1
|
Wei X, Liu N, Feng Y, Wang H, Han W, Zhuang M, Zhang H, Gao W, Lin Y, Tang X, Zheng Y. Competitive-like binding between carbon black and CTNNB1 to ΔNp63 interpreting the abnormal respiratory epithelial repair after injury. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172652. [PMID: 38653146 DOI: 10.1016/j.scitotenv.2024.172652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Airway epithelium is extraordinary vulnerable to damage owning to continuous environment exposure. Subsequent repair is therefore essential to restore the homeostasis of respiratory system. Disruptions in respiratory epithelial repair caused by nanoparticles exposure have been linked to various human diseases, yet implications in repair process remain incompletely elucidated. This study aims to elucidate the key stage in epithelial repair disturbed by carbon black (CB) nanoparticles, highlighting the pivotal role of ΔNp63 in mediating the epithelium repair. A competitive-like binding between CB and beta-catenin 1 (CTNNB1) to ΔNp63 is proposed to elaborate the underlying toxicity mechanism. Specifically, CB exhibits a remarkable inhibitory effect on cell proliferation, leading to aberrant airway epithelial repair, as validated in air-liquid culture. ΔNp63 drives efficient epithelial proliferation during CB exposure, and CTNNB1 was identified as a target of ΔNp63 by bioinformatics analysis. Further molecular dynamics simulation reveals that oxygen-containing functional groups on CB disrupt the native interaction of CTNNB1 with ΔNp63 through competitive-like binding pattern. This process modulates CTNNB1 expression, ultimately restraining proliferation during respiratory epithelial repair. Overall, the current study elucidates that the diminished interaction between CTNNB1 and ΔNp63 impedes respiratory epithelial repair in response to CB exposure, thereby enriching the public health risk assessment on CB-related respiratory diseases.
Collapse
Affiliation(s)
- Xiaoran Wei
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Nan Liu
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yawen Feng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Hongmei Wang
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Weizhong Han
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Min Zhuang
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Hongna Zhang
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Wei Gao
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yongfeng Lin
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xiaowen Tang
- Department of Medical Chemistry, School of Pharmacy, Qingdao University, Qingdao 266071, China.
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| |
Collapse
|
2
|
Liu F, Liu C, Liu Y, Wang J, Wang Y, Yan B. Neurotoxicity of the air-borne particles: From molecular events to human diseases. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131827. [PMID: 37315411 DOI: 10.1016/j.jhazmat.2023.131827] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/26/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
Exposure to PM2.5 is associated with an increased incidence of CNS diseases in humans, as confirmed by numerous epidemiological studies. Animal models have demonstrated that PM2.5 exposure can damage brain tissue, neurodevelopmental issues and neurodegenerative diseases. Both animal and human cell models have identified oxidative stress and inflammation as the primary toxic effects of PM2.5 exposure. However, understanding how PM2.5 modulates neurotoxicity has proven challenging due to its complex and variable composition. This review aims to summarize the detrimental effects of inhaled PM2.5 on the CNS and the limited understanding of its underlying mechanism. It also highlights new frontiers in addressing these issues, such as modern laboratory and computational techniques and chemical reductionism tactics. By utilizing these approaches, we aim to fully elucidate the mechanism of PM2.5-induced neurotoxicity, treat associated diseases, and ultimately eliminate pollution.
Collapse
Affiliation(s)
- Fang Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014, China
| | - Chunyan Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014, China
| | - Yin Liu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Jiahui Wang
- College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yibing Wang
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong 250014, China.
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
3
|
Pan X, Yu Q, Chen S, Li Y, Jiao T, Li W, Zhang C, Kureshi A, Cheng L, Xu Q. Dissecting contributions of representative heavy metal components in PM 2.5 to its cytotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114562. [PMID: 36680992 DOI: 10.1016/j.ecoenv.2023.114562] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
PM2.5 is a complex pollutant that is a pervasive threat to human health. The health risks and toxicity mechanisms of PM2.5 components must be identified to alleviate the corresponding risks. In this study, a reductionism approach based on model PM2.5 particles was used to investigate the contributions of the most harmful components in PM2.5 to its toxicity. Human liver and kidney cells were used as models. The results showed that Cr(VI) was the most critical toxic component among other components (Pb, As, and benzo[a]pyrene) in human liver and kidney cells. PM2.5-Cr(VI) induced oxidative stress, which led to cytotoxicity by inducing cell cycle arrest in the S-phase in HepG2 and HEK293 cells. The presented findings can provide valuable insights into the toxicity levels of PM2.5 components, which can help clarify the potential health risks from PM2.5 exposure.
