1
|
Li X, Mak CM, Ai Z, Ma KW, Wong HM. Propagation and evaporation of contaminated droplets, emission and exposure in surgery environments revealed by laser visualization and numerical characterization. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135338. [PMID: 39084008 DOI: 10.1016/j.jhazmat.2024.135338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/24/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
The contaminated liquid mixture containing mucosalivary fluid and blood would be aerosolized during medical procedures, resulting in higher-risk exposures. The novelty of this research is integrating laser visualization and numerical characterization to assess the propagation and evaporation of contaminated droplets, and the interactive effects of humidity and temperature on exposure risks will be numerically evaluated in surgery environments. The numerical model evidenced by experiments can predict the mass balance of ejection droplets, the minimum required fallow time (FT) between appointments, and the disinfection region of greatest concern. Around 98.4 % of the ejection droplet mass will be removed after the cessation of ultrasonic scaling, while the initial droplet size smaller than 72.6μm will dehydrate and become airborne. The FT recommendation of 30 min is not over-cautious, and the extended FT (range of 28-37 min) should be instituted for low temperature (20.5 °C) and high humidity levels (60 %RH). The variation of the temperature and humidity in the range for human thermal comfort has little influence on the area of the disinfection region (0.15m2) and the cut-off size (72.6μm) of droplet deposition and suspension. This research can provide scientific evidence for the guidelines of environmental conditions in surgery rooms.
Collapse
Affiliation(s)
- Xiujie Li
- Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Cheuk Ming Mak
- Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Zhengtao Ai
- Department of Building Environment and Energy, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Kuen Wai Ma
- Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Hai Ming Wong
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Pennati F, Aliboni L, Aliverti A. Modeling Realistic Geometries in Human Intrathoracic Airways. Diagnostics (Basel) 2024; 14:1979. [PMID: 39272764 PMCID: PMC11393895 DOI: 10.3390/diagnostics14171979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Geometrical models of the airways offer a comprehensive perspective on the complex interplay between lung structure and function. Originating from mathematical frameworks, these models have evolved to include detailed lung imagery, a crucial enhancement that aids in the early detection of morphological changes in the airways, which are often the first indicators of diseases. The accurate representation of airway geometry is crucial in research areas such as biomechanical modeling, acoustics, and particle deposition prediction. This review chronicles the evolution of these models, from their inception in the 1960s based on ideal mathematical constructs, to the introduction of advanced imaging techniques like computerized tomography (CT) and, to a lesser degree, magnetic resonance imaging (MRI). The advent of these techniques, coupled with the surge in data processing capabilities, has revolutionized the anatomical modeling of the bronchial tree. The limitations and challenges in both mathematical and image-based modeling are discussed, along with their applications. The foundation of image-based modeling is discussed, and recent segmentation strategies from CT and MRI scans and their clinical implications are also examined. By providing a chronological review of these models, this work offers insights into the evolution and potential future of airway geometry modeling, setting the stage for advancements in diagnosing and treating lung diseases. This review offers a novel perspective by highlighting how advancements in imaging techniques and data processing capabilities have significantly enhanced the accuracy and applicability of airway geometry models in both clinical and research settings. These advancements provide unique opportunities for developing patient-specific models.
