1
|
Chen H, Dong X, Ou K, Cong X, Liao Y, Yang Y, Wang H. A pH-responsive dual-emission composite for fast detection of BAs and visual monitoring seafood freshness with large luminescence color difference. Talanta 2024; 282:126946. [PMID: 39357405 DOI: 10.1016/j.talanta.2024.126946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/14/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Sensing biogenic amine (BAs) content is very important for assessing food freshness. To address the limitations such as small color difference values (ΔE) and complex preparation of probes for visualizing the freshness of seafood, a pH-responsive ratiometric fluorescent probe (EnEB) was prepared by Eu(NO3)3, trimeric acid (BTC), and hydrochloric acid norepinephrine (Enr). EnEB emitted blue (446 nm) and red fluorescence (616 nm) originating from Enr and Eu3+, respectively, and exhibiting a fluorescence wavelength difference up to 170 nm. The ratiometric fluorescent signals of EnEB showed a linear correlation with pH in the range of 5.5-8.0. Thus, EnEB can rapidly and precisely detect BAs, such as histamine, tyramine, and spermine, with detection limits and response times of 1.14 μmol/L (3 s), 1.04 μmol/L (8 s), and 0.41 μmol/L (2 s), respectively. Furthermore, an EnEB aerogel was prepared by loading EnEB in a matrix formed by polyvinyl alcohol (PVA) and agarose (AG). EnEB aerogel exhibited excellent acid-base gas-sensing properties. The fluorescence color of EnEB aerogel can change significantly with the deterioration of seafood. When seafood changed from fresh to decayed, the ΔE value of EnEB aerogel was as high as 80.9. Importantly, the results of seafood freshness by naked eye using EnEB aerogel was consistent well with the TVB-N content and the freshness standard stipulated by national food standard, indicating EnEB aerogel can accurately visually and real-time monitor seafood freshness. Furthermore, the strategy for sensing food freshness based on EnEB aerogel also offered multiple color variations to indicate fine freshness levels of seafood. This work provided a convenient, efficient, and accurate approach to assessing the freshness of seafood. Additionally, EnEB also has promising applications in security and anti-counterfeiting.
Collapse
Affiliation(s)
- Hang Chen
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xuelin Dong
- Hubei Key Laboratory of Resources and Eco-Environment Geology, Hubei Geological Bureau, Wuhan, 430034, China
| | - Kaide Ou
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xin Cong
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yonggui Liao
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yajiang Yang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hong Wang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
2
|
Wu G, Ding Z, Dou X, Chen Z, Xie J. Recognition and detection of histamine in foods using aptamer modified fluorescence polymer dots sensors. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 317:124452. [PMID: 38761559 DOI: 10.1016/j.saa.2024.124452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/20/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
Histamine has been known as a momentous cause of biogenic amine poisoning. Therefore, the content of histamine in foods is strictly required to be controlled within a certain range. Here, an aptamer fluorescent sensor was developed for detection of histamine. Poly [(9, 9-di-n-octylfluorenyl-2, 7-diyl)-alt-(benzo [2,1,3] thiadia-zol-4, 8-diyl)] (PF8BT) and the styrene maleic anhydride copolymer (PSMA) were used for the preparation of PF8BT-Polymer dots (PF8BT-Pdots). PF8BT-Pdots and the cyanine3-phosphoramidite (Cy3) were linked through aptamer to achieve the ratiometric detection for histamine. PF8BT-Pdots were partly quenched by Cy3 due to the fluorescence resonance energy transfer (FRET), when the histamine molecule was recognized by aptamer on the surface of PF8BT-Pdots. A linear range (3-21 μmol/L) was obtained for histamine detection with a low limit of detection (LOD = 0.38 μmol/L). PF8BT aptamer Pdots (PF8BT-A) were used to detect histamine in simply treated aquaculture water and tuna. The cell imaging of HeLa cells presented a good biosecurity and outstanding fluorescent imaging capability of PF8BT-A. The aptamer fluorescent sensors provided a new platform for rapid and accurate detection of histamine in aquatic products and had great potential for the application in food safety and quality control.
