD) or with quinidine (an inhibitor of cellular organic cation transporters). When barley seedlings were exposed to TRD in a hydroponic experiment a removal efficiency up to 90% (within 15 days) was obtained, with bioconcentration and translocation factors close to 9 and 1, respectively. The combination of results from both plants and the inhibition observed after treatment with quinidine revealed that organic cation transporters may be involved in the uptake of TRD by plants.
Collapse
Affiliation(s)
- David Mamdouh Khalaf
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Botany and Microbiology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt
| | - Catarina Cruzeiro
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Peter Schröder
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| |
Collapse
|
8
|
Madikizela LM, Botha TL, Kamika I, Msagati TAM. Uptake, Occurrence, and Effects of Nonsteroidal Anti-Inflammatory Drugs and Analgesics in Plants and Edible Crops. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:34-45. [PMID: 34967604 DOI: 10.1021/acs.jafc.1c06499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The plant uptake of pharmaceuticals that include nonsteroidal anti-inflammatory drugs (NSAIDs) and analgesics from contaminated environment has benefits and drawbacks. These pharmaceuticals enter plants mostly through irrigation with contaminated water and application of sewage sludge as soil fertilizer. Aquatic plants withdraw these pharmaceuticals from water through their roots. Numerous studies have observed the translocation of these pharmaceuticals from the roots into the aerial tissues. Furthermore, the occurrence of the metabolites of NSAIDs in plants has been observed. This article provides an in-depth critical review of the plant uptake of NSAIDs and analgesics, their translocation, and toxic effects on plant species. In addition, the occurrence of metabolites of NSAIDs in plants and the application of constructed wetlands using plants for remediation are reviewed. Factors that affect the plant uptake and translocation of these pharmaceuticals are examined. Gaps and future research are provided to guide forthcoming investigations on important aspects that worth explorations.
Collapse
Affiliation(s)
- Lawrence Mzukisi Madikizela
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Roodepoort 1710, South Africa
| | - Tarryn Lee Botha
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Roodepoort 1710, South Africa
| | - Ilunga Kamika
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Roodepoort 1710, South Africa
| | - Titus Alfred M Msagati
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Roodepoort 1710, South Africa
| |
Collapse
|