1
|
Phonlakan K, Pornsuwan S, Nijpanich S, Budsombat S. Co 2+-adsorbed chitosan-grafted-poly(acrylic acid) hydrogel as peroxymonosulfate activator for effective dye degradation. Int J Biol Macromol 2024; 265:130922. [PMID: 38518932 DOI: 10.1016/j.ijbiomac.2024.130922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/24/2024]
Abstract
In this work, chitosan-grafted-poly(acrylic acid) (CS-g-PAA) was synthesized for use as a Co2+ adsorbent and circularly utilized as a peroxymonosulfate (PMS) activator in the degradation of rhodamine B (RhB) dye. CS-g-PAA demonstrated 3.7 times higher adsorption capacity toward Co2+ than pristine chitosan. The impact of the adsorption conditions was evaluated. The pseudo-second-order kinetic model and the Langmuir isotherm model best described the adsorption process. Under optimum conditions, the adsorption capacity of CS-g-PAA for Co2+ was 212 mg/g. The Co2+-adsorbed CS-g-PAA hydrogel was further utilized in the RhB degradation process. The effects of catalyst dosage, initial RhB concentration, pH, and the coexistence of anions on the degradation of RhB were studied. The hydrogel catalyst could remove 98 % of RhB within 5 min, at a degradation rate of 0.624 per min. Electron paramagnetic resonance (EPR) analysis and the radical scavenger experiment suggested that SO4•-, HO•, 1O2, and O2•- were involved in the degradation. Furthermore, when tested in various water systems, high degradation efficiencies of 98 % were attained after 20 min. The hydrogel catalyst performed excellent degradation over ten cycles without any chemical recovery processes. Moreover, high degradation efficiencies were observed between 95 % and 98 % when tested with other dyes.
Collapse
Affiliation(s)
- Kunlarat Phonlakan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Materials Chemistry Research Center, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Soraya Pornsuwan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, 272 Rama VI Rd., Ratchathewi, Bangkok 10400, Thailand
| | - Supinya Nijpanich
- Synchrotron Light Research Institute (Public organization), Nakhonratchasima 30000, Thailand
| | - Surangkhana Budsombat
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Materials Chemistry Research Center, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
2
|
Zhang D, Zhong Z, Liu Z, He S, Lin J, Lv Y, Lü T, Pan Y, Shi H, Zhao H. Sorption of cadmium by layered double hydroxides: Performance, structure-related mechanisms, and sequestration stability assessment. CHEMOSPHERE 2024; 352:141399. [PMID: 38331263 DOI: 10.1016/j.chemosphere.2024.141399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Layered double hydroxides (LDHs) have been recognized to have great potential for the treatment of heavy metals in wastewater and soil through various mechanisms. Isomorphic substitution is an important mechanism for the sorption of heavy metal cations with LDH reconstruction and highly stable product formation. However, sorption performance, structure-related relationships, and, more importantly, stability are still poorly understood. In this study, a series of LDHs with different structures were synthesized to evaluate their cadmium (Cd) sorption performance and stability concerning the isomorphic substitution mechanism. Divalent cation types in the LDH lattice determined the Cd sorption capacity as well as the isomorphic substitution possibility, following the order of hydroxide solubility of divalent cations (MII): Ca2+>Mg2+>(Cd2+) > Ni2+>Zn2+. In addition, CaAl-LDH exhibited a super-high Cd sorption capacity of 625.0 mg g-1. Cd sorption by LDHs with different interlayer anion types and divalent/trivalent cation molar ratios varied due to crystallite size-related MII release through cation-exchange/isomorphic substitution. Coexisting cations (e.g., Zn2+, Ni2+, Mg2+) influence the sorption performance of MII-LDH mainly through isomorphic substitution mechanism, largely depending on the solubility of MII(OH)2 with a trend of stable product formation. Furthermore, Mg2.9Cd0.1AlCl-LDH was fabricated, and limited Cd dissolution without destruction of the LDH structure was observed under various conditions. For example, only 7.69%, 2.16% and 0.96% of Cd was released from as-prepared Mg2.9Cd0.1AlCl-LDH in NaCl solution (0.02 mol L-1, pH 5), soil extract, and soil matrix, respectively. The very low leaching of Cd from Cd-containing LDHs indicated the high stability of LDH-sorbed Cd via isomorphic substitution and feasible practical application in Cd sequestration in wastewater treatment and soil remediation.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Environmental Science, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Zhishun Zhong
- Guangdong Jiandi Agriculture Technology Co. Ltd., Foshan, Guangdong, 528200, China
| | - Zilong Liu
- Department of Environmental Science, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Shichong He
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou, 310012, China
| | - Jun Lin
- Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Yiyan Lv
- Zhejiang Huadong Construction Engineering Co. Ltd., Hangzhou, Zhejiang, 310030, China
| | - Ting Lü
