1
|
Li YL, Wang HL, Xiao ZX, Ai JF, Liang FP, Zhu ZH, Zou HH. Dynamic Rare-Earth Metal-Organic Frameworks Based on Molecular Rotor Linkers with Efficient Emissions and Ultrasensitive Optical Sensing Performance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62301-62313. [PMID: 39475532 DOI: 10.1021/acsami.4c10628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
4,4',4″-Triphenylamine tricarboxylate (TPA-COOH) with a distinct molecular rotor structure was reacted with rare-earth (RE) metal ions to obtain seven dynamic RE-based luminescent MOFs (RE-LMOFs) (i.e., emission colors in the blue, yellow-green, red, and near-infrared regions and emission peak wavelengths between 400 and 1600 nm) via the effective transfer of absorbed energy from TPA-COOH to the RE metal ions through the antenna effect. Due to the large energy level difference between RE ions, it was rare in the early days to use the same ligand to construct energy-level matching RE-LMOF homologues with multiple RE metal centers. The uncoordinated oxygen atoms on the molecular rotor linkers in RE-LMOFs provide active sites that can specifically capture highly toxic metal ions and strong oxidative pollutants. The limit of detection (LOD) of RE-LMOF for Al(III) ions is far below the maximum concentration of Al(III) ions in drinking water stipulated by the U.S. Environmental Protection Agency (USEPA) and that for H2O2 is much lower than the H2O2 content in cancer cells, showing excellent application potential for diagnosing early cell cancelation.
Collapse
Affiliation(s)
- Yun-Lan Li
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Hai-Ling Wang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning 530004, P. R. China
| | - Zi-Xin Xiao
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Ju-Fen Ai
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Fu-Pei Liang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Zhong-Hong Zhu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning 530004, P. R. China
| | - Hua-Hong Zou
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
2
|
Jiang Y, Du Z, Qiu H, Lin X, Yang Y, Zeng C. Regulation of the Metal Center in Lanthanide Nanoparticles to Achieve Multifunctional Sensing. Anal Chem 2024; 96:12692-12700. [PMID: 39058516 DOI: 10.1021/acs.analchem.4c01495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Development of a multifunctional sensor is highly desirable. In this work, traces of a carcinoid cancer biomarker of 5-hydroxyindole-3-acetic acid (5-HIAA) in real human urine can be detected by lanthanide nanoparticle Eu-CFC (CFC = 7-chloro-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid) and the sensing devices of the test paper and agarose gel, achieving an ultralow LOD of 0.8 × 10-3 ppm within a sensing time of 2.0 min. Interestingly, by metal center regulation of Tb and Eu codoping, nanoparticle TbEu2-CFC shows high-sensitivity and low-LOD (0.019% v/v) sensing of water in ethanol. The sensing mechanisms are revealed by both experiments and quantum chemical studies.
Collapse
Affiliation(s)
- Yefei Jiang
- Department of Chemistry and Materials and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, PR China
| | - Ziyi Du
- Department of Chemistry and Materials and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, PR China
| | - Hongdeng Qiu
- Key Laboratory of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Xiaoming Lin
- Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, No. 378 Outer Ring West Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Yangyi Yang
- School of Materials Science and Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Chenghui Zeng
- Department of Chemistry and Materials and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, PR China
| |
Collapse
|
3
|
Xie JN, Li YL, Wang HL, Xiao ZX, Zhu ZH, Liang FP, Zou HH. Different anion (NO 3- and OAc -)-controlled construction of dysprosium clusters with different shapes. Dalton Trans 2024; 53:5665-5675. [PMID: 38445301 DOI: 10.1039/d3dt03314g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The complex hydrolysis process and strong uncertainty of self-assembly rules have led to the precise synthesis of lanthanide clusters still being in the "blind-box" stage and simplifying the self-assembly process and developing reliable regulation strategies have attracted widespread attention. Herein, different anions are used to induce the construction of a series of dysprosium clusters with different shapes and connections. When the selected anion is NO3-, it blocks the coordination of metal sites around the cluster through the terminal group coordination mode, thereby controlling the growth of the cluster. When NO3- was changed to OAc-, OAc- adopted a bridging mode to induce modular units to build dysprosium clusters through an annular growth mechanism. Specifically, we selected 2-amino-6-methoxybenzoic acid, 2-hydroxybenzaldehyde, and Dy(NO3)3·6H2O to react under solvothermal conditions to obtain a pentanuclear dysprosium cluster (1). The five Dy(III) ions in 1 are distributed in upper and lower planes and are formed by the tight connection of nitrogen and oxygen atoms, and μ3-OH- bridges on the ligand. Next, octa-nuclear dysprosium cluster (2) were obtained by only regulating ligand substituents. The eight Dy(III) ions in 2 are tightly connected through ligand oxygen atoms, μ2-OH-, and μ3-OH- bridges, forming an elliptical {Dy/O} cluster core. Furthermore, only by changing NO3- to OAc-, a wheel-shaped tetradeca-nuclear dysprosium cluster (3) was obtained. Cluster 3 is composed of OAc- bridged multiple template Dy3L3 units and pulling of these template units connected by an annular growth mechanism forms a wheel-shaped cluster. The angle of the coordination site on NO3- is ∠ONO = 115°, which leads to the further extension of the metal sites on the periphery of clusters 1 and 2 through the terminal group coordination mode, thereby regulating the structural connection of the clusters. However, the angle of the coordination site on OAc- is ∠OCO = 128°, and a slightly increased angle leads to the formation of a ring-shaped cluster 3 by connecting the template units through bridging. This is a rare example of the controllable construction of lanthanide clusters with different shapes induced by the regulation of different anions, which provides a new method for the precise construction of lanthanide clusters with special shapes.