Collapse
Affiliation(s)
- Gan Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhaoyang Ding
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Key Laboratory of Aquatic Products High-quality Utilization, Storage and Transportation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China.
| | - Xilin Dou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ze Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Key Laboratory of Aquatic Products High-quality Utilization, Storage and Transportation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China.
| |
Collapse
|
3
|
Buczkowska M, Szczyrba A, Szajnoga D, Górski M, Malinowska-Borowska J, Domagalska J, Rozentryt P. The Factors Influencing the Concentration of Histamine in Jarred Baby Foods Containing Fish, Considering Evaluation of Daily Histamine Intake. J Food Prot 2024; 87:100328. [PMID: 39009284 DOI: 10.1016/j.jfp.2024.100328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024]
Abstract
Histamine is one of the biogenic amines produced naturally in the human body, but also in foods, especially those rich in protein. Exogenous and endogenous histamine is subject to degradation in vivo, but in the case of sensitive groups, including children, these degradation processes may be less intense, resulting in adverse health effects from histamine excess. The aim of the study was to determine the histamine content in jarred baby foods containing fish, taking into account the selected product characteristics and storage conditions. The study included 140 meals with added fish, intended for infants and young children, from 5 leading manufacturers available in Poland. The infant meals were analyzed on the day of opening, after 24 h and 48 h of storage in the refrigerator and at room temperature. Histamine concentration was determined by ELISA. The THQ was calculated from the EDI values for histamine. Histamine was present in all analyzed baby foods. On the day of opening, the products had a lower content of this monoamine (Me = 2.59 mg/kg), which increased systematically during storage. Samples taken at 2 °C after 48 h showed an average histamine content of 4.4 mg/kg, while products stored at 22 °C at the same time showed a 1.8-fold higher concentration of this monoamine (Me = 7.9 mg/kg). Dishes containing tuna and sea fish had higher histamine levels on average than those containing pollock. The storage conditions of the children's food had a significant effect on histamine concentration. The level of histamine in baby foods was related to the amount and type of fish in certain products. The results indicate the need for increased awareness of the risks associated with histamine, especially in a group of people with increased sensitivity to this amine, which may include infants and young children.
Collapse
Affiliation(s)
- Marta Buczkowska
- Department of Chronic Diseases and Civilization-related Hazards, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 18 Piekarska Street, 41-902 Bytom, Poland.
| | - Anna Szczyrba
- Doctoral School of the Medical University of Silesia in Katowice, Faculty of Public Health in Bytom Medical University of Silesia, Poland, Poland
| | - Dominika Szajnoga
- Second Scientific Association of Department of Chronic Diseases and Civilization-related Hazards, Faculty of Public Health in Bytom, Medical University of Silesia, 18 Piekarska Street, 41-902 Bytom, Poland
| | - Michał Górski
- Department of Chronic Diseases and Civilization-related Hazards, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 18 Piekarska Street, 41-902 Bytom, Poland
| | - Jolanta Malinowska-Borowska
- Department of Chronic Diseases and Civilization-related Hazards, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 18 Piekarska Street, 41-902 Bytom, Poland
| | - Joanna Domagalska
- Department of Environmental Health, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 18 Piekarska Street, 41-902 Bytom, Poland
| | - Piotr Rozentryt
- Department of Chronic Diseases and Civilization-related Hazards, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 18 Piekarska Street, 41-902 Bytom, Poland
| |
Collapse
|
4
|
Ye L, Xu X, Qu A, Kuang H, Liu L, Xu C. Development of a gold nanoparticle-based lateral flow immunochromatographic assay for the rapid and quantitative detection of thymidine kinase 1 in human serum. J Pharm Biomed Anal 2024; 245:116146. [PMID: 38631069 DOI: 10.1016/j.jpba.2024.116146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
Thymidine kinase 1 (TK1) is a marker of cell proliferation that can be used for early screening, treatment monitoring, and evaluating the prognosis of patients with tumors. The main purpose of this study was to develop clinically applicable TK1 antibodies, establish an appropriate detection method, and provide material and technical support for the research and clinical application for different types of tumors. Experimental mice were immunized with the C-terminal 31 peptide of human TK1 to screen monoclonal cell lines capable of stably secreting specific antibodies. Monoclonal antibodies were then prepared, purified and screened for optimal pairing following the identification of purity and isotype. Finally, based on the principles adopted by the double-antibody sandwich detection method, we constructed a lateral flow immunochromatographic assay (LFIA) to quantify the concentration of TK1 in serum samples when using a gold nanoparticle-labeled anti-TK1 monoclonal antibody as a probe. The limit of detection for TK1 in serum was 0.31 pmol/L with a detection range of 0.31-50 pmol/L. The spiked recoveries ranged from 97.7% to 109.0% with an analytical precision of 5.7-8.2%; there was no cross-reactivity with common proteins in the serum. The established LFIA also exhibited good consistency with commercially available chemiluminescent immunoassay kits for the detection of clinical samples. The LFIA developed in this study has the advantages of high sensitivity, accuracy, reproducibility and strong specificity, and provides a new technical tool for the quantitative detection of TK1.
