1
|
Liu Y, Xu L, Xie C, Ye Q, Han Z, Zhang B, Capron M, Ordomsky V. Construction of Au quantum dots/nitrogen-defect-enriched graphite carbon nitride heterostructure via photo-deposition towards enhanced nitric oxide photooxidation. J Colloid Interface Sci 2024; 670:635-646. [PMID: 38781654 DOI: 10.1016/j.jcis.2024.05.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
The challenge of mitigating pollution stemming from industrial exhaust emissions is a pressing issue in both academia and industry. This study presents the successful synthesis of nitrogen-defect-enriched graphite carbon nitride (g-C3N4) using a two-step calcination technique. Furthermore, a g-C3N4-Au heterostructure was fabricated through the photo-deposited Au quantum dots (QDs). When subjected to visible light irradiation, this heterostructure exhibited robust nitric oxide (NO) photooxidation activity and stability. With its fluffy, porous structure and large surface area, the nitrogen-defect-enriched g-C3N4 provides more active sites for photooxidation processes. The ability of g-C3N4 to absorb visible light is enhanced by the local surface plasmon resonance (LSPR) effect of Au QDs. Additionally, the lifetime of photogenerated charge carriers is extended by the presence of N defects and Au, which effectively prevent photogenerated electron-hole pairs from recombining during the photooxidation process. Moreover, the oxidation pathway of NO was analyzed through In-situ Fourier transform infrared (FT-IR) spectroscopy and Density Functional Theory (DFT) calculation. Computational findings revealed that the introduction of Au QDs decreases the activation energy of the oxidation reaction, thereby facilitating its occurrence while diminishing the formation of intermediate products. As a result, NO is predominantly converted to nitrate (NO3-). This work unveils a novel approach to constructing semiconductor-cocatalyst heterostructures and elucidates their role in NO photooxidation.
Collapse
Affiliation(s)
- Yanzhi Liu
- National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China; The Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming 650093, PR China
| | - Lei Xu
- National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China; The Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming 650093, PR China.
| | - Cheng Xie
- National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China; The Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming 650093, PR China
| | - Qianjun Ye
- National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China; The Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming 650093, PR China
| | - Zhaohui Han
- National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China; The Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming 650093, PR China
| | - Bochuan Zhang
- National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China; The Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming 650093, PR China
| | - Mickael Capron
- Unité de Catalyse et Chimie du Solide, UMR CNRS 8181, Université de Lille, F-59000 Lille, France
| | - Vitaly Ordomsky
- Unité de Catalyse et Chimie du Solide, UMR CNRS 8181, Université de Lille, F-59000 Lille, France.
| |
Collapse
|
2
|
Cao D, Guan J, Du J, Sun Q, Ma J, Li J, Liu J, Sheng G. Halogen-functionalized covalent organic frameworks for photocatalytic Cr(VI) reduction under visible light. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134956. [PMID: 38917630 DOI: 10.1016/j.jhazmat.2024.134956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Covalent organic frameworks (COFs) are a type of novel organic catalysts which show great potential in the treatment of environmental contaminations. Herein, we synthesized three isoreticular halogen-functionalized (F, Cl and Br) porphyrin COFs for visible-light (420 nm ≤ λ ≤ 780 nm) photocatalytic reduction of Cr(VI) to Cr(III). Halogen substituents with tunable electronegativity can regulate the band structure and modulate the charge carrier kinetics of COFs. In the absence of any sacrificial reagent, the isoreticular COFs exhibited good photocatalytic reduction activity of Cr(VI). Particularly, the TAPP-2F showed nearly 100 % conversion efficiency and the highest reaction rate constants (k) on account of the strong electronegativity of F substituent. Experimental results and theoretical calculations showed that the conduction band (CB) potentials of COFs became more negative and charge carrier separation increased with the enhancement of electronegativity (Br < Cl < F), which could provide sufficient driving force for the photoreduction of Cr(VI) to Cr(III). The halogen substituents strategy for regulating the electronic structure of COFs can provide opportunities for designing efficient photocatalysts for environmental remediation. Meanwhile, the mechanistic insights reported in this study help to understand the photocatalytic degradation pathways of heavy metals.