Collapse
Affiliation(s)
- Jia-Nan Xie
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Yun-Lan Li
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Hai-Ling Wang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Zi-Xin Xiao
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Zhong-Hong Zhu
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Fu-Pei Liang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Hua-Hong Zou
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China.
| |
Collapse
|
4
|
Yu X, Chang W, Cai Z, Yu C, Lai L, Zhou Z, Li P, Yang Y, Zeng C. Hg 2+ detection and information encryption of new [1+1] lanthanide cluster. Talanta 2024; 266:125105. [PMID: 37639872 DOI: 10.1016/j.talanta.2023.125105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
The sensing of heavy metal ion and information encryption are two very important research areas. Therefore, developing multi-functional materials capable of sensing heavy metal ions and encrypting information is highly important. In this work, three [1 + 1] lanthanide clusters [Ln(TFBA)3(dmp) (H2O)2]2 (Ln = Tb3+Tb1+1, Eu3+Eu1+1, Gd3+Gd1+1, HTFBA = 2,3,4,5-tetrafluorobenzoic acid, dmp = 4,7-dimethyl-1,10-phenanthroline) were designed and synthesized. Among them, Tb1+1 shows excellent luminescence sensing towards Hg2+ (Ex = 350 nm, Em = 545 nm). Results demonstrates the sensing with high selectivity, strong anti-interference, 20-s response time, high accuracy, excellent linear relationship in 0-20.0 μM, and a very low limit of detection (0.02 ppb). Furthermore, paper strips based on Tb1+1 is fabricated for visual detection of Hg2+ in real samples of tap water, lake water, human urine, and human serum. More interestingly, a new method for confidentiality of information is realized through multi-color anti-counterfeiting patterns with the [1 + 1] lanthanide cluster ink, based on the luminescence "on-off" sensing towards Hg2+.
Collapse
Affiliation(s)
- Xiaobo Yu
- Department of Chemistry and Chemical Engineering and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, PR China; National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Nanchang, 330022, PR China
| | - Wenting Chang
- Department of Chemistry and Chemical Engineering and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, PR China; National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Nanchang, 330022, PR China
| | - Ziyan Cai
- Department of Chemistry and Chemical Engineering and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, PR China; National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Nanchang, 330022, PR China
| | - Cilin Yu
- Department of Chemistry and Chemical Engineering and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, PR China; National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Nanchang, 330022, PR China
| | - Lin Lai
- Department of Chemistry and Chemical Engineering and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, PR China; National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Nanchang, 330022, PR China
| | - Ziyin Zhou
- Department of Chemistry and Chemical Engineering and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, PR China; National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Nanchang, 330022, PR China
| | - Ping Li
- Department of Chemistry and Chemical Engineering and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, PR China; National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Nanchang, 330022, PR China
| | - Yangyi Yang
- School of Materials Science and Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Chenghui Zeng
- Department of Chemistry and Chemical Engineering and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, PR China; National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Nanchang, 330022, PR China; School of Materials Science and Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
5
|