Collapse
Affiliation(s)
- Liya Ye
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Xinxin Xu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Aihua Qu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Liqiang Liu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
| |
Collapse
|
5
|
Zhou S, Zhu X, Song S, Sun M, Kuang H, Xu C, Guo L. Rapid and simultaneous detection of five mycotoxins and their analogs with a gold nanoparticle-based multiplex immuno-strip sensor. Food Microbiol 2024; 121:104510. [PMID: 38637074 DOI: 10.1016/j.fm.2024.104510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 04/20/2024]
Abstract
Mycotoxins, as secondary metabolites produced by fungi, have been the focus of researchers in various countries and are considered to be one of the major risk factors in agricultural products. There is an urgent need for a rapid, simple and high-performance method to detect residues of harmful mycotoxins in agricultural foods. We have developed a gold nanoparticle-based multiplexed immunochromatographic strip biosensor that can simultaneously detect fifteen mycotoxins in cereal samples. With this optimized procedure, five representative mycotoxins, deoxynivalenol (DON), zearalenone (ZEN), T-2 toxin (T-2), tenuazonic acid (TEA) and alternariol (AOH) were detected in the range of 0.91-4.77, 0.04-0.56, 0.11-0.68, 0.12-1.02 and 0.09-0.75 ng/mL, respectively. The accuracy and stability of these measurements were demonstrated by analysis of spiked samples with recoveries of 91.8%-115.3% and coefficients of variation <8.7%. In addition, commercially available samples of real cereals were tested using the strips and showed good agreement with the results verified by LC-MS/MS. Therefore, Our assembled ICA strips can be used for the simultaneous detection of 5 mycotoxins and their analogs (15 mycotoxins in total) in grain samples, and the results were consistent between different types of cereal foods, this multiplexed immunochromatographic strip biosensor can be used as an effective tool for the primary screening of mycotoxin residues in agricultural products.
Collapse
Affiliation(s)
- Shengyang Zhou
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiaojun Zhu
- Jiangsu Product Quality Testing and Inspection Institute, Nanjing, Jiangsu, 210025, China
| | - Shanshan Song
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Maozhong Sun
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hua Kuang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Lingling Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
6
|
Liu X, Kang S, Wang W, Zhu L, Zhang W, Wang P, Shu Z, Tang Y. Ratiometric fluorescent test strips based on CB-Ni 2+@CDs probes for visual detection of histamine. Food Chem X 2024; 22:101522. [PMID: 38883917 PMCID: PMC11176623 DOI: 10.1016/j.fochx.2024.101522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024] Open
Abstract
Histamine is a biogenic amine with various physiological functions. However, excessive consumption of histamine can lead to various symptoms, and pose a threat to human lives. A ratiometric fluorescent test strip for visual detection of histamine was developed based on CB-Ni2+@CDs probes. As the concentration of histamine increases, the test strips exhibit a transition in fluorescence signal from yellow-green to blue. The RGB values were extracted from the images, and used for quantitative analysis of histamine. The method had a linear range of 0-1.0 mM, with a detection limit of 0.086 mM. The test strips were employed for the detection of histamine, and the recovery rate was found to be in the range of 88.3% to 104.69%, indicating a high level of accuracy. The uniqueness of the test strips lies in their ability to be produced simply by mixing CB, Ni2+ on a suitable polyvinyl alcohol/wood cellulose fiber substrate.