Collapse
Affiliation(s)
- Francesca Pennati
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy
| | - Lorenzo Aliboni
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy
| | - Andrea Aliverti
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy
| |
Collapse
|
3
|
Xu F, Zhang H, Fan Z, Zheng Z, Sun A, Zhang J. Investigating biomechanical alterations and emptying patterns after various gastrojejunostomy strategy. Food Res Int 2024; 176:113815. [PMID: 38163719 DOI: 10.1016/j.foodres.2023.113815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/22/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
Gastrojejunostomy is a prominent approach in managing distal gastric cancer that is unresectable due to gastric outlet obstruction (GOO). Research has demonstrated that stomach-partitioning gastrojejunostomy (SPGJ) exhibits superior clinical efficacy compared to conventional gastrojejunostomy (CGJ), however, the underlying mechanism of this phenomenon remains elusive. This study constructed 3D models of the SPGJ and CGJ based on the computed tomography (CT) images obtained from a patient diagnosed with distal gastric cancer. The biomechanical patterns of these procedures in the digestive system were subsequently compared through numerical simulations and in vitro experiments. The results of the numerical simulation demonstrated that the model following SPGJ promoted the discharge of food through the anastomotic orifice and into the lower jejunum. Furthermore, a decrease in passage size after partitioning, the low-level velocity of esophageal, and an increase in contents viscosity effectively inhibited the flow through the passage to the pylorus, ultimately reducing stimulation to tumor. The study also revealed that favorable gastric emptying is associated with a smaller passage and faster inlet velocity, and that lower contents viscosity. The experimental findings conducted in vitro demonstrated that SPGJ exhibited superior efficacy in obstructing the flow near the pylorus in comparison to CGJ. Moreover, a decrease in passage size correlates with a reduction in fluid flow towards the pylorus. These results provide the foundation of theory and practice for the surgical management of patients with GOO resulting from unresectable distal gastric cancer, and have potential implications for clinical interventions.
Collapse
Affiliation(s)
- Fengyan Xu
- School of Mechanical Engineering, Jiangsu University of Technology, Changzhou, Jiangsu, China
| | - Haiqiao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenmin Fan
- School of Mechanical Engineering, Jiangsu University of Technology, Changzhou, Jiangsu, China.
| | - Zhi Zheng
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Anqiang Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Jun Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
How Nanoparticle Aerosols Transport through Multi-Stenosis Sections of Upper Airways: A CFD-DPM Modelling. ATMOSPHERE 2022. [DOI: 10.3390/atmos13081192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Airway stenosis is a global respiratory health problem that is caused by airway injury, endotracheal intubation, malignant tumor, lung aging, or autoimmune diseases. A precise understanding of the airflow dynamics and pharmaceutical aerosol transport through the multi-stenosis airways is vital for targeted drug delivery, and is missing from the literature. The object of this study primarily relates to behaviors and nanoparticle transport through the multi-stenosis sections of the trachea and upper airways. The combination of a CT-based mouth–throat model and Weibel’s model was adopted in the ANSYS FLUENT solver for the numerical simulation of the Euler–Lagrange (E-L) method. Comprehensive grid refinement and validation were performed. The results from this study indicated that, for all flow rates, a higher velocity was usually found in the stenosis section. The maximum velocity was found in the stenosis section having a 75% reduction, followed by the stenosis section having a 50% reduction. Increasing flow rate resulted in higher wall shear stress, especially in stenosis sections. The highest pressure was found in the mouth–throat section for all flow rates. The lowest pressure was usually found in stenosis sections, especially in the third generation. Particle escape rate was dependent on flow rate and inversely dependent on particle size. The overall deposition efficiency was observed to be significantly higher in the mouth–throat and stenosis sections compared to other areas. However, this was proven to be only the case for a particle size of 1 nm. Moreover, smaller nanoparticles were usually trapped in the mouth–throat section, whereas larger nanoparticle sizes escaped through the lower airways from the left side of the lung; this accounted for approximately 50% of the total injected particles, and 36% escaped from the right side. The findings of this study can improve the comprehensive understanding of airflow patterns and nanoparticle deposition. This would be beneficial in work with polydisperse particle deposition for treatment of comprehensive stenosis with specific drugs under various disease conditions.
