1
|
Luangphai S, Thuptimdang P, Buddhiranon S, Chanawanno K. Aza-BODIPY-based logic gate chemosensors and their applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124806. [PMID: 39018674 DOI: 10.1016/j.saa.2024.124806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/23/2024] [Revised: 06/06/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
Dimethylaniline-substituted aza-BODIPY dyes (DA, DM, DP) were designed and synthesized aiming for ion detection. The Zn2+ recognition ability was found in all compounds and the binding mechanism was possibly via dimethylaniline sites linked to the aza-BODIPY core. Upon Zn2+ addition, the new absorption band and the color change occurred due to the altered charge transfer of the adducts. The custom-made colorimeter was successfully integrated into the dye's application, demonstrating a good linear relationship between resistance values and Zn2+ concentration. The chromophore test strips were fabricated and exhibited distinct color changes upon aqueous Zn2+ exposure. The compound DA also exhibits logical behavior with DA-Zn2+-Cu2+ system. In terms of environmental hazards, the compounds exhibited no adverse effect on Pseudomonas putida at the concentration level of 0.2 mg/mL. These findings indicated that all synthesized aza-BODIPYs might be suitable for chemosensor probes for Zn2+ detection with possibly low environmental risk.
Collapse
Affiliation(s)
- Sasipan Luangphai
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pumis Thuptimdang
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sasiwimon Buddhiranon
- Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
| | - Kullapa Chanawanno
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
2
|
Wang L, Xie H, Zhou T, Wang M, Yang J, Gao T, Li G. Assembly of Dye Molecules in Covalent Organic Frameworks for Enhanced Colorimetric Biosensing. Anal Chem 2024; 96:15720-15727. [PMID: 39283703 DOI: 10.1021/acs.analchem.4c03365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/02/2024]
Abstract
Colorimetric assays have been extensively investigated for biosensing applications due to their advantages of visual recognizability, ease of use, and low cost. However, advancing their development is a great challenge due to the inherent limitations of colorimetric dyes. Herein, we report a strategy to assemble dyes in covalent organic frameworks (COFs) to effectively reinforce the applicability of pH-responsive dyes in colorimetric bioassays. Experimental results reveal that three-dimensional COFs can promote the assembly of dyes through hydrogen bonding, resulting in the formation of a dye-supermolecule@COF assembly. Consequently, when sensitized at increased pH levels (e.g., hydroxyl ions), disruption of hydrogen bonds may trigger a rapid transition from their insoluble fixed state within the COFs into soluble, visibly detectable dye anions. This process can also be facilitated by increased hydrophilicity and elevated electrostatic repulsion between the dye anions and COFs, leading to the substantial release of chromogenic dye anions from the COF pores into the solution, thereby amplifying the colorimetric signal output. Therefore, by employing various synthesized dye-supermolecule@COFs as signal tags, we developed a colorimetric bioassay capable of accurately identifying breast cancer cell subtypes. This study not only highlights the effectiveness of dye-supermolecule@COFs in enhancing colorimetric biosensing but also underscores the potential of employing the COF-mediated dye assembly strategy for colorimetric assays.
Collapse
Affiliation(s)
- Lin Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Haojie Xie
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Tianci Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Minghui Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Science, Nanjing Forestry University, Nanjing 210037, PR China
| | - Jie Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Tao Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Genxi Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| |
Collapse
|
3
|
Panda SK, Sahu RP, Goswami C, Singh AK. Easily synthesizable molecular probe for the nanomolar level detection of Cd 2+ in near aqueous media: Theoretical investigations and live cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123098. [PMID: 37429195 DOI: 10.1016/j.saa.2023.123098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/04/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/12/2023]
Abstract
The present investigation highlights a quinoline-based small molecule probe (DEQ) for the detection of Cd2+ among other metal ions in near-aqueous media. The probe DEQ and its Cd2+ complex (DEQ-Cd) have been synthesized and characterized by all possible spectroscopic methods. The weakly emissive DEQ showed its strong emission in the presence of Cd2+, which is attributed to the photoinduced electron transfer (PET) along with the chelation-enhanced fluorescence (CHEF) mechanism. The 1:1 binding mode between ligand and Cd2+ is confirmed by single crystal XRD analysis, which is further supported by Job's plot and HRMS. The detection limit of the probe to recognize Cd2+ was found to be as low as 89 nM. Furthermore, DEQ can act as a reversible fluorescence probe with the off-on-off mechanism by the alternative addition of Cd2+ and EDTA. DFT and TD-DFT studies exposed the proposed mechanism after Cd2+ insertion and the obtained results for electronic spectra are in line with the experimental results. The response towards pH was quite interesting and allowed us to study its application in live cell imaging. With all the positive results, the proposed ligand DEQ can be used as a potential probe for the detection of Cd2+ in real-life applications.