Collapse
Affiliation(s)
- Xiuying Liu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430028, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan, Hubei 430028, China
| | - Si Kang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Wen Wang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430028, China
| | - Lijie Zhu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430028, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan, Hubei 430028, China
| | - Wei Zhang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430028, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan, Hubei 430028, China
| | - Pingping Wang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430028, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan, Hubei 430028, China
| | - Zaixi Shu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430028, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan, Hubei 430028, China
| | - Yiwei Tang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| |
Collapse
|
7
|
Öz H, Dudak FC. Peptide-Based Recognition Agents of Histamine: A Biopanning Approach with Enhanced Specificity. Chembiochem 2024; 25:e202400154. [PMID: 38616168 DOI: 10.1002/cbic.202400154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Histamine is a biogenic amine that poses a potential threat to public health due to its toxicological effects. In this study, we identified histamine-binding peptides by screening a random 12-mer peptide library, employing a novel biopanning approach that excluded histidine-binding sequences in the final round. This additional step enhanced the selectivity of the peptides and prevented interference from histidine during detection. The binding affinities of synthesized peptides to histamine were assessed using isothermal titration calorimetry (ITC). Among the identified peptides, HBF10 (SGFRDGIEDFLW) and HBF26 (IPLENQHKIYST) showed significant affinity to histamine, with Ka values of 2.56×104 (M-1) and 8.94×104 (M-1), respectively. Notably, the identified peptides did not demonstrate binding affinity towards histidine, despite its structural similarity to histamine. Subsequently, the surface plasmon resonance (SPR) sensor surface was prepared by immobilizing the peptide HBF26 to investigate the potential of the peptide as a recognition agent for histamine detection. The findings suggest that the identified peptides have an affinity to histamine specifically, showcasing their potential applications as diagnostic agents with specific targeting capabilities.
Collapse
Affiliation(s)
- Hafize Öz
- Department of Food Engineering, Graduate School of Science and Engineering, Hacettepe University, Beytepe, 06800, Ankara, Turkey
| | - Fahriye Ceyda Dudak
- Department of Food Engineering, Hacettepe University, Beytepe, 06800, Ankara, Turkey
| |
Collapse
|
8
|
Wei C, Kuang H, Xu X, Guo L, Qu A, Wu A, Xu C, Liu L. Establishment and application of a gold nanoparticle-based immunochromatographic test strip for the detection of avian leukosis virus P27 antigen in egg white samples. Analyst 2024; 149:2747-2755. [PMID: 38563739 DOI: 10.1039/d4an00180j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Avian leukemia is an infectious tumorous disease of chickens caused by subgroup A of the avian leukemia virus (ALV-A), which mainly causes long-term viremia, slow growth, immune suppression, decreased production performance, multi-tissue tumors, and even death. The infection rate of this disease is very high in chicken herds in China, causing huge economic losses to the poultry industry every year. We successfully expressed the specific antigen protein of ALV (P27) through recombinant protein technology and screened a pair of highly sensitive monoclonal antibodies (mAbs) through mouse immunity, cell fusion, and antibody pairing. Based on this pair of antibodies, we established a dual antibody sandwich ELISA and gold nanoparticle immunochromatographic strip (AuNP-ICS) detection method. In addition, the parameters of the dual antibody sandwich ELISA and AuNP-ICS were optimized under different reaction conditions, which resulted in the minimum detection limits of 0.2 ng mL-1 and 1.53 ng ml-1, respectively. Commonly available ELISA and AuNP-ICS products on the market were compared, and we found that our established immune rapid chromatography had higher sensitivity. This established AuNP-ICS had no cross-reactivity with Influenza A (H1N1), Influenza A (H9N2), respiratory syncytial virus (RSV), varicella-zoster virus (VZV), Listeria monocytogenes listeriolysin (LLO), and Staphylococcal enterotoxin SED or SEC. Finally, the established AuNP-ICS was used to analyze 35 egg samples, and the results showed 5 positive samples and 30 negative samples. The AuNP-ICS rapid detection method established by our group had good specificity, high sensitivity, and convenience, and could be applied to the clinical sample detection of ALV-A.