Collapse
|
5
|
Yu S, Zhou X, Hu P, Chen H, Shen F, Yu C, Meng H, Zhang Y, Wu Y. Inhalable particle-bound marine biotoxins in a coastal atmosphere: Concentration levels, influencing factors and health risks. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128925. [PMID: 35460997 DOI: 10.1016/j.jhazmat.2022.128925] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Characterizing marine biotoxins (MBs) composition in coastal aerosol particles has become essential to tracking sources of atmospheric contaminants and assessing human inhalable exposure risks to air particles. Here, coastal aerosol particles were collected over an almost 3-year period for the analysis of eight representative MBs, including brevetoxin (BTX), okadaic acid (OA), pectenotoxin-2 (PTX-2), domoic acid (DA), tetrodotoxin (TTX), saxitoxin (STX), ciguatoxin (CTX) and ω-Conotoxin. Our data showed that the levels of inhalable airborne marine biotoxins (AMBs) varied greatly among the subcategories and over time. Both in daytime and nighttime, a predominance of coarse-mode AMB particles was found for all the target AMBs. Based on the experimental data, we speculate that an ambient AMB might have multiple sources/production pathways, which include air-sea aerosol production and direct generation and release from toxigenic microalgae/bacteria suspended in surface seawater or air, and different sources may make different contribution. Regardless of the subcategory, the highest deposition efficiency of an individual AMB was found in the head airway region, followed by the alveolar and tracheobronchial regions. This study provides new information about inhalable MBs in the coastal atmosphere. The coexistence of various particle-bound MBs raises concerns about potential health risks from exposure to coastal air particles.
Collapse
Affiliation(s)
- Song Yu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xuedong Zhou
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Peiwen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Haoxuan Chen
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Fangxia Shen
- School of Space and Environment, Beihang University, Beijing 100083, China
| | - Chenglin Yu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - He Meng
- Qingdao Eco-Environment Monitoring Center of Shandong Province, Qingdao 266003, China
| | - Yong Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Yan Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
6
|
A computational approach to understand the breathing dynamics and pharmaceutical aerosol transport in a realistic airways. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
7
|
Islam MS, Larpruenrudee P, Saha SC, Pourmehran O, Paul AR, Gemci T, Collins R, Paul G, Gu Y. How severe acute respiratory syndrome coronavirus-2 aerosol propagates through the age-specific upper airways. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2021; 33:081911. [PMID: 34552312 PMCID: PMC8450910 DOI: 10.1063/5.0061627] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/24/2021] [Indexed: 05/22/2023]
Abstract
The recent outbreak of the COVID-19 causes significant respirational health problems, including high mortality rates worldwide. The deadly corona virus-containing aerosol enters the atmospheric air through sneezing, exhalation, or talking, assembling with the particulate matter, and subsequently transferring to the respiratory system. This recent outbreak illustrates that the severe acute respiratory syndrome (SARS) coronavirus-2 is deadlier for aged people than for other age groups. It is evident that the airway diameter reduces with age, and an accurate understanding of SARS aerosol transport through different elderly people's airways could potentially help the overall respiratory health assessment, which is currently lacking in the literature. This first-ever study investigates SARS COVID-2 aerosol transport in age-specific airway systems. A highly asymmetric age-specific airway model and fluent solver (ANSYS 19.2) are used for the investigation. The computational fluid dynamics measurement predicts higher SARS COVID-2 aerosol concentration in the airway wall for older adults than for younger people. The numerical study reports that the smaller SARS coronavirus-2 aerosol deposition rate in the right lung is higher than that in the left lung, and the opposite scenario occurs for the larger SARS coronavirus-2 aerosol rate. The numerical results show a fluctuating trend of pressure at different generations of the age-specific model. The findings of this study would improve the knowledge of SARS coronavirus-2 aerosol transportation to the upper airways which would thus ameliorate the targeted aerosol drug delivery system.
Collapse
Affiliation(s)
- Mohammad S. Islam
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, New South Wales 2007, Australia
- Authors to whom correspondence should be addressed: and
| | - Puchanee Larpruenrudee
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, New South Wales 2007, Australia
| | - Suvash C. Saha
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, New South Wales 2007, Australia
- Authors to whom correspondence should be addressed: and
| | - Oveis Pourmehran
- School of Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia and Department of Surgery—Otolaryngology Head and Neck Surgery, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Akshoy Ranjan Paul
- Department of Applied Mechanics, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India
| | | | - Richard Collins
- Biomechanics International, Cranberry Township, Pennsylvania 16066, USA
| | - Gunther Paul
- James Cook University, Australian Institute of Tropical Health and Medicine, Townsville, Queensland 4810, Australia
| | - Yuantong Gu
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane 4000, Australia
| |
Collapse
|