Collapse
Affiliation(s)
- Dong Cao
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jian Guan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jingcheng Du
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ji Ma
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jingguo Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jiangtao Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Guoping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
3
|
Shen Z, Zhu Z, Wang G, Miao Y, Lu W. Porous organic semiconductor/PET composite fibre for the synergistic removal of hexavalent chromium and organic pollutants under sunlight. ENVIRONMENTAL TECHNOLOGY 2024; 45:4766-4778. [PMID: 38037354 DOI: 10.1080/09593330.2023.2283085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/19/2023] [Indexed: 12/02/2023]
Abstract
In this study, the porous graphite phase carbon nitride photocatalyst (P-g-C3N4) is prepared by the CaCO3 template method, and then P-g-C3N4/T-polyethylene terephthalate (T-PET) catalytic fibre is prepared by the padding method. P-g-C3N4 can provide more active sites than g-C3N4 as proved by the Brunauer-Emmett-Teller and the UV-Visible diffuse reflectance test. P-g-C3N4 powder catalyst successfully supports PET fibre as proved by scanning electron microscope, Fourier infrared spectroscopy and X-ray diffraction spectroscopy. The photocatalytic performance of P-g-C3N4/T-PET catalytic fibre is tested by constructing a single hexavalent chromium or hexavalent chromium/organic pollutant binary pollution system. The potential application value of P-g-C3N4/T-PET catalytic fibre is further explored by simulating the complex actual water environment. After five recycles, P-g-C3N4/T-PET catalytic fibre shows good catalytic performance. The mechanism of P-g-C3N4/PET photocatalytic degradation of organic pollutants is proposed through the capture agent experiment and electron paramagnetic resonance spectroscopy. Among them, •O2- is the most important active species of P-g-C3N4 catalytic fibre, which is used for the oxidation of organic pollutants. At the same time, photoelectrons generated by the catalytic fibre are used to reduce hexavalent chromium. The efficiency of P-g-C3N4 to remove pollutants is improved by using PET fibre as a carrier, which not only solves the problem of difficult recovery of powder catalysts but also provides more active sites.
Collapse
Affiliation(s)
- Zhenyu Shen
- National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| | - Zhexin Zhu
- National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| | - Gangqiang Wang
- National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| | - Yongquan Miao
- National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| | - Wangyang Lu
- National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| |
Collapse
|
4
|
Sun D, Chen Y, Yu X, Yin Y, Tian G. Novel defect-transit dual Z-scheme heterojunction: Sulfur-doped carbon nitride nanotubes loaded with bismuth oxide and bismuth sulfide for efficient photocatalytic amine oxidation. J Colloid Interface Sci 2024; 674:225-237. [PMID: 38936079 DOI: 10.1016/j.jcis.2024.06.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
The rational design of Z-scheme heterojunction hybrid photocatalysts is considered a promising way to achieve high photocatalytic activity. In this study, a dual Z-scheme heterojunction with bismuth sulfide (Bi2S3) nanorods and bismuth oxide (Bi2O3) nanoparticles anchored Sulfur-doped carbon nitride (S-CN) nanotubes (Bi2S3/S-CN/Bi2O3) is designed and fabricated through the ordinal metal ion adsorption, pyrolysis, and sulfidation processes using supramolecular rods as precursor. Compared with pristine Bi2S3, Bi2O3, and CN, the dual Z-scheme tube-shaped Bi2S3/S-CN/Bi2O3 catalyst exhibited a significantly improved photocatalytic activity in amine oxidation. The optimized Bi2S3/S-CN/Bi2O3 nanostructure exhibits a 97.6 % benzylamine conversion and 99.4 % imine selectivity within 4 h under simulated solar light irradiation. The excellent activity of Bi2S3/S-CN/Bi2O3 nanotubes can be attributed to the characteristic hollow defect band structure and efficient charge separation and transfer achieved by the dual Z-scheme charge transfer mechanism, which was systematically studied using electron spin resonance spectroscopy, Kelvin probe force microscope, and other techniques. The optimized dual Z-scheme heterojunction hybrid photocatalyst maintains the high oxidizing ability of Bi2S3 and Bi2O3 and the excellent reducing ability of CN, thereby significantly enhancing the photocatalytic activity. This research provides a facile and feasible synthesis strategy for designing dual Z-scheme heterojunctions with defect band structure to improve the photocatalytic activity.
