1
|
Chen Y, Yang J, Zhao X, Sun Z, Li G, Hussain S, Li X, Zhang L, Wang Z, Gong H, Hou H. Effects of SpGSH1 and SpPCS1 overexpression or co-overexpression on cadmium accumulation in yeast and Spirodela polyrhiza. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109097. [PMID: 39244885 DOI: 10.1016/j.plaphy.2024.109097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/13/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Cadmium (Cd) is one of the most toxic elements to all organisms. Glutathione (GSH)-dependent phytochelatin (PC) synthesis pathway is considered an extremely important mechanism in Cd detoxification in plants. However, few studies have focused on the roles of glutamate-cysteine ligase (GSH1) and phytochelatin synthase (PCS1) in Cd accumulation and detoxification in plants. In this study, SpGSH1 and SpPCS1 were identified and cloned from Spirodela polyrhiza and analyzed their functions in yeast and S. polyrhiza via single- or dual-gene (SpGP1) overexpression. The findings of this study showed that SpGSH1, SpPCS1, and SpGP1 could dramatically rescue the growth of the yeast mutant Δycf1. In S. polyrhiza, SpGSH1 was located in the cytoplasm and could promote Mn and Ca accumulation. SpPCS1 was located in the cytoplasm and nucleus, mainly expressed in meristem regions, and promoted Cd, Fe, Mn, and Ca accumulation. SpGSH1 and SpPCS1 co-overexpression increased the Cd, Mn, and Ca contents. Based on the growth data of S. polyrhiza, it was recommended that biomass as the preferable indicator for assessing plant tolerance to Cd stress compared to frond number in duckweeds. Collectively, this study for the first time systematically elaborated the function of SpGSH1 and SpPCS1 for Cd detoxification in S. polyrhiza.
Collapse
Affiliation(s)
- Yan Chen
- Special Agricultural Resources in Tuojiang River Basin Sharing and Service Platform of Sichuan Province, Analysis and Testing Center, College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641112, Sichuan, China
| | - Jingjing Yang
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
| | - Xuyao Zhao
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
| | - Zuoliang Sun
- Shandong Provincial University Laboratory for Protected Horticulture, Jia Sixie College of Agriculture, Weifang University of Science and Technology, Shouguang, 262700, China
| | - Gaojie Li
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
| | - Sajid Hussain
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 310006, Hangzhou, China; Soil and Water Testing Laboratory Marketing Division, Pakarab, Khanewal Road, Multan, 36000, Pakistan
| | - Xiaozhe Li
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
| | - Liyuan Zhang
- Special Agricultural Resources in Tuojiang River Basin Sharing and Service Platform of Sichuan Province, Analysis and Testing Center, College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641112, Sichuan, China
| | - Zhenye Wang
- Special Agricultural Resources in Tuojiang River Basin Sharing and Service Platform of Sichuan Province, Analysis and Testing Center, College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641112, Sichuan, China
| | - Huihua Gong
- Special Agricultural Resources in Tuojiang River Basin Sharing and Service Platform of Sichuan Province, Analysis and Testing Center, College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641112, Sichuan, China
| | - Hongwei Hou
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China.
| |
Collapse
|
2
|
Chen Q, Zhu Y, Zhang J, Tong Y, Liu H, Rensing C, Feng R. Toxicity of antimony to plants: Effects on metabolism of N and S in a rice plant. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109069. [PMID: 39241630 DOI: 10.1016/j.plaphy.2024.109069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/17/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024]
Abstract
Excess antimony (Sb) has been shown to damage plant growth. Rice plants readily absorb a large amount of Sb after a long period of flooding, yet the mechanisms underlying Sb toxicity in plants have not been solved. This study was conducted to explore the effects of Sb on the uptake of N and S, and monitor the concentrations of reduced glutathione (GSH) and enzymes associated with these processes. In addition, we analyzed differentially expressed metabolites (DEMs) correlated with amino acids (AAs) and oligopeptides, specifically DEMs containing sulfur (S), GSH and indole-3-acetic acid (IAA). The results showed that antimonite [Sb(III)] inhibited shoot growth whereas antimonate [Sb(V)] stimulated shoot growth. Interestingly, Sb(III)5/10 enhanced shoot concentrations of total nitrogen (N), NH4+-N [only at Sb(III)10] and S; but reduced the shoot concentrations of NO3-N and soluble protein. Sb(III)5/10 addition significantly increased oxidized glutathione (GSSG) concentration and activities of glutathione peroxidase (GSH-Px) and glutathione S-transferase (GST) but non-significantly affected concentration of reduced glutathione (GSH) and activities of γ-glutamylcysteine synthetase (GCL) and glutathione reductase (GR), suggesting Sb(III) restricted GSH recycling. Addition of Sb (1) increased the abundance of DEMs associated with lignins, Ca uptake, toxicity/detoxification, and branched chain AAs; (2) decreased the abundance of AAs inclcuding isoleucine (Ile), leucine (Leu), tryptophan (Trp), tyrosine (Tyr) and histidine (His); (3) increased the abundance of arginine (Arg), putrescine (Put) and spermidine (Spd); and (4) affected methylation and acetylation of many AAs, especially acetylation.