Collapse
Affiliation(s)
- Chunhao Wei
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Hua Kuang
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Xinxin Xu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Lingling Guo
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Aihua Qu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Aihong Wu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Liqiang Liu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|
9
|
Yang Y, Zhou Z, Wang T, Tian D, Ren S, Gao Z. MOF-on-MOF heterostructure boosting AIE sensing and triggered structural collapse for histamine detection. Talanta 2024; 270:125632. [PMID: 38199119 DOI: 10.1016/j.talanta.2024.125632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
We explored a novel preparation method for MOF-on-MOF heterostructured material (Zn-BTEC@ZIF-8). This prepared heterostructured material acts as a container, capable of adsorbing tetracycline hydrochloride molecules into its backbone through hydrogen bonding and π-π interactions. This phenomenon triggers an aggregation induced emission (AIE) effect, leading to the formation of luminescent bodies. The coordination between histamine and MOF was found to collapse the originally stabilized MOF-on-MOF structure. This collapse causes the splitting of the initially stabilized MOF-on-MOF structure from the aggregated state into fragments, resulting in the quenching of fluorescence in the fluorophore. Remarkably, the fluorescence quenching efficiency of this composite surpasses that of single-layer metal-organic framework (MOF) zeolitic imidazolate framework-8 (ZIF-8) or zinc-based MOF of pyromellitic acid (Zn-BTEC), enabling more sensitive detection of histamine. In this investigation, we constructed a label-free fluorescent sensor specifically designed for the detection of histamine, capitalizing on the AIE effect inherent in MOF-on-MOF architecture and the presence of tetracycline hydrochloride (Tet). The sensor demonstrates a rapid, straightforward, and stable response, allowing for histamine detection within 20 min. Notably, the sensor covers a detection range of 2-400 mg L-1, achieving a low detection limit of 1.458 mg L-1 The practical application of this sensor for quantitative detection of histamine in river water and various fish species exhibited robust performance, ensuring reliability and accuracy in real samples. Its potential application in food safety and environmental monitoring is evident, making it a valuable tool for addressing histamine-related challenges in these domains.
Collapse
Affiliation(s)
- Yingao Yang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Zixuan Zhou
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Tao Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Daoming Tian
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Shuyue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| |
Collapse
|
10
|
Zhang B, Zhang J, Lang Y, Wang Z, Cai D, Yu X, Lin X. A sea urchin-shaped nanozyme mediated dual-mode immunoassay nanoplatform for sensitive point-of-care testing histamine in food samples. Food Chem 2024; 433:137281. [PMID: 37659293 DOI: 10.1016/j.foodchem.2023.137281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/04/2023]
Abstract
Rapid detection of histamine remains a challenge due to the complexity of food matrices. Based on the high peroxidase-like activity of sea urchin-shaped Pt@Au NPs (SU-Pt@Au NPs), a novel dual-mode nanoplatform is developed for the sensitive detection of histamine utilizing an indirect competitive enzyme-linked immunosorbent assay. According to the colorimetric-based UV-vis nanoplatform, histamine is sensitively detected with a liner range from 0.5 to 100 ng/mL and a limit of detection (LOD) as low as 0.3 ng/mL. Then, a smartphone-loaded color picker APP can intelligently detect histamine in point-of-care testing (POCT) based on the R/B ratio of the color channels, with a detection range of 0.5 to 1000 ng/mL and a LOD as low as 0.15 ng/mL, significantly expanding the detection range. Such an easy-to-use and sensitive detection system is employed to quantify histamine in Pacific saury, crab, and pork samples, indicating outstanding application potential in protein-rich meat food safety.
Collapse
Affiliation(s)
- Biao Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Jingyi Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yihan Lang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zicheng Wang
- Tianjin Sprite Biological Technology, Tianjin 300021, China
| | - Danfeng Cai
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xiaodong Lin
- Zhuhai UM Science & Technology Research Institute, Zhuhai 519000, China.
| |
Collapse
|
11
|
Yan J, Wu A, Liu L, Xu L, Kuang H, Xu C, Guo L. Development of an immunochromatographic assay for the rapid screening of torasemide in health food. Food Chem 2024; 432:137166. [PMID: 37607444 DOI: 10.1016/j.foodchem.2023.137166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/24/2023]
Abstract
Torasemide is a new loop diuretic agent added illegally to health foods for weight loss, which can result in serious health risks for consumers. A rapid and sensitive immunochromatographic assay for detection of torasemide (ICA) based on a new monoclonal antibody (mAb) was developed. The mAb IC50 for torasemide was 0.93 ng/mL, and the mAb did not cross-react with other analogues. In PBS, the cut-off value and limit of detection were 1 ng/mL and 0.11 ng/mL, respectively, with a linear range between 0.61 and 6.13 ng/mL. In slimming tablet and capsule samples, the cut-off value was 5 ng/g. Recoveries were 101.1% ± 1.7%-106.1% ± 1.3% in tablet samples and 101.2% ± 2.2%-109.1% ± 3.9% in capsule samples, with coefficients of variation 2.1%-3.1% and 1.8%-3.6%, respectively, consistent with existing LC-MS/MS methods. Therefore, the ICA is suitable for use in slimming tablet and capsule samples.