Collapse
Affiliation(s)
- Dan Sun
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China
| | - Yajie Chen
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China
| | - Xinyan Yu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China
| | - Yuejia Yin
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China
| | - Guohui Tian
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China.
| |
Collapse
|
5
|
Chen X, Gu Q, Chu B, Zhang Y, Chen Z, Ma M, Li D, Lu J, Wu D. Inhibition mechanism of fusarium graminearum growth by g-C 3N 4 homojunction and its application in barley malting. Int J Food Microbiol 2024; 413:110578. [PMID: 38246024 DOI: 10.1016/j.ijfoodmicro.2024.110578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
The increase of deoxynivalenol (DON) caused by Fusarium graminearum (F. graminearum) during the malting process is a serious safety problem. In our work, the inhibition mechanism of F. graminearum growth by g-C3N4 homojunction and its application in barley malting were studied. The reason why the growth activity of F. graminearum decreased after photocatalysis by g-C3N4 homojunction was that under visible light irradiation, a large amount of •O2- elicited by g-C3N4 homojunction destroyed the cell structure of F. graminearum, leading to the deficiency of cell membrane selective permeability and serious disorder of intracellular metabolism. The application of photocatalysis technology in malting can effectively inhibit the growth of F. graminearum and the accumulation of ergosterol was reduced by 30.55 %, thus reducing the DON content in finished malt by 31.82 %. Meanwhile, the physicochemical indexes of barley malt after photocatalytic treatment still met the requirements of second class barley malt in Chinese light industry standard QB/T 1686-2008. Our work provides a new idea for the control of fungal contamination in barley malt.
Collapse
Affiliation(s)
- Xingguang Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR China
| | - Qianhui Gu
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, PR China
| | - Beibei Chu
- Fengchu (Tianjin) Investment Co., Ltd, Tianjin 300000, PR China
| | - Yongxin Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR China
| | - Ziqiang Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR China
| | - Mingtao Ma
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR China
| | - Dingding Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR China
| | - Jian Lu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR China
| | - Dianhui Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
6
|
Zhao W, Liu S, Liu Y, Yang S, Liu B, Hong X, Shen J, Sun C. Integration of ohmic junction and step-scheme heterojunction for enhanced photocatalysis. J Colloid Interface Sci 2024; 654:134-149. [PMID: 37837850 DOI: 10.1016/j.jcis.2023.09.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/16/2023]
Abstract
A novel and efficient photocatalyst, Cu2WS4/MoS2-Au plasmonic Step-scheme (S-scheme) heterojunction, was constructed for the first time and applied to remove environmental pollutants. Among all the prepared photocatalysts, the. Cu2WS4/MoS2-Au-5 exhibited the highest catalytic activity with an 89.1% reduction efficiency for Cr6+ and a 98.7% oxidation efficiency for Benzophenone-1 (BP-1) under visible light irradiation. The Cu2WS4/MoS2-Au photocatalyst exhibits stable performance and efficient photocatalytic activity due to effective charge separation, enhanced light absorption from localized surface plasmon resonance (LSPR) of gold nanoparticles, and the formation of an S-scheme heterojunction with strong oxidation-reduction capabilities. In addition, through analysis of experiments and theoretical calculations, it is speculated that the Cu2WS4/MoS2-Au follows a typical S-scheme photogenerated carrier transferring mechanism, which is verified by the finite difference time domain simulation, the free radical quenching experiments, the electron paramagnetic resonance analysis and the simulated charge density distribution. More importantly, the simulations of the work function and charge density distribution confirm the built-in electric field and the ohmic junction have been established at the interfaces between the Cu2WS4 and MoS2 (Cu2WS4/MoS2) as well as the interface between MoS2 and Au (MoS2-Au), respectively. The built-in electric field and ohmic junction enable efficient separation of photogenerated electrons and holes, ensuring the superior catalytic oxidation and reduction activities of the Cu2WS4/MoS2-Au photocatalyst. Finally, we propose a photocatalytic mechanism for the Cu2WS4/MoS2-Au plasmonic S-scheme heterojunction based on experimental results and simulated calculations. The research results of this study are significance for the development of the plasmonic S-scheme photocatalytic system.
Collapse
Affiliation(s)
- Wei Zhao
- School of Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu, China.
| | - Siying Liu
- School of Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu, China
| | - Yun Liu
- School of Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu, China
| | - Shuo Yang
- School of Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu, China
| | - Benzhi Liu
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu Province, China
| | - Xuekun Hong
- School of Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu, China
| | - Junyu Shen
- School of Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu, China.
| | - Cheng Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China.
