1
|
An Y, Sun J, Ren L, Gao Y, Wu X, Lian G. Enhanced microbial remediation of uranium tailings through red soil utilization. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2024; 277:107463. [PMID: 38815432 DOI: 10.1016/j.jenvrad.2024.107463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Seepage of uranium tailings has become a focus of attention in the uranium mining and metallurgy industry, and in-situ microbial remediation is considered an effective way to treat uranium pollution. However, this method has the drawbacks of easy biomass loss and unstable remediation effect. To overcome these issues, spare red soil around the uranium mine was used to enhance the efficiency and stability of bioremediation. Furthermore, the bioremediation mechanism was revealed by employing XRD, FTIR, XPS, and 16S rRNA. The results showed that red soil, as a barrier material, had the adsorption potential of 8.21-148.00 mg U/kg soil, but the adsorption is accompanied by the release of certain acidic and oxidative substances. During the dynamic microbial remediation, red soil was used as a cover material to neutralize acidity, provide a higher reduction potential (<-200 mV), and increase the retention rate of microbial agent (19.06 mL/d) compared to the remediation group without red soil. In the presence of red soil, the anaerobic system could maintain the uranium concentration in the solution below 0.3 mg/L for more than 70 days. Moreover, the generation of new clay minerals driven by microorganisms was more conducive to the stability of uranium tailings. Through alcohol and amino acid metabolism of microorganisms, a reducing environment with reduced valence states of multiple elements (such as S2-, Fe2+, and U4+) was formed. At the same time, the relative abundance of functional microbial communities in uranium tailings improved in presence of red soil and Desulfovirobo, Desulfocapsa, Desulfosporosinus, and other active microbial communities reconstructed the anaerobic environment. The study provides a new two-in-one solution for treatment of uranium tailings and resource utilization of red soil through in-situ microbial remediation.
Collapse
Affiliation(s)
- Yifu An
- China Nuclear Mining Science and Technology Corporation, Shijiazhuang, 050021, China
| | - Juan Sun
- China Nuclear Mining Science and Technology Corporation, Shijiazhuang, 050021, China.
| | - Lijiang Ren
- China Nuclear Mining Science and Technology Corporation, Shijiazhuang, 050021, China
| | - Yang Gao
- China Nuclear Mining Science and Technology Corporation, Shijiazhuang, 050021, China
| | - Xuyang Wu
- China Nuclear Mining Science and Technology Corporation, Shijiazhuang, 050021, China
| | - Guoxi Lian
- State Key Laboratory of Water Environment, School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
2
|
Reiller PE. Predominance of the alkaline earth(II) triscarbonatoactinyl(VI) complexes in different geochemical contexts: Review of existing data and estimation of potentially unidentified species. CHEMOSPHERE 2024; 350:141049. [PMID: 38182083 DOI: 10.1016/j.chemosphere.2023.141049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/01/2023] [Accepted: 12/26/2023] [Indexed: 01/07/2024]
Abstract
From the available thermodynamic data in the literature, a review of the impact of the formation of complexes between triscarbonatoactinyl(VI) and alkaline earth(II) (Ae) is estimated under varying conditions. First, after analyzing the literature data and using the ascertained thermodynamic data available from the commissioned reviews from the Nuclear Energy Agency (Organization for the Economic Cooperation and Development) Thermochemical DataBank Project on actinides (An) U, Np, and Pu, and from recently determined AenUO2(CO3)3(4-2n)- thermodynamic functions, the formation of AenAnO2(CO3)3(4-2n)- complexes for Pu(VI) and Np(VI) are estimated using linear free energy relationships (LFERs). The data are in good agreement with the sole determination of AePuO2(CO3)32- from Jo et al. (Dalton Trans. 49, 11605), which gives a relative confidence in the LFERs, and allows the application to actual situations. From existing uranium data, first, the impact of the origin of the data on the calculated predominance is addressed under 0.1 M NaCl and atmospheric CO2(g); second, the influence of ionic strength and salinity on predominance is estimated; and finally, the influence of temperature up to 50 °C on the solubility of uraninite in a deep geological radioactive waste storage or disposal site is calculated. For neptunium and plutonium, the impact of the potential log10β°(AenAnO2(CO3)3(4-2n)-) on Pourbaix diagrams of Pu and Np in Mg-Ca-CO3 media are estimated from Jo et al. (Dalton Trans. 49, 11605) and LFERs. Finally, the application to the speciation of Pu and Np in seawater is proposed.