- Department of Environmental Science, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Ying Pan
- Department of Environmental Science, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Huading Shi
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
| | - Hongting Zhao
- Department of Environmental Science, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
| |
Collapse
|
3
|
Phiri Z, Moja NT, Nkambule TT, de Kock LA. Utilization of biochar for remediation of heavy metals in aqueous environments: A review and bibliometric analysis. Heliyon 2024; 10:e25785. [PMID: 38375270 PMCID: PMC10875440 DOI: 10.1016/j.heliyon.2024.e25785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 01/23/2024] [Accepted: 02/02/2024] [Indexed: 02/21/2024] Open
Abstract
Biochar usage for removing heavy metals from aqueous environments has emerged as a promising research area with significant environmental and economic benefits. Using the PICO approach, the research question aimed to explore using biochar to remove heavy metals from aqueous media. We merged the data from Scopus and the Web of Science Core Collection databases to acquire a comprehensive perspective of the subject. The PRISMA guidelines were applied to establish the search parameters, identify the appropriate articles, and collect the bibliographic information from the publications between 2010 and 2022. The bibliometric analysis showed that biochar-based heavy metal remediation is a research field with increasing scholarly attention. The removal of Cr(VI), Pb(II), Cd(II), and Cu(II) was the most studied among the heavy metals. We identified five main clusters centered on adsorption, water treatment, adsorption models, analytical techniques, and hydrothermal carbonization by performing keyword co-occurrence analysis. Trending topics include biochar reusability, modification, acid mine drainage (AMD), wastewater treatment, and hydrochar. The reutilization of heavy metal-loaded spent biochar includes transforming it into electrodes for supercapacitors or stable catalyst materials. This study provides a comprehensive overview of biochar-based heavy metal remediation in aquatic environments and highlights knowledge gaps and future research directions.
Collapse
Affiliation(s)
- Zebron Phiri
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg, 1710, South Africa
| | - Nathaniel T. Moja
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg, 1710, South Africa
| | - Thabo T.I. Nkambule
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg, 1710, South Africa
| | - Lueta-Ann de Kock
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg, 1710, South Africa
| |
Collapse
|
4
|
Yan Z, Wang Z, Si G, Chen G, Feng T, Liu C, Chen J. Bacteria-loaded biochar for the immobilization of cadmium in an alkaline-polluted soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1941-1953. [PMID: 38044401 DOI: 10.1007/s11356-023-31299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
The combination of biochar and bacteria is a promising strategy for the remediation of Cd-polluted soils. However, the synergistic mechanisms of biochar and bacteria for Cd immobilization remain unclear. In this study, the experiments were conducted to evaluate the effects of the combination of biochar and Pseudomonas sp. AN-B15, on Cd immobilization, soil enzyme activity, and soil microbiome. The results showed that biochar could directly reduce the motility of Cd through adsorption and formation of CdCO3 precipitates, thereby protecting bacteria from Cd toxicity in the solution. In addition, bacterial growth further induces the formation of CdCO3 and CdS and enhances Cd adsorption by bacterial cells, resulting in a higher Cd removal rate. Thus, bacterial inoculation significantly enhances Cd removal in the presence of biochar in the solution. Moreover, soil incubation experiments showed that bacteria-loaded biochar significantly reduced soil exchangeable Cd in comparison with other treatments by impacting soil microbiome. In particular, bacteria-loaded biochar increased the relative abundance of Bacillus, Lysobacter, and Pontibacter, causing an increase in pH, urease, and arylsulfatase, thereby passivating soil exchangeable Cd and improving soil environmental quality in the natural alkaline Cd-contaminated soil. Overall, this study provides a systematic understanding of the synergistic mechanisms of biochar and bacteria for Cd immobilization in soil and new insights into the selection of functional strain for the efficient remediation of the contaminated environments by bacterial biochar composite.
Collapse
Affiliation(s)
- Zhengjian Yan
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Zitong Wang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Guangzheng Si
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Guohui Chen
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Tingting Feng
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Chang'e Liu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
- Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management & Yunnan Think Tank of Ecological Civilization, Kunming, 650091, Yunnan, China
| | - Jinquan Chen
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China.
- Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management & Yunnan Think Tank of Ecological Civilization, Kunming, 650091, Yunnan, China.
| |
Collapse
|
5
|
Zhang C, Chen WH, Ho SH, Hoang AT, Zhang Y. Tetracycline-adsorbed biochar for solid biofuel usage to achieve waste utilization for environmental sustainability. ENVIRONMENTAL RESEARCH 2023; 237:116959. [PMID: 37619628 DOI: 10.1016/j.envres.2023.116959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Biochar is widely used to remove organic pollutants from the environment. Several studies have focused on pollutant removal via biochar adsorption. However, research on the subsequent processing of pollutant-adsorbed biochar is lacking. This study explored the potential of biochar for the adsorption of an aquatic organic pollutant (tetracycline) and its subsequent use as a solid biofuel. These results suggest that corn straw-derived biochar (torrefaction and pyrolysis) is suitable for two-stage utilization to achieve bioresource valorization for environmental sustainability. Tetracycline-adsorbed biochar, particularly biochar pyrolyzed at 600 °C, is suitable for use as a biofuel. The biochar produced via torrefaction (300 °C) and pyrolysis (600 °C) is the optimal choice, with surface area, contact angle, graphitization degree, calorific value, enhancement factor, and upgrading energy index values of 172.48 m2/g, 120.4°, 3.87, 26.983 MJ/kg, 1.58, and 33.72, respectively. This is supported by the results of expense calculation, comprehensive performance analysis, and life-cycle assessment. Overall, the biochar produced in this study is suitable for organic pollutant removal and as solid biofuel; thus, it can be used to realize waste utilization for environmental sustainability.
Collapse
Affiliation(s)
- Congyu Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung, 411, Taiwan.
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Anh Tuan Hoang
- Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
6
|
Yueyu S. The synergistic degradation of pollutants in water by photocatalysis and PMS activation. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10927. [PMID: 37723660 DOI: 10.1002/wer.10927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
In recent years, the synergistic degradation of water pollutants through advanced oxidation technology has emerged as a prominent research area due to its integration of various advanced oxidation technologies. The combined utilization of peroxymonosulfate (PMS) activation technology and photocatalysis demonstrates mild and nontoxic characteristics, enabling the degradation of water pollutants across a wide pH range. Moreover, this approach reduces the efficiency of electron hole recombination, broadens the catalyst's light response range, facilitates electron transfer of PMS, and ultimately improves its photocatalytic performance. The paper reviews the current research status of photocatalytic technology and PMS activation technology, respectively, while highlighting the advancements achieved through the integration of photocatalytic synergetic PMS activation technology for water pollutant degradation. Furthermore, this review delves into the mechanisms involving both free radicals and nonradicals in the reaction process and presents a promising prospect for future development in water treatment technology. PRACTITIONER POINTS: Degradation of water pollutants by photocatalysis and PMS synergistic action has emerged. Synergism can enhance the generation of free radicals. This technology can provide theoretical support for actual wastewater treatment.
Collapse
Affiliation(s)
- Song Yueyu
- Department of Architecture and Environmental Engineering, Taiyuan University, Taiyuan, China
| |
Collapse
|
7
|
Yang F, Jin C, Wang S, Wang Y, Wei L, Zheng L, Gu H, Lam SS, Naushad M, Li C, Sonne C. Bamboo-based magnetic activated carbon for efficient removal of sulfadiazine: Application and adsorption mechanism. CHEMOSPHERE 2023; 323:138245. [PMID: 36841450 DOI: 10.1016/j.chemosphere.2023.138245] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Due to increasing antibiotic pollution in the water environment, green and efficient adsorbents are urgently needed to solve this problem. Here we prepare magnetic bamboo-based activated carbon (MDBAC) through delignification and carbonization using ZnCl2 as activator, resulting in production of an activated carbon with large specific surface area (1388.83 m2 g-1). The influencing factors, such as solution pH, initial sulfadiazine (SD) concentration, temperature, and contact time, were assessed in batch adsorption experiments. The Langmuir isotherm model demonstrated that MDBAC adsorption capacity on SD was 645.08 mg g-1 at its maximum, being higher than majority of previously reported adsorbents. In SD adsorption, the kinetic adsorption process closely followed the pseudo-second kinetic model, and the thermodynamic adsorption process was discovered to be exothermic and spontaneous in nature. The MDBAC exhibited excellent physicochemical stability, facile magnetic recovery and acceptable recyclability properties. Moreover, the synergistic interactions between MDBAC and SD mainly involved electrostatic forces, hydrogen bonding, π-π stacking, and chelation. Within the benefits of low cost, ease of production and excellent adsorption performance, the MDBAC biosorbent shows promising utilization in removing antibiotic contaminants from wastewater.