Collapse
Affiliation(s)
- Suvam Kumar Panda
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Khurda 752050, India
| | - Ram Prasad Sahu
- School of Biological Sciences, National Institute of Science Education and Research, Khurda 752050, India
| | - Chandan Goswami
- School of Biological Sciences, National Institute of Science Education and Research, Khurda 752050, India
| | - Akhilesh Kumar Singh
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Khurda 752050, India.
| |
Collapse
|
4
|
Dutta D, Nair RR, Neog K, Nair SA, Gogoi P. Mitochondria-targeted biotin-conjugated BODIPYs for cancer imaging and therapy. RSC Med Chem 2023; 14:2358-2364. [PMID: 37974957 PMCID: PMC10650437 DOI: 10.1039/d3md00347g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/18/2023] [Accepted: 09/21/2023] [Indexed: 11/19/2023] Open
Abstract
Two BODIPY-biotin conjugates KDP1 and KDP2 are designed and synthesized for targeted PDT applications. Both have good absorption with a high molar absorption coefficient and decent singlet oxygen generation quantum yields. The photosensitizers KDP1 and KDP2 were found to be localized in the mitochondria with excellent photocytotoxicity of up to 18.7 nM in MDA-MB-231 breast cancer cells. The cell death predominantly proceeded through the apoptosis pathway via ROS production.
Collapse
Affiliation(s)
- Dhiraj Dutta
- Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST) Assam Jorhat-785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Rajshree R Nair
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology Trivandrum-695014 Kerala India
- Manipal Academy of Higher Education Manipal-576104 Karnataka India
| | - Kashmiri Neog
- Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST) Assam Jorhat-785006 India
| | - S Asha Nair
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology Trivandrum-695014 Kerala India
| | - Pranjal Gogoi
- Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST) Assam Jorhat-785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| |
Collapse
|
5
|
Shao C, Gong X, Zhang D, Jiang XD, Du J, Wang G. Aza-BODIPY with two efficacious fragments for NIR light-driven photothermal therapy by triggering cancer cell apoptosis. J Mater Chem B 2023; 11:10625-10631. [PMID: 37920935 DOI: 10.1039/d3tb02132g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/04/2023]
Abstract
The reasonable structure of aza-BODIPY renders it as an efficient photothermal reagent for photothermal therapy. Herein, we describe the design and synthesis of aza-BODIPY NMeBu with the free rotating tert-butyl group and the dimethylamino-substituted segment to promote the photothermal conversion via the excited state non-radiative transition. NMeBu was found to be the π-π stacking form in the unit cell based on X-ray analysis. NMeBu-NPs by self-assembly possessed a near-infrared absorption (λabs = 772 nm), and once activated by near-infrared light, the photothermal efficiency in aqueous solution can reach 49.3%. NMeBu-NPs can penetrate the cell and trigger cell death via the apoptosis pathway under low concentration and low light power irradiation, thereby avoiding dark toxicity. Aza-BODIPY created using this procedure has excellent photothermal efficiency and could serve as a potential candidate for the treatment of cancer cells and tumors.
Collapse
Affiliation(s)
- Chunyu Shao
- Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, China.
| | - Xiuyan Gong
- Department of Cell Biology, China Medical University, Shenyang, 110122, China.
| | - Dongxiang Zhang
- Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, China.
| | - Xin-Dong Jiang
- Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, China.