Feng J, Kong C, Chen Y, Cen P, Ding Y, Guo Y, Zhang F, Liu X. Lanthanide-MOFs as multi-responsive photoluminescence sensor for sensitively detecting Fe 3+, Cr 2O 72- and nitrofuran antibiotics. RSC Adv 2023; 13:26196-26202. [PMID: 37671001 PMCID: PMC10475880 DOI: 10.1039/d3ra03817c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/16/2023] [Indexed: 09/07/2023] Open
Abstract
Fast and selective detection of contaminants plays a key role in meeting human health and environmental concerns. Herein, two groups of isostructural lanthanide MOFs, [Ln(Hpta)(oxalic acid)]·H2O (1-Eu, 2-Gd) and [Ln(pta)(oxalic acid)0.5(H2O)2]·2H2O (3-Eu, 4-Gd) (H2pta = 2-(4-pyridyl)-terephthalic acid, C2O4- = oxalic acid), were synthesized by solvothermal method. Single crystal X-ray diffraction reveals that 1 and 2 are 3D neutral frameworks, while 3 and 4 consist of 2D layers with parallelogram holes and stack into 3D networks through O-H⋯N and O-H⋯O hydrogen bonding interactions. All complexes remain crystalline and stable below 400 °C, suggesting preeminent thermostability. Noteworthily, only 3 shows excellent chemical stability in water and organic solvent. Therefore, the solid-state fluorescence spectrum was used to characterize 3 which exhibited intense red luminescence. The N active sites in the pore channels of 3 are conducive to displaying a distinct quenching effect for Fe3+ cations in aqueous solutions, Cr2O72- anions in DMF and DMA solutions, and nitrofuran antibiotics in the DMF solvent. Overall, 3 is a prospective luminescent sensor for detecting Fe3+, Cr2O72- and nitrofuran antibiotics.
Collapse
Affiliation(s)
- Jingjuan Feng
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Cunding Kong
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Yunhui Chen
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Peipei Cen
- College of Public Health, College of Basic Medical Science, Ningxia Medical University YinChuan 750021 China
| | - Yi Ding
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Yan Guo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Fengyuan Zhang
- College of Public Health, College of Basic Medical Science, Ningxia Medical University YinChuan 750021 China
| | - Xiangyu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| |
Collapse
|
6
|
Cheng Y, Wu M, Du Z, Chen Y, Zhao L, Zhu Z, Yu X, Yang Y, Zeng C. Tetra-Nuclear Cluster-Based Lanthanide Metal-Organic Frameworks as White Phosphor, Information Encryption, Self-Calibrating Thermometers, and Fe 2+ Sensors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24570-24582. [PMID: 37167419 DOI: 10.1021/acsami.3c02644] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The application of one kind of metal-organic framework (MOF) material used in multiple fields is one of the most interesting research topics. In this work, four new tetra-nuclear cluster-based lanthanide metal-organic frameworks (LnMOFs) [Ln2(BTDB)3(DMA)(phen)]n (Ln = Tb TbMOF, Eu EuMOF, Gd GdMOF, Tb1.830Eu0.170 Tb,EuMOF, 3,5-bis(trifluoromethyl)-4',4″-dicarboxytriphenylamine = H2BTDB, 1,10-phenanthroline = phen) are obtained based on the ligand of H2BTDB that is synthesized in our laboratory, and the precise single-crystal structure of H2BTDB is obtained for the first time. The white phosphor was obtained by facilely hybridizing two components of the orange-yellow emission phosphor of Tb,EuMOF and the blue luminescence material of triphenylamine according to the trichromatic theory. At the same time, TbMOF, EuMOF, Tb,EuMOF, and the white phosphor can be used for information encryption, demonstrating their potential application in the field of anti-counterfeiting. Tb,EuMOF is also a multi-mode and self-calibrating thermometer within a broad temperature range of 110-300 K. Further studies show that EuMOF is a rapid response sensor for Fe2+, with a very low limit of detection of 2.0 nM, which is much lower than the national standards for Fe2+ (GB 5749-2005, 5.357 μM). It can achieve strong anti-interference detection of Fe2+ in actual samples of tap water and lake water. In addition, EuMOF can also be made into an easy-to-use sensing device of test paper for real-time and visual sensing of Fe2+.