Collapse
Affiliation(s)
- Fan Yang
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Can Jin
- Institute of Chemical Industry of Forest Products, CAF; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass; Key Lab. of Biomass Energy and Material, Jiangsu Province, Nanjing, 210042, China
| | - Sen Wang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yujie Wang
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Lu Wei
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Longhui Zheng
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Haiping Gu
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Center for Transdisciplinary Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Cheng Li
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, DK-4000, Roskilde, Denmark.
| |
Collapse
|
8
|
Liao W, Zhou X, Cai N, Chen Z, Yang H, Zhang S, Zhang X, Chen H. Simultaneous removal of cadmium, lead, chromate by biochar modified with layered double hydroxide with sulfide intercalation. BIORESOURCE TECHNOLOGY 2022; 360:127630. [PMID: 35850390 DOI: 10.1016/j.biortech.2022.127630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
In this study, a novel KOH-activated biochar modified with Mg2Al-LDH with S2- intercalation (KBC-LDH-S) was proposed for simultaneous adsorption of anions and cations. The adsorption capacity, thermodynamic and kinetic studies, effects of initial temperature and solution pH were investigated. Furthermore, the adsorption characteristics in both single and ternary Pb-Cd-Cr systems were investigated. Comparing with bare biochar, the adsorption capacity of KBC-LDH-S was increased by 387.8 % for Cd2+ (190.4 mg/g), 358.1 % for Pb2+ (392.2 mg/g), 1106.0 % for total Cr (170.7 mg/g) and 4602 % for Cr6+ (833.8 mg/g). The S2- intercalation effectively increased the adsorption capacity of CrO42- by 3370 % and promoted simultaneous adsorption. The interlayer anion exchange and redox reaction occurred between CrO42- and S2- to generate Cr3+, and then promoted the adsorption of CrO42-. Besides, the adsorption amount and total removal efficiency first increased and then decreased with the increasing concentration in the Pb-Cd-Cr ternary system.
Collapse
Affiliation(s)
- Wei Liao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaoming Zhou
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ning Cai
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhuoyuan Chen
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Haiping Yang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shihong Zhang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xiong Zhang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hanping Chen
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
9
|
Wang W, Yang Q, Wang Q, Hao J, Cui P, Cao J, Wang Y. Formation of Cr-based layered double hydroxide: effect of the amendments. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:556-561. [PMID: 35786732 DOI: 10.1007/s00128-022-03557-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Chromium is one of the eight most popular inorganic soil pollutants in China, and its bioavailability is determined by the chemical states. Amendments, which are able to change the chemical forms of chromium and decrease its bioavailability, have received considerable attention in recent years. In this work, the formation of Cr-based layered double hydroxides (LDHs) and the immobilization of Cr in solution and soil were systemically investigated. The formation of Cr-based LDHs is strongly depended on the layer charges, aging temperatures and reaction time, as identified by X-ray diffraction (XRD), transmission electron microscope (TEM) and X-ray absorption fine structure (XAFS) spectrum. According to the pot experiment results, the concentration of Cr in the overground part of Brassica Chinensis L. was significantly decreased to 1.50-2.03 µg kg- 1 in the present of amendments. In total, the finding of LDHs formation on amendments and the thermodynamic stability of LDHs provides a new insight into the remediation of Cr-polluted soils.
Collapse
Affiliation(s)
- Weixuan Wang
- College of Geography and Environmental Science, Northwest Normal University, 730070, Lanzhou, China
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, China
| | - Qiang Yang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qiuyue Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, China
| | - Jiachen Hao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, China
| | - Peixin Cui
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, China.
| | - Jianjun Cao
- College of Geography and Environmental Science, Northwest Normal University, 730070, Lanzhou, China.