Collapse
Affiliation(s)
- QiaoYuan Chen
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - YanMing Zhu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - JiaJia Zhang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - YiRan Tong
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Hong Liu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - RenWei Feng
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
3
|
Wang Y, Cui T, Niu K, Ma H. Integrated proteomics, transcriptomics, and metabolomics offer novel insights into Cd resistance and accumulation in Poa pratensis. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134727. [PMID: 38824780 DOI: 10.1016/j.jhazmat.2024.134727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/08/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
Kentucky bluegrass (Poa pratensis L., KB) demonstrates superior performance in both cadmium (Cd) accumulation and tolerance; however, the regulatory mechanisms and detoxification pathways in this species remain unclear. Therefore, phenotype, root ultrastructure, cell wall components, proteomics, transcriptomics, and metabolomics were analyzed under the hydroponic system to investigate the Cd tolerance and accumulation mechanisms in the Cd-tolerant KB variety 'Midnight (M)' and the Cd-sensitive variety 'Rugby II (R)' under Cd stress. The M variety exhibited higher levels of hydroxyl and carboxyl groups as revealed by Fourier transform infrared spectroscopy spectral analysis. Additionally, a reduced abundance of polysaccharide degradation proteins was observed in the M variety. The higher abundance of glutathione S-transferase and content of L-cysteine-glutathione disulfide and oxidized glutathione in the M variety may contribute to better performance of the M variety under Cd stress. Additionally, the R variety had an enhanced content of carboxylic acids and derivatives, increasing the Cd translocation capacity. Collectively, the down-regulation of cell wall polysaccharide degradation genes coupled with the up-regulation of glutathione metabolism genes enhances the tolerance to Cd stress in KB. Additionally, lignification of the endodermis and the increase in carboxylic acids and derivatives play crucial roles in the redistribution of Cd in KB.
Collapse
Affiliation(s)
- Yong Wang
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-US. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu 730070, China
| | - Ting Cui
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-US. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu 730070, China
| | - Kuiju Niu
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-US. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu 730070, China
| | - Huiling Ma
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-US. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu 730070, China.
| |
Collapse
|
4
|
He CT, Wang XS, Hu XX, Yuan J, Zhang QH, Tan XT, Wang YF, Tan X, Yang ZY. Phytochelatin-Mediated Cultivar-Dependent Cd Accumulations of Lactuca sativa and Implication for Cd Pollution-Safe Cultivars Screening. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:715-725. [PMID: 38123485 DOI: 10.1021/acs.jafc.3c05476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Cd pollution-safe cultivar (Cd-PSC) is a feasible strategy to minimize Cd contamination in leafy vegetables. The shoot Cd concentrations of 23 Lactuca sativa cultivars under Cd stress ranged from 0.124 to 2.155 mg·kg-1 with a maximum cultivar difference of 8 folds. Typical Cd-PSC C16 (L) and high-Cd-accumulating cultivar C13 (H) were screened to investigate the mechanisms of Cd accumulations in L. sativa through determining Cd concentrations, Cd subcellular distributions, phytochelatin profiles, and phytochelatin biosynthesis-related genes' expressions. Higher Cd distribution in a heat stable fraction in C13 (H) indicated that the high Cd accumulation trait of C13 (H) mainly depended on the Cd-phytochelatin complexes. Root phytochelatin concentrations were significantly elevated in C13 (H) (5.83 folds) than in C16 (L) (2.69 folds) (p < 0.05) under Cd stress. Significantly downregulated expressions of glutathione S-transferase rather than the regulation of phytochelatin synthesis genes in the root of C13 (H) might be responsible for sufficient glutathione supply for phytochelatins synthesis. These findings suggested that phytochelatin elevation in C13 (H) would favor the Cd root to shoot transportation, which provides new insights into the phytochelatin-related cultivar-dependent Cd accumulating characteristic in L. sativa.