Collapse
Affiliation(s)
- Yuanhong Cheng
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Mingjian Wu
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Ziyi Du
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Yun Chen
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Lingyi Zhao
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Zhiwei Zhu
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Xiaobo Yu
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Yangyi Yang
- School of Materials Science and Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Chenghui Zeng
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, P.R. China
| |
Collapse
|
7
|
Yu X, Chang W, Zhang H, Cai Z, Yang Y, Zeng C. Visual and Real-Time Monitoring of Cd 2+ in Water, Rice, and Rice Soil with Test Paper Based on [2 + 2] Lanthanide Clusters. Inorg Chem 2023; 62:6387-6396. [PMID: 37027515 DOI: 10.1021/acs.inorgchem.3c00255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Cadmium ions (Cd2+) are highly toxic to animal and human health, especially through the drinking of Cd2+-contaminated water and eating Cd2+-contaminated rice. Therefore, accurate detection of Cd2+ in water, rice, and rice soil is urgent. In this work, two [2 + 2] lanthanide clusters of Tb2Tb2 and Eu2Eu2 were synthesized and characterized in detail. Interestingly, Tb2Tb2 is a rapid sensor for Cd2+ through luminescence "turn-off". Further studies show that Tb2Tb2 is a highly sensitive and selective sensor toward Cd2+ in water, rice supernatants, and rice soil supernatants, with a very short response time of 20 s. The limit of detection (LOD) in the above three real samples is as low as 0.0112, 1.1240, and 0.1124 ppb, respectively, which is lower than the national standards for food safety in China (GB 2762-2022). More interestingly, a portable sensing device of test paper based on Tb2Tb2 is developed with a facile method, which shows visible, highly sensitive, and selective sensing toward Cd2+ in real samples of water, rice supernatants, and rice soil supernatants. Tb2Tb2 and its sensing device of test paper are an on-site analysis sensor for potentially non-expert users, especially for people in remote rural areas.
Collapse
Affiliation(s)
- Xiaobo Yu
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Wenting Chang
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Hua Zhang
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Ziyan Cai
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Yangyi Yang
- School of Materials Science and Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Chenghui Zeng
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, P. R. China
| |
Collapse
|
8
|
Chang W, Yu X, Xu Z, Sang X, Zhang H, Zeng C. Detection of heavy metal ion in real samples with fiber based paper based on new rare earth cluster. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 288:122097. [PMID: 36462321 DOI: 10.1016/j.saa.2022.122097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/15/2022] [Accepted: 11/06/2022] [Indexed: 06/17/2023]
Abstract
Chromium (Cr) is an important material, but also one of the most toxic heavy metal pollutants, showing great threat to human health and ecological environment, thus, accurate and rapid detection of Cr3+ has far-reaching significance. In this work, based on the ligand of 2,3,4,5,6-pentafluorobenzoic acid (HPFBA) that does not contains oscillation effect group such as "CH, OH, and NH bond", three rare earth dinuclear cluster of Ln2(PFBA)6(phen)2(H2O)2 (Ln = Tb3+1-Tb, Eu3+1-Eu, Gd3+1-Gd, phen = 1,10-phenanthroline) were obtained. 1-Tb shows excellent stability and luminescence properties. In depth investigation reveals that 1-Tb shows quick detection towards Cr3+ in water through luminescence "turn-off", with extremely short response time of 1.0 min, very low limit of detection (LOD) of 5.2 ppb and no interference from other ions. The LOD value is much lower than the total content of chromium for water in China (15 ppm, GB9078-1996). In the actual environment such as tap water, lake water, human, and serum, 1-Tb shows excellent detection and recovery rate for Cr3+. More interestingly, a fiber based paper of test paper that based on 1-Tb and ordinary filter paper was fabricated, which can probe Cr3+ by visible color changes to the naked eye under UV light.
Collapse
Affiliation(s)
- Wenting Chang
- Department of Chemistry and Chemical Engineering and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, PR China; Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education/National Engineering Research Center for Carbohydrate Synthesis, Nanchang 330022, PR China
| | - Xiaobo Yu
- Department of Chemistry and Chemical Engineering and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, PR China; Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education/National Engineering Research Center for Carbohydrate Synthesis, Nanchang 330022, PR China
| | - Zhaohui Xu
- Department of Chemistry and Chemical Engineering and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, PR China; Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education/National Engineering Research Center for Carbohydrate Synthesis, Nanchang 330022, PR China
| | - Xiaoyan Sang
- Department of Chemistry and Chemical Engineering and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, PR China; Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education/National Engineering Research Center for Carbohydrate Synthesis, Nanchang 330022, PR China
| | - Hua Zhang
- Department of Chemistry and Chemical Engineering and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, PR China; Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education/National Engineering Research Center for Carbohydrate Synthesis, Nanchang 330022, PR China
| | - Chenghui Zeng
- Department of Chemistry and Chemical Engineering and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, PR China; Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education/National Engineering Research Center for Carbohydrate Synthesis, Nanchang 330022, PR China.