| | - Yujun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
10
|
Yu D, Niu J, Zhong L, Chen K, Wang G, Yan M, Li D, Yao Z. Biochar raw material selection and application in the food chain: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155571. [PMID: 35490824 DOI: 10.1016/j.scitotenv.2022.155571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/24/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
As one of the largest carbon emitters, China promises to achieve carbon emissions neutrality by 2060. Various industries are developing businesses to reduce carbon emissions. As an important greenhouse gas emissions scenario, the reduction of carbon emissions in the food chain can be achieved by preparing the wastes into biochar. The food chain, as one of the sources of biochar, consists of production, processing and consumption, in which many wastes can be transferred into biochar. However, few studies use the food chain as the system to sort out the raw materials of biochar. A systematic review of the food chain application in serving as raw materials for biochar is helpful for further application of such technique, providing supportive information for the development of biochar preparation and wastes treating. In addition, there are many pollution sources in the food production process, such as agricultural contaminated soil and wastewater from livestock and aquatic, that can be treated on-site to achieve the goal of treating wastes with wastes within the food chain. This study focuses on waste resource utilization and pollution remediation in the food chain, summarizing the sources of biochar in the food chain and analyzing the feasibility of using waste in food chain to treat contaminated sites in the food chain and discussing the impacts of the greenhouse gas emissions. This review provides a reference for the resource utilization of waste and pollution reduction in the food chain.
Collapse
Affiliation(s)
- Dayang Yu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Jinjia Niu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Longchun Zhong
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Kaiyu Chen
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Guanyi Wang
- State Grid UHV Engineering Construction Company, Beijing 100052, China
| | - Meilin Yan
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Dandan Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
11
|
Alali HA, Saber O, Berekaa MM, Osama D, Ezzeldin MF, Shaalan NM, AlMulla AA. Impact of Nanolayered Material and Nanohybrid Modifications on Their Potential Antibacterial Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2749. [PMID: 36014614 PMCID: PMC9416148 DOI: 10.3390/nano12162749] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Due to an escalating increase in multiple antibiotic resistance among bacteria, novel nanomaterials with antimicrobial properties are being developed to prevent infectious diseases caused by bacteria that are common in wastewater and the environment. A series of nanolayered structures and nanohybrids were prepared and modified by several methods including an ultrasonic technique, intercalation reactions of fatty acids, and carbon nanotubes, in addition to creating new phases based on zinc and aluminum. The nanomaterials prepared were used against a group of microorganisms, including E. coli, S. aureus, Klebsiella pneumoniae and Pseudomonas aeruginosa. Experimental results revealed that a nanohybrid based on carbon nanotubes and fatty acids showed significant antimicrobial activity against E. coli, and can be implemented in wastewater treatment. Similar behavior was observed for a nanolayered structure which was prepared using ultrasonic waves. For the other microorganisms, a nanolayered structure combined with carbon nanotubes showed a significant and clear inhibitory effect on S. aureus, Klebsiella pneumoniae and Pseudomonas aeruginosa. It is concluded that the nanolayered structures and nanohybrids, which can be modified at low cost with high productivity, using simple operations and straightforward to use equipment, can be considered good candidates for preventing infectious disease and inhibiting the spread of bacteria, especially those that are commonly found in wastewater and the environment.
Collapse
Affiliation(s)
- Hasna Abdullah Alali
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Osama Saber
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Egyptian Petroleum Research Institute, Nasr City, P.O. Box 11727, Cairo 11765, Egypt
| | - Mahmoud Mohamed Berekaa
- Department of Environmental Health, Collage of Public Health, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Doaa Osama
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Mohamed Farouk Ezzeldin
- Egyptian Petroleum Research Institute, Nasr City, P.O. Box 11727, Cairo 11765, Egypt
- Department of Environmental Health, Collage of Public Health, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Nagih M. Shaalan
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Physics Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Abdulaziz Abdulrahman AlMulla
- Department of Environmental Health, Collage of Public Health, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
12
|
Li Q, Liang W, Liu F, Wang G, Wan J, Zhang W, Peng C, Yang J. Simultaneous immobilization of arsenic, lead and cadmium by magnesium-aluminum modified biochar in mining soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 310:114792. [PMID: 35220092 DOI: 10.1016/j.jenvman.2022.114792] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Owing to the human activities such as smelting and mining, arsenic (As), lead (Pb) and cadmium (Cd) seriously polluted the soil of non-ferrous metal mining areas, thus efficient methods for the simultaneous immobilization of the three heavy metals are urgently needed. In the present study, Mg-Al modified biochars (MABs) were synthesized through a simple one-pot pyrolysis method to immobilize the three heavy metals. According to the BET (Brunauer-Emmett-Teller) test method, MABs had larger specific surface areas than biochar. Compared to the materials obtained at 300 °C and 700 °C, MAB with a pyrolysis temperature of 500 °C (MAB 500) had a significant immobilization effect on As, Pb and Cd in the Gansu mining area. Compared with BC, the removal efficiencies of As, Pb and Cd increased from -62%, 17% and 5% to 52%, 100% and 66%, respectively. And the toxicity characteristic leaching procedure (TCLP) test showed that the leaching concentrations of the three heavy metals in the treated soil were all lower than the standard value. X-ray photoelectron spectroscopy and kinetic experiments showed that there were various mechanisms in the immobilization process of the three heavy metals, and the large specific surface area and the multi-Mg/Al-OH of MABs play an important role in this process. More charges were provided by larger specific surface for ion exchange with heavy metals. In addition, larger specific surface area also provided more adsorption sites. More complex sites were provided by Mg/Al-OH to form Mg/Al-O-M then immobilize the heavy metals. In summary, the immobilization mechanism may involve electrostatic attraction, precipitation/co-precipitation, and surface complexation.