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China.
| | - Guiling Wang
- Department of Cell Biology, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
6
|
Yu X, Chang W, Zhang H, Cai Z, Yang Y, Zeng C. Visual and Real-Time Monitoring of Cd 2+ in Water, Rice, and Rice Soil with Test Paper Based on [2 + 2] Lanthanide Clusters. Inorg Chem 2023; 62:6387-6396. [PMID: 37027515 DOI: 10.1021/acs.inorgchem.3c00255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 04/09/2023]
Abstract
Cadmium ions (Cd2+) are highly toxic to animal and human health, especially through the drinking of Cd2+-contaminated water and eating Cd2+-contaminated rice. Therefore, accurate detection of Cd2+ in water, rice, and rice soil is urgent. In this work, two [2 + 2] lanthanide clusters of Tb2Tb2 and Eu2Eu2 were synthesized and characterized in detail. Interestingly, Tb2Tb2 is a rapid sensor for Cd2+ through luminescence "turn-off". Further studies show that Tb2Tb2 is a highly sensitive and selective sensor toward Cd2+ in water, rice supernatants, and rice soil supernatants, with a very short response time of 20 s. The limit of detection (LOD) in the above three real samples is as low as 0.0112, 1.1240, and 0.1124 ppb, respectively, which is lower than the national standards for food safety in China (GB 2762-2022). More interestingly, a portable sensing device of test paper based on Tb2Tb2 is developed with a facile method, which shows visible, highly sensitive, and selective sensing toward Cd2+ in real samples of water, rice supernatants, and rice soil supernatants. Tb2Tb2 and its sensing device of test paper are an on-site analysis sensor for potentially non-expert users, especially for people in remote rural areas.
Collapse
Affiliation(s)
- Xiaobo Yu
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Wenting Chang
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Hua Zhang
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Ziyan Cai
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Yangyi Yang
- School of Materials Science and Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Chenghui Zeng
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, P. R. China
| |
Collapse
|
7
|
Sonkaya Ö, Soylukan C, Pamuk Algi M, Algi F. Aza-BODIPY-based Fluorescent and Colorimetric Sensors and Probes. Curr Org Synth 2023; 20:20-60. [PMID: 35170414 DOI: 10.2174/1570179419666220216123033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/02/2021] [Revised: 11/30/2021] [Accepted: 12/18/2021] [Indexed: 12/16/2022]
Abstract
Aza-boron-dipyrromethenes (Aza-BODIPYs) represent an important class of chromophores absorbing and emitting in the near-infrared (NIR) region. They have unique optical and electronic features and higher physiological and photo stability than other NIR dyes. Especially after the development of facile synthetic routes, Aza-BODIPYs have become indispensable fluors that can find various applications ranging from chemosensors, bioimaging, phototherapy, solar energy materials, photocatalysis, photon upconversion, lasers, and optoelectronics. Herein, we review Aza-BODIPY based fluorescent and colorimetric chemosensors. We show the potential and untapped toolbox of Aza-BODIPY based fluorescent and colorimetric chemosensors. Hence, we divide the fluorescent and colorimetric chemosensors and probes into five sections according to the target analytes. The first section begins with the chemosensors developed for pH. Next, we discuss Aza-BODIPY based ion sensors, including metal ions and anions. Finally, we present the chemosensors and probes concerning reactive oxygen (ROS) and nitrogen species (RNS) along with biologically relevant species in the last two sections. We believe that Aza-BODIPYs are still in their infancy, and they have a promising future for translation from the bench to real biomedical and materials science applications. After two decades of intensive research, it seems that there are many more to come in this already fertile field. Overall, we hope that future work will further expand the applications of Aza-BODIPY in many areas.
Collapse
Affiliation(s)
- Ömer Sonkaya
- Department of Chemistry, Aksaray University, TR-68100 Aksaray, Turkey
- ASUBTAM Memduh Bilmez BioNanoTech Lab., Aksaray University, TR-68100 Aksaray, Turkey
| | - Caner Soylukan
- ASUBTAM Memduh Bilmez BioNanoTech Lab., Aksaray University, TR-68100 Aksaray, Turkey
- Department of Biotechnology & ASUBTAM Memduh Bilmez BioNanoTech Lab., Aksaray University, TR-68100 Aksaray, Turkey
| | - Melek Pamuk Algi
- Department of Chemistry, Aksaray University, TR-68100 Aksaray, Turkey
- ASUBTAM Memduh Bilmez BioNanoTech Lab., Aksaray University, TR-68100 Aksaray, Turkey
| | - Fatih Algi
- ASUBTAM Memduh Bilmez BioNanoTech Lab., Aksaray University, TR-68100 Aksaray, Turkey
- Department of Biotechnology & ASUBTAM Memduh Bilmez BioNanoTech Lab., Aksaray University, TR-68100 Aksaray, Turkey
| |
Collapse
|
8
|