Collapse
Affiliation(s)
- Xiujiao Pan
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China; Guangdong Nantian Institute of Forensic Science, Shenzhen 518003, China
| | - Qianhui Yu
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Shenshu Chen
- Guangdong Nantian Institute of Forensic Science, Shenzhen 518003, China
| | - Yaqing Li
- Guangdong Nantian Institute of Forensic Science, Shenzhen 518003, China
| | - Taifeng Jiao
- Guangdong Nantian Institute of Forensic Science, Shenzhen 518003, China
| | - Wenyue Li
- Guangdong Nantian Institute of Forensic Science, Shenzhen 518003, China
| | - Chuchu Zhang
- Guangdong Nantian Institute of Forensic Science, Shenzhen 518003, China
| | - Aliye Kureshi
- Guangdong Nantian Institute of Forensic Science, Shenzhen 518003, China
| | - Lianghong Cheng
- Guangdong Nantian Institute of Forensic Science, Shenzhen 518003, China.
| | - Qiyong Xu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
4
|
Wang J, Jia J, Wang D, Pan X, Xiong H, Li C, Jiang Y, Yan B. Zn 2+ loading as a critical contributor to the circ_0008553-mediated oxidative stress and inflammation in response to PM 2.5 exposures. J Environ Sci (China) 2023; 124:451-461. [PMID: 36182153 DOI: 10.1016/j.jes.2021.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/20/2021] [Accepted: 11/12/2021] [Indexed: 06/16/2023]
Abstract
Inflammation is a major adverse outcome induced by inhaled particulate matter with a diameter of ≤ 2.5 µm (PM2.5), and a critical trigger of most PM2.5 exposure-associated diseases. However, the key molecular events regulating the PM2.5-induced airway inflammation are yet to be elucidated. Considering the critical role of circular RNAs (circRNAs) in regulating inflammation, we predicted 11 circRNAs that may be involved in the PM2.5-induced airway inflammation using three previously reported miRNAs through the starBase website. A novel circRNA circ_0008553 was identified to be responsible for the PM2.5-activated inflammatory response in human bronchial epithelial cells (16HBE) via inducing oxidative stress. Using a combinatorial model PM2.5 library, we found that the synergistic effect of the insoluble core and loaded Zn2+ ions at environmentally relevant concentrations was the major contributor to the upregulation of circ_0008553 and subsequent induction of oxidative stress and inflammation in response to PM2.5 exposures. Our findings provided new insight into the intervention of PM2.5-induced adverse outcomes.
Collapse
Affiliation(s)
- Jingzhou Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jianbo Jia
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Dujia Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiujiao Pan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Haiyan Xiong
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Chengjun Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yiguo Jiang
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China.
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
5
|
Wang Q, Liu S. The Effects and Pathogenesis of PM2.5 and Its Components on Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2023; 18:493-506. [PMID: 37056681 PMCID: PMC10086390 DOI: 10.2147/copd.s402122] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/27/2023] [Indexed: 04/15/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD), a heterogeneous disease, is the leading cause of death worldwide. In recent years, air pollution, especially particulate matter (PM), has been widely studied as a contributing factor to COPD. As an essential component of PM, PM2.5 is associated with COPD prevalence, morbidity, and acute exacerbations. However, the specific pathogenic mechanisms were still unclear and deserve further research. The diversity and complexity of PM2.5 components make it challenging to get its accurate effects and mechanisms for COPD. It has been determined that the most toxic PM2.5 components are metals, polycyclic aromatic hydrocarbons (PAHs), carbonaceous particles (CPs), and other organic compounds. PM2.5-induced cytokine release and oxidative stress are the main mechanisms reported leading to COPD. Nonnegligibly, the microorganism in PM 2.5 may directly cause mononuclear inflammation or break the microorganism balance contributing to the development and exacerbation of COPD. This review focuses on the pathophysiology and consequences of PM2.5 and its components on COPD.