Collapse
Affiliation(s)
- Jieyu Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Aihong Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Liguang Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hua Kuang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Lingling Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
12
|
Qian M, Liu Y, Huo H, Li M, Zhang C, Qi H. Photoluminescence-Electrochemiluminescence Dual-Mode Sensor Arrays for Histidine and Its Metabolite Discrimination and Disease Identification. Anal Chem 2024; 96:446-454. [PMID: 38124437 DOI: 10.1021/acs.analchem.3c04507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Histidine (His) and its metabolite analysis is significant due to their vital roles in the diagnosis of diseases. In practical applications, simple and effective detection and discrimination of these metabolic species are still a great challenge due to their highly similar structures. Herein, photoluminescence (PL)-electrochemiluminescence (ECL) dual-mode sensor arrays consisting of a series of sensing elements were proposed for simultaneous quantitation and accurate discrimination of His and its four key metabolites (including histamine, imidazole-4-acetic acid, N-acetylhistamine, and imidazole propionate). The sensing elements of these sensor arrays were constructed by employing two solvent iridium(III) complexes ([Ir(pbz)2(DMSO)Cl] and [Ir(ppy)2(DMSO)Cl], pbz = 3-(2-pyridyl)benzoic acid, ppy = 2-phenylpyridine) with excellent PL and ECL performances as cross-responsive sensing units. Based on diverse coordination abilities of the two complexes with the imidazole group of the five targets, PL and ECL responses of each sensing unit can be enhanced to various degrees, which generate unique fingerprint patterns for the corresponding targets. Through principal component analysis, the multifarious patterns (two-, three-, and four-element sensor arrays) can be transformed into simple visualization modes, from which His and its four key metabolites can be effectively discriminated against each other. Moreover, the quantitation of an individual metabolic species at different concentrations and the recognition of the mixtures with different ratios were also accurately achieved. Notably, His and its four key metabolites in urine can also be successfully discriminated by the as-fabricated sensor arrays, and the patients with kidney diseases can be identified clearly, providing a promising way for disease diagnosis.
Collapse
Affiliation(s)
- Manping Qian
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Yonghao Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Haonan Huo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Meng Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| |
Collapse
|
13
|
Khan S, Monteiro JK, Prasad A, Filipe CDM, Li Y, Didar TF. Material Breakthroughs in Smart Food Monitoring: Intelligent Packaging and On-Site Testing Technologies for Spoilage and Contamination Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300875. [PMID: 37085965 DOI: 10.1002/adma.202300875] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/26/2023] [Indexed: 05/03/2023]
Abstract
Despite extensive commercial and regulatory interventions, food spoilage and contamination continue to impose massive ramifications on human health and the global economy. Recognizing that such issues will be significantly eliminated by the accurate and timely monitoring of food quality markers, smart food sensors have garnered significant interest as platforms for both real-time, in-package food monitoring and on-site commercial testing. In both cases, the sensitivity, stability, and efficiency of the developed sensors are largely informed by underlying material design, driving focus toward the creation of advanced materials optimized for such applications. Herein, a comprehensive review of emerging intelligent materials and sensors developed in this space is provided, through the lens of three key food quality markers - biogenic amines, pH, and pathogenic microbes. Each sensing platform is presented with targeted consideration toward the contributions of the underlying metallic or polymeric substrate to the sensing mechanism and detection performance. Further, the real-world applicability of presented works is considered with respect to their capabilities, regulatory adherence, and commercial potential. Finally, a situational assessment of the current state of intelligent food monitoring technologies is provided, discussing material-centric strategies to address their existing limitations, regulatory concerns, and commercial considerations.
Collapse
Affiliation(s)
- Shadman Khan
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Jonathan K Monteiro
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | - Akansha Prasad
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Carlos D M Filipe
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
14
|
Chao M, Xu X, Wu A, Zhou W, Xu C, Liu L, Guo L. Monoclonal antibody production and development of immunochromatographic strip assays for screening of the herbicide bispyribac-sodium in rice. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4304-4310. [PMID: 37605639 DOI: 10.1039/d3ay00915g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Bispyribac-sodium (BIS) is a new broad-spectrum and efficient herbicide, which is widely used for the control of weeds in rice. To protect the human body from the threat of BIS exposure, it is essential to establish a sensitive and simple detection method. In this work, a high-affinity monoclonal antibody against BIS was produced for the first time, and a colloidal gold immunochromatographic strip assay (ICSA) was developed to screen for BIS in rice samples. The visual limit of detection and the calculated limit of detection of the ICSA were 0.2 μg kg-1 and 0.018 μg kg-1, respectively, which could be accurately obtained within 8 min. The average recoveries of BIS ranged from 90.0% to 109.0% in tests, with CVs ranging from 4.0% to 8.9% for rice samples. Therefore, our ICSA would be a good option for the sensitive and rapid detection of BIS in rice samples.