| |
Collapse
|
7
|
Subagyo R, Yudhowijoyo A, Sholeha NA, Hutagalung SS, Prasetyoko D, Birowosuto MD, Arramel A, Jiang J, Kusumawati Y. Recent advances of modification effect in Co 3O 4-based catalyst towards highly efficient photocatalysis. J Colloid Interface Sci 2023; 650:1550-1590. [PMID: 37490835 DOI: 10.1016/j.jcis.2023.07.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/14/2023] [Accepted: 07/18/2023] [Indexed: 07/27/2023]
Abstract
Tricobalt tetroxide (Co3O4) has been developed as a promising photocatalyst material for various applications. Several reports have been published on the self-modification of Co3O4 to achieve optimal photocatalytic performance. The pristine Co3O4 alone is inadequate for photocatalysis due to the rapid recombination process of photogenerated (PG) charge carriers. The modification of Co3O4 can be extended through the introduction of doping elements, incorporation of supporting materials, surface functionalization, metal loading, and combination with other photocatalysts. The addition of doping elements and support materials may enhance the photocatalysis process, although these modifications have a slight effect on decreasing the recombination process of PG charge carriers. On the other hand, combining Co3O4 with other semiconductors results in a different PG charge carrier mechanism, leading to a decrease in the recombination process and an increase in photocatalytic activity. Therefore, this work discusses recent modifications of Co3O4 and their effects on its photocatalytic performance. Additionally, the modification effects, such as enhanced surface area, generation of oxygen vacancies, tuning the band gap, and formation of heterojunctions, are reviewed to demonstrate the feasibility of separating PG charge carriers. Finally, the formation and mechanism of these modification effects are also reviewed based on theoretical and experimental approaches to validate their formation and the transfer process of charge carriers.
Collapse
Affiliation(s)
- Riki Subagyo
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Kampus ITS Keputih, 60111 Sukolilo, Surabaya, Indonesia
| | - Azis Yudhowijoyo
- Nano Center Indonesia, Jl PUSPIPTEK, South Tangerang, Banten 15314, Indonesia
| | - Novia Amalia Sholeha
- College of Vocational Studies, Bogor Agricultural University (IPB University), Jalan Kumbang No. 14, Bogor 16151, Indonesia
| | | | - Didik Prasetyoko
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Kampus ITS Keputih, 60111 Sukolilo, Surabaya, Indonesia
| | - Muhammad Danang Birowosuto
- Łukasiewicz Research Network-PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland; CINTRA UMI CNRS/NTU/THALES 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore 637553, Singapore
| | - Arramel Arramel
- Nano Center Indonesia, Jl PUSPIPTEK, South Tangerang, Banten 15314, Indonesia.
| | - Jizhou Jiang
- School of Environmental Ecology and Biological Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Novel Catalytic Materials of Hubei Engineering Research Center, Wuhan Institute of Technology, Wuhan 430205, Hubei, PR China.
| | - Yuly Kusumawati
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Kampus ITS Keputih, 60111 Sukolilo, Surabaya, Indonesia.
| |
Collapse
|
8
|
Zhou T, Zhai T, Shen H, Wang J, Min R, Ma K, Zhang G. Strategies for enhancing performance of perovskite bismuth ferrite photocatalysts (BiFeO 3): A comprehensive review. CHEMOSPHERE 2023; 339:139678. [PMID: 37527742 DOI: 10.1016/j.chemosphere.2023.139678] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/08/2023] [Accepted: 07/28/2023] [Indexed: 08/03/2023]
Abstract
Organic pollutants pose a significant threat to water safety, and their degradation is of paramount importance. Photocatalytic technology has emerged as a promising approach for environmental remediation, and Bismuth ferrite (BiFeO3) has been shown to exhibit remarkable potential for photocatalytic degradation of water pollutants, with its excellent crystal structure properties and visible light photocatalytic activity. This review presents an overview of the crystal properties and photocatalytic mechanism of perovskite bismuth ferrite (BiFeO3), as well as a summary of various strategies for enhancing its efficiency in photocatalytic degradation of organic pollutants. These strategies include pure phase preparation, microscopic modulation, composite modification of BiFeO3, and the integration of Fenton-like reactions and external field-assisted methods to improve its photocatalytic performance. The review emphasizes the impact of each strategy on photocatalytic enhancement. By providing comprehensive strategies for improving the efficiency of BiFeO3 photocatalysis, this review inspires new insights for efficient degradation of organic pollutants using BiFeO3 photocatalysis and contributes to the development of photocatalysis in environmental remediation.