| |
Collapse
|
9
|
Cheng Y, Cai Z, Xu Z, Sang X, Song C. Smart sensing device for formaldehyde that based on uniform lanthanide CPs microsphere. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
10
|
A new mode of luminescence in lanthanide oxalates metal–organic frameworks. Sci Rep 2022; 12:18812. [PMID: 36335280 PMCID: PMC9637143 DOI: 10.1038/s41598-022-23658-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022] Open
Abstract
Two lanthanide metal–organic frameworks [Ln-MOFs, Ln = Eu(III), Tb(III)] composed of oxalic acid and Ln building units were hydrothermally synthesized and fully characterized by powder X-ray diffraction, Fourier-transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscope, and energy-dispersive X-ray spectroscopy. Furthermore, their magnetic susceptibility measurements were obtained using SQUID based vibrating sample magnetometer (MPMS 3, Quantum Design). Both Ln-MOFs exhibited highly efficient luminescent property. Solid-state photoluminescence (PL) measurements revealed phosphorescence emission bands of Eu-MOF and Tb-MOF centered at 618 nm (red emission) and 550 nm (green emission) upon excitation at 396 nm and 285 nm, respectively. Eu-MOF and Tb-MOF displayed a phosphorescence quantum yield of 53% and 40%, respectively. Time-resolved PL analyses showed very long lifetime values, at 600 and 1065 ± 1 µs for Eu-MOF and Tb-MOF, respectively. Calculations performed by density functional theory indicated a charge transfer form metal centres to the ligand which was in good agreement with the experimental studies. Therefore, this new mode of highly photoluminescent MOF materials is studied for the first time which paves the way for better understanding of these systems for potential applications.
Collapse
|
11
|
Chen Y, Yu X, Jiang Y, Liu M, Chen Z, Ding L, Li B, Zeng C. Highly sensitive sensing device based on highly luminescent lanthanide nanocluster for biomarker in human urine and serum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 270:120782. [PMID: 34973612 DOI: 10.1016/j.saa.2021.120782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
The level of L-kynurenine (L-kyn) can reflect the health state of human body, and the determination of L-kyn can be used for the medical diagnosis of several cancers and neurological diseases. In this work, a series of air-, water-, and thermo-stable dinuclear lanthanide nanoclusters [Ln2(2,5-DFBA)6(phen)2] (Tb 1, Eu 2, Gd 3, 2,5-DFBA = 2,5-difluorobenzoic acid, phen = 1,10-phenanthroline) are obtained by a facial method. 1 and 2 show very high luminescence quantum yields (QYs) of 71.7% and 81.8%, respectively. Interestingly, investigation reveals that 1 is a quick, highly sensitive and selective sensor for L-kyn in real samples of urine and serum. Furthermore, transmission electron microscope (TEM) results reveal that nanocluster 1 is stable in solution and can be uniform distributed on the base, suggesting it can be deposited on various supports to fabricate sensing devices. Thus, 1 is fabricated into a sensitive test paper for the eye-readable detection of L-kyn in real samples of human urine and serum. The limit of detection (LOD) as low as 0.3 μM, which is enough to rapidly determine L-kyn in human body liquor (usually 5 μM in healthy human body).
Collapse
Affiliation(s)
- Yun Chen
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China; Jiangxi Yuean Superfine Met Co Ltd, Ganzhou 341000, PR China
| | - Xiaobo Yu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China; Jiangxi Yuean Superfine Met Co Ltd, Ganzhou 341000, PR China
| | - Yefei Jiang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China; Jiangxi Yuean Superfine Met Co Ltd, Ganzhou 341000, PR China
| | - Min Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China; Jiangxi Yuean Superfine Met Co Ltd, Ganzhou 341000, PR China
| | - Zhao Chen
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China; Jiangxi Yuean Superfine Met Co Ltd, Ganzhou 341000, PR China
| | - Liwen Ding
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Bo Li
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China; Jiangxi Yuean Superfine Met Co Ltd, Ganzhou 341000, PR China
| | - Chenghui Zeng
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China; Jiangxi Yuean Superfine Met Co Ltd, Ganzhou 341000, PR China.
| |
Collapse
|
12
|
Zhu T, Chen Y, Yang X, Leng X, Schipper D. Construction of a Luminescent Eleven-metal Zn(II)-Tb(III) Nanocluster for Rapid and Quantitative Time-gated Detection of Guanosine-5-monophoshpate and RNA. CrystEngComm 2022. [DOI: 10.1039/d2ce00753c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One 11-metal Zn(II)-Tb(III) nanocluster 1 was synthesized using a tetradentate Schiff base ligand. The addition of GMP and RNA results in the enhancement of Tb(III) luminescence of 1, which is...
Collapse
|