Collapse
Affiliation(s)
- Mengjia Chao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China.
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China.
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Aihong Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China.
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Zhou
- Jiangsu Product Quality Testing and Inspection Institute, Nanjing, Jiangsu, 210000, China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China.
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China.
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Lingling Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China.
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
15
|
Immunochromatographic assay for the analysis of methomyl in cabbage and tomato. Food Chem 2023; 409:135273. [PMID: 36584534 DOI: 10.1016/j.foodchem.2022.135273] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
In this study, a hapten of methomyl was designed and used to produce monoclonal antibodies (mAbs) against methomyl. Based on these mAbs, we developed an enzyme-linked immunosorbent assay (ELISA) and immunochromatographic assay (ICA) strip for the determination of methomyl residues. Results from the ELISA showed that mAb 1D10 exhibited higher affinity with an affinity constant of 2.76 × 1010 L/mol and higher sensitivity with a limit of detection (LOD) was 8.12 ng/mL. After optimizing the ICA, a visible limit of detection (vLOD) was found to be 100 ng/g and the cut-off value was 500 ng/g for methomyl in cabbage and tomato. The calculated LODs were 3.2 ng/g and 5.4 ng/g in cabbage and tomato, respectively. Moreover, results from the ICA were consistent with those of the ELISA in our recovery assay using spiked samples. Hence, the ICA method has a bright future and great prospects for the detection of methomyl in food samples.
Collapse
|
16
|
Qin Y, Ke W, Faheem A, Ye Y, Hu Y. A rapid and naked-eye on-site monitoring of biogenic amines in foods spoilage. Food Chem 2023; 404:134581. [DOI: 10.1016/j.foodchem.2022.134581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/17/2022] [Accepted: 10/08/2022] [Indexed: 11/22/2022]
|
17
|
Liu Y, Xu X, Liu L, Xu L, Kuang H, Xu C. Development of a GNP-based lateral flow immunoassay for the detection of isoprothiolane in rice samples. Food Chem 2023; 404:134483. [DOI: 10.1016/j.foodchem.2022.134483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/18/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
|
18
|
A Novel Strategy for Rapid Fluorescence Detection of FluB and SARS-CoV-2. Molecules 2023; 28:molecules28052104. [PMID: 36903349 PMCID: PMC10004075 DOI: 10.3390/molecules28052104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Undoubtedly, SARS-CoV-2 has caused an outbreak of pneumonia that evolved into a worldwide pandemic. The confusion of early symptoms of the SARS-CoV-2 infection with other respiratory virus infections made it very difficult to block its spread, leading to the expansion of the outbreak and an unreasonable demand for medical resource allocation. The traditional immunochromatographic test strip (ICTS) can detect one analyte with one sample. Herein, this study presents a novel strategy for the simultaneous rapid detection of FluB/SARS-CoV-2, including quantum dot fluorescent microspheres (QDFM) ICTS and a supporting device. The ICTS could be applied to realize simultaneous detection of FluB and SARS-CoV-2 with one test in a short time. A device supporting FluB/SARS-CoV-2 QDFM ICTS was designed and had the characteristics of being safe, portable, low-cost, relatively stable, and easy to use, ensuring the device could replace the immunofluorescence analyzer in cases where there is no need for quantification. This device does not need to be operated by professional and technical personnel and has commercial application potential.
Collapse
|
19
|
Lu Q, Xu X, Guo L, Song S, Liu L, Zhu Y, Kuang H, Xu C, Xu L. Rapid and sensitive detection of chlordimeform in cucumber and tomato samples using an immunochromatographic assay. Analyst 2023; 148:780-786. [PMID: 36683457 DOI: 10.1039/d2an01923j] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Chlordimeform (CDM) is a broad-spectrum and highly effective insecticide and acaricide used to control pests in agriculture. We produced two monoclonal antibodies (mAbs) against CDM and developed an immunochromatographic assay to screen CDM in cucumbers and tomatoes. MAb 4A3 had high sensitivity with a 50% inhibitory concentration of 0.287 ng mL-1. The assay had a cut-off value of 25 μg kg-1 and a visual limit of detection (vLOD) of 1 μg kg-1 in cucumbers and a cut off value of 50 μg kg-1 and a vLOD of 2.5 μg kg-1 in tomatoes. The calculated limit of detection (cLOD) in cucumbers and tomatoes was 0.115 μg kg-1 and 0.215 μg kg-1, respectively. The recovery rates were 97.9% to 106.9% for cucumbers and 97.8% to 107.4% for tomatoes, consistent with the results obtained from indirect competitive ELISA. Our findings showed that the immunochromatographic assay is an efficient and accurate method for CDM detection in cucumbers and tomatoes.