Collapse
Affiliation(s)
- Tianhong Zhou
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Tianjiao Zhai
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Huidong Shen
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Jinyi Wang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Rui Min
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Kai Ma
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Guozhen Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| |
Collapse
|
9
|
Wu T, Liang Q, Tang L, Tang J, Wang J, Shao B, Gong S, He Q, Pan Y, Liu Z. Construction of a novel S-scheme heterojunction piezoelectric photocatalyst V-BiOIO 3/FTCN and immobilization with floatability for tetracycline degradation. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130251. [PMID: 36327842 DOI: 10.1016/j.jhazmat.2022.130251] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/07/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
A high-performance piezoelectric photocatalyst (V-BiOIO3/FTCN) was constructed to improve removal efficiency of tetracycline hydrochloride (TCH). The role of V-BiOIO3 in the composite was to introduce piezoelectric effect and construct S-scheme heterojunction photocatalyst with fish scale tubular carbon nitride (FTCN). The morphology, structure, chemical composition and optoelectronic characteristics of the as-prepared photocatalysts were studied by SEM, TEM, XRD, XPS and UV-Vis DRS. Combined with UV-Vis DRS, XPS valence band, Mott-schottky curve and theoretical calculations, the mechanism of TCH degradation was deeply analyzed. A series of degradation experiments showed that the V-BiOIO3/FTCN could effectively degrade TCH, and the removal efficiency was further improved under the action of ultrasound. Importantly, the further immobilized V-BiOIO3/FTCN/MS could float on the water surface to degrade TCH without additional stirring, which facilitated the recovery of photocatalysts and showed excellent practical application value. This work provided a reference for the design and immobilization of carbon nitride-based piezoelectric photocatalysts.
Collapse
Affiliation(s)
- Ting Wu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qinghua Liang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jialin Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jiajia Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Binbin Shao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Shanxi Gong
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Qingyun He
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yuan Pan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
10
|
Yu L, Wang H, Huang Q, Liu H, Chen Q, Yuan B, Li Q, Zhao X, Tang J, Zhao D. One-pot microwave synthesized high-performance BiVO4/InVO4 heterojunction for photocatalytic reduction of Cr6+. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
FeOx nanoclusters decorated TiO2 for boosting white LED driven photocatalytic Fenton-like norfloxacin degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Luo X, Liu Y, Muhmood A, Zhang Q, Wang J, Ruan R, Wang Y, Cui X. Effect of time and temperature of pretreatment and anaerobic co-digestion of rice straw and swine wastewater by domesticated paddy soil microbes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116218. [PMID: 36108514 DOI: 10.1016/j.jenvman.2022.116218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/27/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Rice straw and swine wastewater are abundant, easy to obtain, and inexpensive biomass materials. Anaerobic digestion of rice straw and swine wastewater effectively regulates the carbon-to-nitrogen ratio and also improves methane production efficiency. The dense lignocellulosic structure, unsuitable carbon-to-nitrogen ratio, and light texture of rice straw hinder its application in anaerobic digestion. Effective pretreatment technologies can improve degradation efficiency and methane production. Our study is the first to apply domesticated paddy soil microbes to enhance the efficiency of hydrolytic acidification of rice straw and swine wastewater at varying temperatures and times. The results show that the highest total organic carbon (1757.2 mg/L), soluble chemical oxygen demand (5341.7 mg/L), and organic acid concentration (4134.6 mg/L) appeared in the hydrolysate after five days of hydrolytic acidification at 37 °C. Moreover, the use of hydrolysate produced 13% more gas and reduced the anaerobic digestion period by ten days compared to the untreated control. This suggests that using domesticated paddy soil microbes as a pretreatment might be a sustainable and cost-effective strategy for improving the degradation efficacy and methane production from lignocellulosic materials.
Collapse
Affiliation(s)
- Xuan Luo
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, 330047, PR China
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, 330047, PR China
| | - Atif Muhmood
- Institute of Soil Chemistry & Environmental Sciences, AARI, Faisalabad, Pakistan
| | - Qi Zhang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, 330047, PR China
| | - Jingjing Wang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, 330047, PR China
| | - Roger Ruan
- Center for Biorefining and Dept. of Bioproducts and Biosystems Engineering, University of Minnesota, Paul, 55108, USA
| | - Yunpu Wang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, 330047, PR China.
| | - Xian Cui
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, 330047, PR China.
| |
Collapse
|
13
|
Chen Y, Su X, Ma M, Hou Y, Lu C, Liu P, Ma Y, Wan F, Yang Y, Hu X, Yu Z. Constructing 3D magnetic flower-like Fe 3O 4@SiO 2@Co 3O 4@BiOCl heterojunction photocatalyst for degrading rhodamine B. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:87310-87318. [PMID: 35802325 DOI: 10.1007/s11356-022-21830-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
In this work, the 3D magnetic flower-like Fe3O4@SiO2@Co3O4@BiOCl heterojunction photocatalyst was successfully prepared. The combination of BiOCl with Co3O4 favored to increase specific surface area and separate photo-generated carriers of the resulting composite, resulting in the improvement of catalytic efficiency. The photocatalytic activities of Fe3O4@SiO2@Co3O4@BiOCl were researched in details. In 50 min of visible light, the degradation efficiency for rhodamine B (RhB) of Fe3O4@SiO2@Co3O4@BiOCl was 98.41%. It still maintained 94.22% even after three tests. Furthermore, the photodegradation mechanisms were also investigated, indicating that the improved efficiency was ascribed to the superior separation of photo-induced electron-hole pairs. This study supplies a new perception to fabricate photocatalysts for actual uses.