Collapse
Affiliation(s)
- Qi Wang
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People’s Republic of China
| | - Sha Liu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People’s Republic of China
- Correspondence: Sha Liu, Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, 35 Jiefang Avenue, Zhengxiang District, Hengyang, Hunan, 421001, People’s Republic of China, Email
| |
Collapse
|
6
|
Liu M, Liu R, Wang R, Ba Y, Yu F, Deng Q, Huang H. Lead-induced neurodevelopmental lesion and epigenetic landscape: Implication in neurological disorders. J Appl Toxicol 2022. [PMID: 36433892 DOI: 10.1002/jat.4419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 11/20/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
Lead (Pb) was implicated in multiple genotoxic, neuroepigenotoxic, and chromosomal-toxic mechanisms and interacted with varying synaptic plasticity pathways, likely underpinning previous reports of links between Pb and cognitive impairment. Epigenetic changes have emerged as a promising biomarker for neurological disorders, including cognitive disorders, Alzheimer's disease (AD), and Parkinson's disease (PD). In the present review, special attention is paid to neural epigenetic features and mechanisms that can alter gene expression patterns upon environmental Pb exposure in rodents, primates, and zebrafish. Epigenetic modifications have also been discussed in population studies and cell experiment. Further, we explore growing evidence of potential linkage between Pb-induced disruption of regulatory pathway and neurodevelopmental and neurological disorders both in vivo and in vitro. These findings uncover how epigenome in neurons facilitates the development and function of the brain in response to Pb insult.
Collapse
Affiliation(s)
- Mengchen Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Rundong Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Ruike Wang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Yue Ba
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Fangfang Yu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Qihong Deng
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Hui Huang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| |
Collapse
|
7
|
Pan X, Li L, Huang HH, Wu J, Zhou X, Yan X, Jia J, Yue T, Chu YH, Yan B. Biosafety-inspired structural optimization of triazolium ionic liquids based on structure-toxicity relationships. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127521. [PMID: 34736187 DOI: 10.1016/j.jhazmat.2021.127521] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/30/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Ionic liquids (ILs), owing to their low vapor pressure and excellent solvating ability, are being increasingly applied in various industries to replace highly toxic organic solvents. They mainly pollute aquatic environment and soils, directly endangering eco-environment and human health. Therefore, it is critical to understand and optimize structural motifs of ILs with reduced toxicity. Considering human oral exposure is the major route, our investigations employed a human cell panel (modeling oral exposures) including human stomach (GES-1), intestinal (FHC), liver (HepG2) and kidney (HEK293) cells using a series of experimental and computational approaches to explore the cytotoxicity and molecular mechanism of ILs. We discovered that the cytotoxicity of triazolium and imidazolium ILs was human cell line-dependent with cytotoxicity in an order of FHC > GES-1 > HepG2 > HEK293. For this reason, a toxicity assay using a single cell line was highly inappropriate. Compared to anions (Br-, OTs-, OTMBS-) we tested, the cation of ILs played a major role in causing cytotoxicity. Ionic liquids with cations having longer hydrophobic sidechains (IL09 vs. IL01) readily insert into cell membranes with enhanced membrane and lipidomic perturbations, induce cytotoxicity by triggering cell cycle arrest and apoptosis. Reducing sidechain length and incorporating three nitrogen atoms (triazolium) instead of two (imidazolium) in the cation core alleviated cytotoxicity by reducing cell membrane perturbations and cell function interference. These findings provide important guiding principles for the design of the next-generation of "green" and safe ILs.
Collapse
Affiliation(s)
- Xiujiao Pan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Lingzhi Li
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Hsin-Heng Huang
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62102, Taiwan, ROC
| | - Jialong Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xiaoxia Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xiliang Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jianbo Jia
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Tongtao Yue
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Yen-Ho Chu
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62102, Taiwan, ROC.
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Shandong University, Jinan 250100, China.
| |
Collapse
|