Patawanich P, Petdum A, Sirirak J, Chatree K, Charoenpanich A, Panchan W, Setthakarn K, Kamkaew A, Sooksimuang T, Maitarad P, Wanichacheva N. Highly selective zinc(II) triggered “Turn-ON” [5]helicene-based fluorescence sensor: its application in liver and brain cells imaging. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
|
9
|
Peng Y, Xu M, Guo Y, Yang H, Zhou Y. A novel signal amplification biosensor for detection of Cd 2+ based on asymmetric PCR. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120885. [PMID: 35051799 DOI: 10.1016/j.saa.2022.120885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/13/2021] [Revised: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
In this work, a novel signal amplification biosensor was utilized to detect Cd2+ based on asymmetric PCR. In the presence of Cd2+, it can bind with Cd2+-aptamer C1 which caused the complementary strand C2 to be released from double-stranded DNA C1-C2. Because the single-stranded C1 cannot be hydrolyzed by Exo III, it can be used as a template to take part in asymmetric PCR reaction. In the absence of Cd2+, the C1-C2 was digested by Exo III and no PCR template was left. During the experiment, an interesting phenomenon was found that the asymmetric PCR can obtain higher level of fluorescent signal than that of symmetric PCR. To the best of our knowledge, this is the first report of using asymmetric PCR to detect Cd2+. Through the asymmetric PCR amplification strategy, this biosensor had a low detection limit (19.93 nM) and a wide linear range (0-500 nM). Meanwhile, this biosensor showed a satisfactory selectivity and recovery rate.
Collapse
Affiliation(s)
- Yu Peng
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China
| | - Mingming Xu
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China
| | - Yushuang Guo
- Key Laboratory of Molecular Genetics, China National Tobacco Corporation, Guizhou Institute of Tobacco Science, Guiyang, Guizhou 550083, China
| | - Hualin Yang
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil &Water Pollution, Chengdu University of Technology, Chengdu, Sichuan 610059, China.
| | - Yu Zhou
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China; College of Animal Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China.
| |
Collapse
|
10
|
Luo S, Kan X. A nanozyme-catalysis-based ratiometric electrochemical sensor for general detection of Cd 2+. Analyst 2022; 147:5437-5444. [DOI: 10.1039/d2an01480g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/07/2022]
Abstract
AuPt–rGO showed good peroxidase-like activity for the oxidation of OPD to DAP (a novel internal reference) and achieved sensitive and reliable detection of Cd2+ based on a ratiometric strategy.
Collapse
Affiliation(s)
- Shan Luo
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Chemo-Biosensing, China
| | - Xianwen Kan
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Chemo-Biosensing, China
| |
Collapse
|
11
|
Zhou J, Li G, Ling J, Zhou Q, Chu C. A novel near-infrared colorimetric and fluorescent probe based on a piperidine-substituted aza-BODIPY photosensitizer for detection of extreme acidity. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4099-4104. [PMID: 34554155 DOI: 10.1039/d1ay00995h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/13/2023]
Abstract
In this paper, a novel near-infrared (NIR) colorimetric and turn-on fluorescent pH probe (denoted as Probe 1) has been designed and synthesized based on piperidine-substituted aza-BODIPY, and its ability for sensing pH under extremely acidic conditions has been studied. The maximum absorption band of Probe 1 locates at 811 nm in the NIR region in CH2Cl2 with an intense molar absorption coefficient of the order of 104 M-1 cm-1, which is highly important for biological application. An approximately 156 nm red shift was observed in the absorption of the aza-BODIPY dyes from BDP to Probe 1 (from 655 nm to 811 nm). Dramatic pH responsive absorption and fluorescence changes can be observed under extreme acidity, in conjunction with a visible colorimetric change from purple to blue. Therefore, the detection of pH can be visualized through the color change. Probe 1 with a pKa value of 2.17 could be used in the detection of pH in the range 0.84 to 3.15. Remarkably, this developed fluorescent probe exhibits extraordinary performances including rapid response time, good stability, high specificity and excellent recyclability. This work will provide a new research platform for detecting strong acidity.
Collapse
Affiliation(s)
- Jinfeng Zhou
- College of Chemistry and Environmental Engineering, Pingdingshan University, Pingdingshan 467000, China.
- College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Gang Li
- College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Jiejie Ling
- College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Qing Zhou
- College of Material and Chemical Engineering, Zhengzhou University of Light Industy, Zhengzhou 450001, China
| | - Chunjie Chu
- College of Chemistry and Environmental Engineering, Pingdingshan University, Pingdingshan 467000, China.
| |
Collapse
|