Collapse
Affiliation(s)
- Yan Chen
- School of Civil Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
| | - Xuewei Su
- School of Civil Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
| | - Mingliang Ma
- School of Civil Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China.
| | - Yongbo Hou
- School of Civil Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
| | - Chenggang Lu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
| | - Peizhe Liu
- School of Civil Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
| | - Yong Ma
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
| | - Fei Wan
- School of Civil Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
| | - Ying Yang
- School of Civil Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
| | - Xinru Hu
- School of Civil Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
| | - Zhenqi Yu
- School of Civil Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
| |
Collapse
|
14
|
Fabrication of a Plasmonic Heterojunction for Degradation of Oxytetracycline Hydrochloride and Removal of Cr(VI) from Water. Catalysts 2022. [DOI: 10.3390/catal12121498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A novel Ag/Ag2CO3/BiVO4 plasmonic photocatalyst was successfully prepared by depositing Ag nanoparticles on the surface of Ag2CO3/BiVO4 through the photoreduction reaction. Due to the existence of this novel heterojunction photocatalyst structure, not only can it prevent the photogenerated charge recombination, but the unique properties of Ag also have a great advantage in the absorption of light. The Ag/Ag2CO3/BiVO4 photocatalyst showed good catalytic performance in the degradation of oxytetracycline hydrochloride (OTH) and removal of Cr6+, and the degradation rate of OTH reached 98.0% after 150 min of illumination. The successful preparation of Ag/Ag2CO3/BiVO4 was confirmed by a series of characterization methods, and the importance of •OH and h+ radicals in the degradation of OTH was demonstrated. In addition, the photocatalytic mechanism of Ag/Ag2CO3/BiVO4 photocatalyst was systematically studied in terms of degradation of OTH and reduction of Cr6+. This study is of great importance for the development of novel plasmonic heterojunction photocatalysts and to meet future environmental requirements.
Collapse
|
15
|
Al Hawash M, Kumar R, Barakat MA. Fabrication of Polyaniline/Graphene Oxide Nanosheet@ Tea Waste Granules Adsorbent for Groundwater Purification. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3840. [PMID: 36364616 PMCID: PMC9654232 DOI: 10.3390/nano12213840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
The reuse and separation of nanomaterials from an aquatic solution is always challenging and may cause nanotoxicity if not separated completely. Nanomaterial immobilization on the surface of a macro-size material could be an effective approach to developing an efficient composite for groundwater purification. Herein, polyaniline and graphene oxide nanosheet immobilized granular tea waste (PANI/GO@GTW) has been synthesized to remove the anionic and cationic contaminants from groundwater. The synthesized materials were characterized by SEM, XRD, XPS, and FTIR spectroscopies. The optimization of experimental conditions was tested for bromide (Br−) removal from synthetic water. The results revealed that Br− adsorption behavior onto the synthesized materials was as follows: PANI/GO < PANI/GTW < PANI < PANI/GO@GTW. The optimum removal of Br− ions was observed at pH 3 with 90 min of saturation time. Br− adsorption onto PANI/GO@GTW followed the pseudo-first-order kinetic and Langmuir isotherm model, and electrostatic interaction was involved in the adsorption process. The optimum adsorption of Br− onto PANI/GO@GTW was found to be 26.80 m/g. The application of PANI/GO@GTW on real groundwater treatment demonstrated the effective removal of anion pollutants such as F−, Cl−, Br−, NO3−, and PO43−. This study revealed that PANI/GO@GTW successfully reduced Br− concentrations in synthetic and real groundwater and can be used for large-scale applications.