Collapse
Affiliation(s)
- Pascal E Reiller
- Université Paris-Saclay, CEA, Service de Physico-Chimie (SPC), F-91191, Gif-sur-Yvette CEDEX, France.
| |
Collapse
|
3
|
Xie J, Li D, Wang Y. The bioreduction of U(VI) and Pu(IV): Experimental and thermodynamic studies. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2024; 272:107356. [PMID: 38113757 DOI: 10.1016/j.jenvrad.2023.107356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/16/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023]
Abstract
The experimental and thermodynamic bioreduction of U(VI)aq and Pu(IV)am was studied in order to more accurately predict their transport velocities in groundwater and assess the contamination risks to the associated environments. The results obtained in this study emphasize the impact of carbonate-calcium and humic acids at 7.1 and anoxic solutions on the rate and extent of U(VI)aq and Pu(IV)am bioreduction by Shewanella putrefaciens. We found that the bioreduction rate of U(VI)aq became slow in the presence of NaHCO3/CaCl2. The more negative standard redox potentials of the ternary complexes of U(VI)-Ca2+-CO32- accounted for the decreased rate of bioreduction, e.g., [Formula: see text] = -0.6797 V ≪ [Formula: see text] = 0.3862 V. The bioreduction of Pu(IV)am seemed feasible, while humic acids accepted the adequate extracellular electrons secreted by S. putrefaciens, and the redox potential of Eh(HAox/HAred) was lower than Eh(PuO2(am)/Pu3+), e.g., Eh(HAox/HAred) ≦ Eh(PuO2(am)/Pu3+) if humic acids accepted ≧ 7.952 × 10-7 mol of electrons. The standard redox potentials, Eho(PuO2(am)/Pu3+) = 0.9295 V ≫ [Formula: see text] = -0.6797 V, cannot explain the reduction extent of Pu(IV)am (8.9%), which is notably smaller than that of U(VI)aq (74.9%). In fact, the redox potential of Pu(IV)am was distinctly negative under the experimental conditions of trace-level Pu(IV)am (∼2.8 × 10-9 mol/L Pu(IV) if Pu(IV)am was completely dissolved), e.g., Eh(PuO2(am)/Pu3+) = -0.1590 V (α(Pu3+) = 10-10 mol/L, pH = 7.1). Therefore, the chemical factor of Pu3+ activity, leading to a rapid drop in Eh(PuO2(am)/Pu3+) at trace-level Pu(IV)am, was responsible for the relatively small reduction extent of Pu(IV)am.
Collapse
Affiliation(s)
- Jinchuan Xie
- Institute of Military-Civilian Integration Technology, Northwest University of Political Science and Law, Xi'an, Shaanxi, 710122, China.
| | - Dongyan Li
- Institute of Military-Civilian Integration Technology, Northwest University of Political Science and Law, Xi'an, Shaanxi, 710122, China
| | - Yu Wang
- Northwest Institute of Nuclear Technology, P.O. Box 69-14, Xi'an, Shaanxi, 710024, China
| |
Collapse
|
4
|
Chemical thermodynamics of ternary M-An(VI)-CO 3 system (M = Mg, Ca, Sr, and Ba). RADIOCHIM ACTA 2022. [DOI: 10.1515/ract-2021-1133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
This review provides an overview of the chemical thermodynamics on ternary earth-alkaline metal-actinyl-tricarbonate systems (i.e., M-AnO2-CO3, M = Mg, Ca, Sr, and Ba) and discusses the aqueous complexation and dissolution/precipitation equilibrium for these ternary aqueous systems. The aqueous ternary U(VI) carbonate species are remarkably predominant in the U(VI) speciation under natural environmental conditions at ambient temperature and moderate ionic strength condition, while the omnipresence, according to recent studies, would be hindered by an increase in temperature and ionic strength. With respect to the ternary solid U(VI) carbonate phases, most of the previously reported data have been focused on physical properties and thus a notable lack of available data on chemical thermodynamic properties, i.e., solubility product constant, has been identified. Nevertheless, substantial influences of these ternary M-AnO2-CO3 systems on the aqueous speciation and the solubility limiting phase under the natural environmental condition are taken into account according to the thermodynamic calculation. The authors point out that the completeness of the chemical thermodynamic model for predicting the chemical behavior of actinides in nature can be further improved on the basis of a sufficient understanding of ternary M-AnO2-CO3 systems.