Collapse
Affiliation(s)
- Qiannan Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Weiyu Liang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Fang Liu
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Gehui Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiang Wan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jie Yang
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China.
| |
Collapse
|
13
|
Motallebi R, Moghimi A, Shahbazi H, Faraji H. Fabrication of superparamagnetic adsorbent based on layered double hydroxide as effective nanoadsorbent for removal of Sb (III) from water samples. IET Nanobiotechnol 2021; 16:33-48. [PMID: 34854558 PMCID: PMC8918918 DOI: 10.1049/nbt2.12074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/30/2021] [Accepted: 11/13/2021] [Indexed: 01/24/2023] Open
Abstract
In this study, the superparamagnetic adsorbent as Fe@Mg‐Al LDH was synthesised by different methods with two steps for the removal of heavy metal ions from water samples. An easy, practical, economical, and replicable method was introduced to remove water contaminants, including heavy ions from aquatic environments. Moreover, the structure of superparamagnetic adsorbent was investigated by various methods including Fourier transform infrared spectroscopy, field emission scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, and vibrating sample magnetometer. For better separation, ethylenediaminetetraacetic acid ligand was used, forming a complex with antimony ions to create suitable conditions for the removal of these ions. Cadmium and antimony ions were studied by floatation in aqueous environments with this superparamagnetic adsorbent owing to effective factors such as pH, amount of superparamagnetic adsorbent, contact time, sample temperature, volume, and ligand concentration. The model of Freundlich, Langmuir, and Temkin isotherms was studied to qualitatively evaluate the adsorption of antimony ions by the superparamagnetic adsorbent. The value of loaded antimony metal ions with Fe@Mg‐Al LDH was resulted at 160.15 mg/g. The standard deviation value in this procedure was found at 7.92%. The desorption volume of antimony metal ions by the adsorbent was found to be 25 ml. The thermodynamic parameters as well as the effect of interfering ions were investigated by graphite furnace atomic absorption spectrometry.
Collapse
Affiliation(s)
| | - Ali Moghimi
- Department of Chemistry, Islamic Azad University, Varamin, Iran
| | | | - Hakim Faraji
- Department of Chemistry, Islamic Azad University, Varamin, Iran
| |
Collapse
|
14
|
Fang Q, Ye S, Yang H, Yang K, Zhou J, Gao Y, Lin Q, Tan X, Yang Z. Application of layered double hydroxide-biochar composites in wastewater treatment: Recent trends, modification strategies, and outlook. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126569. [PMID: 34280719 DOI: 10.1016/j.jhazmat.2021.126569] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/21/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
In recent years, layered double hydroxide-biochar (LDH-BC) composites as adsorbents and catalysts for contaminants removal (inorganic anions, heavy metals, and organics) have received increasing attention and became a new research point. It is because of the good chemical stability, abundant surface functional groups, excellent anion exchange ability, and good electronic properties of LDH-BC composites. Hence, we offer an overall review on the developments and processes in the synthesis of LDH-BC composites as adsorbents and catalysts. Special attention is devoted to the strategies for enhancing the properties of LDH-BC composites, including (1) magnetic treatment, (2) acid treatment, (3) alkali treatment, (4) controlling metal ion ratios, (5) LDHs intercalation, and (6) calcination. In addition, further studies are called for LDH-BC composites and potential areas for future application of LDH-BC composites are also proposed.
Collapse
Affiliation(s)
- Qianzhen Fang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Shujing Ye
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Hailan Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Kaihua Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Junwu Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yue Gao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qinyi Lin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Zhongzhu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|