Collapse
|
16
|
Kumar P, Dixit J, Singh AK, Rajput VD, Verma P, Tiwari KN, Mishra SK, Minkina T, Mandzhieva S. Efficient Catalytic Degradation of Selected Toxic Dyes by Green Biosynthesized Silver Nanoparticles Using Aqueous Leaf Extract of Cestrum nocturnum L. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3851. [PMID: 36364627 PMCID: PMC9655307 DOI: 10.3390/nano12213851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/15/2022] [Accepted: 10/26/2022] [Indexed: 05/11/2023]
Abstract
In the present study, the catalytic degradation of selected toxic dyes (methylene blue, 4-nitrophenol, 4-nitroaniline, and congo red) using biosynthesized green silver nanoparticles (AgNPs) of Cestrum nocturnum L. was successfully performed. These AgNPs are efficiently synthesized when a reaction mixture containing 5 mL of aqueous extract (3%) and 100 mL of silver nitrate (1 mM) is exposed under sunlight for 5 min. The synthesis of AgNPs was confirmed based on the change in the color of the reaction mixture from pale yellow to dark brown, with maximum absorbance at 455 nm. Obtained NPs were characterized by different techniques, i.e., FTIR, XRD, HR-TEM, HR-SEM, SAED, XRD, EDX, AFM, and DLS. Green synthesized AgNPs were nearly mono-dispersed, smooth, spherical, and crystalline in nature. The average size of the maximum number of AgNPs was 77.28 ± 2.801 nm. The reduction of dyes using a good reducing agent (NaBH4) was tested. A fast catalytic degradation of dyes took place within a short period of time when AgNPs were added in the reaction mixture in the presence of NaBH4. As a final recommendation, Cestrum nocturnum aqueous leaf extract-mediated AgNPs could be effectively implemented for environmental rehabilitation because of their exceptional performance. This can be utilized in the treatment of industrial wastewater through the breakdown of hazardous dyes.
Collapse
Affiliation(s)
- Pradeep Kumar
- Department of Botany, MMV, Banaras Hindu University, Varanasi 221005, India
| | - Jyoti Dixit
- Department of Botany, MMV, Banaras Hindu University, Varanasi 221005, India
| | - Amit Kumar Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344096 Rostov on Don, Russia
| | - Pooja Verma
- Department of Botany, MMV, Banaras Hindu University, Varanasi 221005, India
| | | | - Sunil Kumar Mishra
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344096 Rostov on Don, Russia
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, 344096 Rostov on Don, Russia
| |
Collapse
|
17
|
Du Y, Che H, Wang P, Chen J, Ao Y. Highly efficient removal of organic contaminant with wide concentration range by a novel self-cleaning hydrogel: Mechanism, degradation pathway and DFT calculation. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129738. [PMID: 35985218 DOI: 10.1016/j.jhazmat.2022.129738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/28/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
A novel carbon nitride based self-cleaning hydrogel photocatalyst (KI-PCN gel, potassium and iodine co-doped carbon nitride confined in alginate) has been successfully constructed by a facile method. Fabricated photocatalyst showed enhanced synergistic adsorption-photocatalytic degradation property on a high concentration of methylene blue (HMB) because of enhanced carrier separation efficiency and improved light adsorption capacity of KI-PCN. As expected, the KI-PCN gel showed the highest apparent rate constant value (Kapp =0.0310 min-1), which was about 38.8 and 5.8 times as that of blank hydrogel (Kapp=0.0008 min-1) and PCN gel (Kapp=0.0053 min-1), respectively. Meanwhile, KI-PCN gel can continuously adsorb low concentration of MB (LMB), and the MB-adsorbed KI-PCN gel can self-clean under light irradiation. The bench-scale experiments simulating real river showed that KI-PCN gel can effectively and continuously remove LMB (0.1-20 ppm), indicating the possibility for the removal of contaminants in natural rivers. Furthermore, the possible degradation pathways were proposed by combining the density functional calculations (DFT) and intermediates identified by liquid chromatography-mass spectrometry (LC-MS). This work proposed a new perspective to acquire a novel self-cleaning and easily recyclable photocatalyst for treatment of wide concentration range organic wastewater as well as remediation of natural waterbody.