Collapse
|
5
|
Akash S, Sivaprakash B, Raja VCV, Rajamohan N, Muthusamy G. Remediation techniques for uranium removal from polluted environment - Review on methods, mechanism and toxicology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119068. [PMID: 35240271 DOI: 10.1016/j.envpol.2022.119068] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/20/2022] [Accepted: 02/25/2022] [Indexed: 05/27/2023]
Abstract
Uranium, a radionuclide, is a predominant element utilized for speciality requirements in industrial applications, as fuels and catalyst. The radioactive properties and chemical toxicity of uranium causes a major threat to the ecosystem. The hazards associated with Uranium pollution includes the cancer in bones, liver, and lungs. The toxicological properties of Uranium are discussed in detail. Although there are many methods to eliminate those hazards, this research work is aimed to describe the application of bioremediation methods. Bioremediation methods involve elimination of the hazards of uranium, by transforming into low oxidation form using natural microbes and plants. This study deeply elucidates the methods as bioleaching, biosorption, bioreduction and phytoremediation. Bioleaching process involves bio-oxidation of tetravalent uranium when it gets in contact with acidophilic metal bacterial complex to obtain leach liquor. In biosorption, chitin/chitosan derived sorbents act as chelators and binds with uranium by electrostatic attraction. Bio reduction employs a bacterial transformation into enzymes which immobilize and reduce uranium. Phytoremediation includes phytoextraction and phytotranslocation of uranium through xylems from soil to roots and shoots of plants. The highest uranium removal and uptake reported using the different methods are listed as follows: bioleaching (100% uranium recovery), biosorption (167 g kg-1 uranium uptake), bioreduction (98.9% uranium recovery), and phytoremediation (49,639 mg kg-1 uranium uptake). Among all the techniques mentioned above, bioleaching has been proved to be the most efficient for uranium remediation.
Collapse
Affiliation(s)
- S Akash
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar PC, 608002, India
| | - Baskaran Sivaprakash
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar PC, 608002, India
| | - V C Vadivel Raja
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar PC, 608002, India
| | - Natarajan Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, PC-311, Oman.
| | - Govarthanan Muthusamy
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
6
|
Silva LFO, Pinto D, Oliveira MLS, Dotto GL. Dispersion of hazardous nanoparticles on beaches around phosphogypsum factories. MARINE POLLUTION BULLETIN 2021; 169:112493. [PMID: 34022554 DOI: 10.1016/j.marpolbul.2021.112493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Anthropogenic occurring nanoparticles (NPs) have been one of the principal catalytic components of marine pollution throughout its history. The phosphogypsum (PG) factories present environmental risks and evident marine pollution in different parts of the world. Many of these factors continue to operate, however, some have already been abandoned by the private sector. The general objective of this manuscript is to analyze the real nanoparticles (NPs) present on a beach in southern Brazil to illustrate the need to create public policies and projects for environmental recovery. This work focused on real representative sampling of suspended sediments (SSs), and on a modern analytical procedure via advanced electron microscopes (field emission scanning electron microscope-FE-SEM and high resolution transmission electron microscope-HR-TEM coupled with an energy dispersive X-ray microanalysis system-EDS) to analyze NPs containing hazardous elements (HEs). The results presented in this work demonstrate who the size, morphology, among other physical-geochemical characteristics influence in the adsorption of HEs by the NPs and their respective agglomerates. This study is of great importance for carrying out the application of advanced techniques and methods to better understand the formation and transport of NPs on beaches, which allows assisting in the management of waste from plaster factories on a global scale.
Collapse
Affiliation(s)
- Luis F O Silva
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia.
| | - Diana Pinto
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
| | - Marcos L S Oliveira
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia; Departamento de Ingeniería Civil y Arquitectura, Universidad de Lima, Avenida Javier Prado Este 4600, Santiago de Surco 1503, Peru
| | - Guilherme L Dotto
- Chemical Engineering Department, Federal University of Santa Maria, UFSM, Roraima Avenue, 1000, 97105-900 Santa Maria, RS, Brazil
| |
Collapse
|