Collapse
Affiliation(s)
- Chun-Tao He
- School of Agriculture, State Key Laboratory for Biocontrol, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
- School of Life Science, Sun Yat-sen University, Xingang Xi Road 135, Guangzhou 510275, China
| | - Xue-Song Wang
- Chinese Academy of Inspection and Quarantine, Greater Bay Area, Zhongshan 528437, China
| | - Xia-Xin Hu
- School of Agriculture, State Key Laboratory for Biocontrol, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Ju Yuan
- School of Agriculture, State Key Laboratory for Biocontrol, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Qian-Hui Zhang
- School of Agriculture, State Key Laboratory for Biocontrol, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Xuan-Tong Tan
- School of Agriculture, State Key Laboratory for Biocontrol, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Yun-Fan Wang
- Chinese Academy of Inspection and Quarantine, Greater Bay Area, Zhongshan 528437, China
| | - Xiao Tan
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhong-Yi Yang
- School of Life Science, Sun Yat-sen University, Xingang Xi Road 135, Guangzhou 510275, China
| |
Collapse
|
5
|
Liu T, Li B, Zhou X, Chen H. A Study on the Time-Effect and Dose-Effect Relationships of Polysaccharide from Opuntia dillenii against Cadmium-Induced Liver Injury in Mice. Foods 2022; 11:foods11091340. [PMID: 35564063 PMCID: PMC9100615 DOI: 10.3390/foods11091340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/30/2022] [Accepted: 05/01/2022] [Indexed: 11/24/2022] Open
Abstract
The purpose of this study was to evaluate the protective effect of Opuntia dillenii (Ker-Gaw) Haw. polysaccharide (ODP) against cadmium-induced liver injury. Cadmium chloride (CdCl2) was used to construct a mice evaluation model, and the indicators chosen included general signs, liver index, biochemical indicators, blood indicators, and pathological changes. A dose of 200 mg/kg ODP was applied to the mice exposed to cadmium for different lengths of time (7, 14, 21, 28, and 35 days). The results showed that CdCl2 intervention led to slow weight growth (reduced by 13−20%); liver enlargement; significantly increased aspartate aminotransferase (AST, 45.6−52.0%), alanine aminotransferase (ALT, 26.6−31.3%), and alkaline phosphatase (ALP, 38.2−43.1%) levels; and significantly decreased hemoglobin (HGB, 13.1−15.2%), mean corpuscular hemoglobin (MCH, 16.5−19.3%), and mean corpuscular hemoglobin concentrations (MCHC, 8.0−12.7%) (p < 0.01). In addition, it led to pathological features such as liver cell swelling, nuclear exposure, central venous congestion, apoptosis, and inflammatory cell infiltration. The onset of ODP anti-cadmium-induced liver injury occurred within 7 days after administration, and the efficacy reached the highest level after continuous administration for 14 days, a trend that could continue until 35 days. Different doses (50, 100, 200, 400, and 600 mg/kg) of ODP have a certain degree of protective effect on cadmium-induced liver injury, showing a good dose−effect relationship. After 28 days of administration of a 200 mg/kg dose, all pathological indicators were close to normal values. These findings indicated that ODP had positive activity against cadmium-induced liver injury and excellent potential for use as a health food or therapeutic drug.
Collapse
Affiliation(s)
- Ting Liu
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China; (T.L.); (B.L.); (X.Z.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China
| | - Bianli Li
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China; (T.L.); (B.L.); (X.Z.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China
| | - Xin Zhou
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China; (T.L.); (B.L.); (X.Z.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China
| | - Huaguo Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China; (T.L.); (B.L.); (X.Z.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China
- Correspondence: ; Tel.: +86-851-8669-0018; Fax: +86-851-8669-0018
| |
Collapse
|
6
|
Cai K, Zhou X, Li X, Kang Y, Yang X, Cui Y, Li G, Pei X, Zhao X. Insight Into the Multiple Branches Traits of a Mutant in Larix olgensis by Morphological, Cytological, and Transcriptional Analyses. FRONTIERS IN PLANT SCIENCE 2021; 12:787661. [PMID: 34992622 PMCID: PMC8724527 DOI: 10.3389/fpls.2021.787661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Larix olgensis is a tall deciduous tree species that has many applications in the wood fiber industry. Bud mutations are somatic mutations in plants and are considered an ideal material to identify and describe the molecular mechanism of plant mutation. However, the molecular regulatory mechanisms of bud mutations in L. olgensis remain unknown. In this study, dwarfed (or stunted), short-leaved, and multi-branched mutants of L. olgensis were found and utilized to identify crucial genes and regulatory networks controlling the multiple branch structure of L. olgensis. The physiological data showed that the branch number, bud number, fresh and dry weight, tracheid length, tracheid length-width ratio, inner tracheid diameter, and epidermal cell area of mutant plants were higher than that of wild-type plants. Hormone concentration measurements found that auxin, gibberellin, and abscisic acid in the mutant leaves were higher than that in wild-type plants. Moreover, the transcriptome sequencing of all samples using the Illumina Hiseq sequencing platform. Transcriptome analysis identified, respectively, 632, 157, and 199 differentially expressed genes (DEGs) in buds, leaves, and stems between mutant plants and wild type. DEGs were found to be involved in cell division and differentiation, shoot apical meristem activity, plant hormone biosynthesis, and sugar metabolism. Furthermore, bZIP, WRKY, and AP2/ERF family transcription factors play a role in bud formation. This study provides new insights into the molecular mechanisms of L. olgensis bud and branch formation and establishes a fundamental understanding of the breeding of new varieties in L. olgensis.
Collapse
Affiliation(s)
- Kewei Cai
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xueyan Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xiang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Ye Kang
- Seed Orchard of Siping, Siping, China
| | | | | | | | - Xiaona Pei
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
| | - Xiyang Zhao
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
| |
Collapse
|