Collapse
Affiliation(s)
- Yuanjing Du
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Huinan Che
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yanhui Ao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
18
|
Enhanced photo-reduction of chromium(VI) from aqueous solution by nanosheet hybrids of covalent organic framework and graphene-phase carbon nitride. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Li X, Liu Z, Wang J, Zhang Y, Tang H, James Allardice P, Song Z, Qian B. Antibacterial Activity of a Nonmetal Z-Scheme Heterojunction Photocatalyst. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Dai B, Chen X, Yang X, Yang G, Li S, Zhang L, Mu F, Zhao W, Leung DY. Designing S-scheme Au/g-C3N4/BiO1.2I0.6 plasmonic heterojunction for efficient visible-light photocatalysis. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120531] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Dai Y, Wang Y, Zuo G, Kong J, Guo Y, Sun C, Xian Q. Photocatalytic degradation mechanism of phenanthrene over visible light driven plasmonic Ag/Ag 3PO 4/g-C 3N 4 heterojunction nanocomposite. CHEMOSPHERE 2022; 293:133575. [PMID: 35033521 DOI: 10.1016/j.chemosphere.2022.133575] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/25/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Visible light driven plasmonic Ag/Ag3PO4/g-C3N4 heterojunction nanocomposite with regular morphology was prepared via a modified facile method. The two-dimensional ultrathin g-C3N4 nanosheet is uniformly wrapped on the surface of Ag3PO4 nanopolyhedron. A charge transfer bridge was built between Ag3PO4 nanopolyhedron and g-C3N4 nanosheet due to the reduction of Ag nanoparticles. This structure can inhibit the recombination of photogenerated electron-hole pairs and promote the transfer of photogenerated carriers, so as to produce more active species for participating in the photocatalytic reaction. In addition, the surface plasmon resonance (SPR) of appropriate Ag nanoparticles enhanced the absorption and utilization of visible light. Compared with Ag3PO4 and Ag/Ag3PO4, Ag/Ag3PO4/g-C3N4 showed higher photocatalytic activity. Under visible light irradiation, the degradation rate of phenanthrene (PHE) was 0.01756 min-1, which was 3.14 times and 2.38 times that of Ag3PO4 and Ag/Ag3PO4, respectively. After four cycles of photocatalytic reaction, the Ag/Ag3PO4/g-C3N4 photocatalyst still maintained high photocatalytic activity. The active sites of PHE were predicted by Gaussian simulation calculation and combined with intermediate products identification of GC-MS, the possible degradation pathway of PHE was speculated. This research has reference significance for the construction of plasmonic heterojunction photocatalyst in the field of environmental pollution remediation.
Collapse
Affiliation(s)
- Yuxuan Dai
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Yuting Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Gancheng Zuo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China; School of Environment, Nanjing Normal University, Nanjing, 210023, PR China
| | - Jijie Kong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China; School of Environment, Nanjing Normal University, Nanjing, 210023, PR China
| | - Yang Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China; Nanjing Institute of Environmental Science, Ministry of Environmental Protection of China, Nanjing, 210042, PR China
| | - Cheng Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China.
| | - Qiming Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
22
|
Preparation of black hollow TiO2 nanotube-coated PDA@Ag2S heterostructures for efficient photocatalytic reduction of Cr(VI). J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122865] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
23
|
Gao C, Wang H, Yu T, Li Y, Liu L. Self-sustained recovery of silver with stainless-steel based Cobalt/Molybdenum/Manganese polycrystalline catalytic electrode in bio-electroreduction microbial fuel cell (BEMFC). JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127664. [PMID: 34837830 DOI: 10.1016/j.jhazmat.2021.127664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
In this study, a novel bio-electroreduction microbial fuel cell (BEMFC) assisted by stainless-steel based Cobalt/Molybdenum/Manganese (Co/Mo/Mn-SS) polycrystalline catalytic electrode was used to achieve high recovery to silver. The exoelectrogens (Shewanella sp. etc.) using organic wastewater (the inflow was controlled at 1.2 L d-1) as nutrient matrix in the anode chamber generated electrons, while silver ions were simultaneously electroreduced and electrodeposited on the surface of the catalytic electrode as electron acceptors. Silver nanoplates could be observed directly. The products of electroreduction on the cathode were analyzed by Scanning Electron Microscopy (SEM), Transmission Electron Microscope (TEM), X-ray Photoelectron Spectroscopy (XPS), X-ray Diffractometer (XRD), and the results of electrochemical characterization confirmed the existence of silver in the products. In the operation, the silver ions were in-situ recovered and enriched from the initial concentration of 20-300 mg L-1 to almost complete recovery (8-18 h), with the maximum power density of 1008.2 mW m-2 and 5.5 A m-2 current density. The recovery efficiency of silver in the BEMFC using the Co/Mo/Mn-SS electrode was up to 9.60 kg m-2h-1, and the energy efficiency was 27.8 kg kWh-1. Under the continuous flow operation mode, the BEMFC still achieved 90.2% recovery efficiency of the silver.
Collapse
Affiliation(s)
- Changfei Gao
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China.
| | - Hanwen Wang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Tingting Yu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yihua Li
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu 610041, China
| | - Lifen Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|