Collapse
Affiliation(s)
- Qianqian Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China. .,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China. .,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Lingling Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China. .,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Shanshan Song
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China. .,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China. .,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Yingyue Zhu
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Changshu, Jiangsu, 215500, People's Republic of China.
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China. .,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China. .,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Liguang Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China. .,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| |
Collapse
|
20
|
Lv M, Hussain N, Sun DW, Pu H. Rapid Detection of Paraquat Residues in Fruit Samples using Mercaptoacetic Acid Functionalized Au@AgNR SERS Substrate. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
21
|
Jiang X, Xu X, Song S, Kuang H, Liu L, Xu L, Xu C. Colloidal gold-based immunochromatographic strip for the detection of digitoxin in human plasma. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
22
|
Liu J, Wu A, Song S, Xu L, Liu L, Xu C, Kuang H. Development of an immunochromatographic assay for the rapid screening of pendimethalin in potato and apple. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
23
|
Chao M, Xu X, Wu A, Song S, Kuang H, Xu C, Liu L. Gold immunochromatographic strip assay for the detection of triamcinolone acetonide and budesonide in milk. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:1531-1543. [PMID: 35867536 DOI: 10.1080/19440049.2022.2099984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A monoclonal antibody against triamcinolone acetonide (TCA) and budesonide (BUD) was prepared using a hapten that was generated by introducing a carboxyl group into the structure of TCA. Based on the prepared monoclonal antibody, a gold nanoparticle-based lateral-flow immunoassay (GLFA) was developed with the ability to screen TCA and BUD in milk. The visible limits of detection of the GLFA for the analysis of TCA and BUD were 0.1 and 0.5 ng/mL with a cutoff value of 5 and 10 ng/mL, respectively, in milk. Average recoveries of TCA and BUD in milk were 92.0-102.2% and 96.0-98.8% with a good correlation between the results from the GLFA and LC-MS/MS analysis. These results demonstrated that the GLFA method for the rapid detection of TCA and BUD in milk samples is reliable and sensitive.
Collapse
Affiliation(s)
- Mengjia Chao
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Xinxin Xu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Aihong Wu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Shanshan Song
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Hua Kuang
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Liqiang Liu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| |
Collapse
|
24
|
Jiang H, Xu X, Song S, Wu A, Liu L, Kuang H, Xu C. A monoclonal antibody-based colloidal gold immunochromatographic strip for the analysis of novobiocin in beef and chicken. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:1053-1064. [PMID: 35486679 DOI: 10.1080/19440049.2022.2048089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this study, a monoclonal antibody (mAb) 1G5 against novobiocin with high sensitivity and specificity was prepared from a newly-designed hapten. According to the results of an indirect competitive enzyme-linked immunosorbent assay (ic-ELISA), the 50%-inhibitory concentration of the anti-novobiocin mAb was 6.9 ng/mL and the cross-reactivity was less than 0.1% to its analogues. Furthermore, a rapid colloidal gold immunochromatographic assay (ICA) was successfully developed for the determination of novobiocin in spiked samples. Two calibration curves were established respectively, for beef and chicken samples. The ICA results showed a visual colorimetric value of 50 ng/mL and a cut-off value of 300 ng/mL in beef samples. The ICA results of chicken samples were almost the same as that of beef. When quantitative detection was performed using a strip reader, the detection ranges for quantitative analysis in beef and chicken were 23.7-287.5 and 19.7-263.8 µg/kg respectively. Recoveries were between 82.7 and 95.3% for beef samples with the coefficient of variation (CV) ranging from 2.5 to 5.1%. Recoveries were in the range of 89.6-105.5% with the CV ranging from 2.9% to 6.3% for chicken samples. Importantly, these results from the ICA were highly consistent with the results obtained by LC-MS/MS. Therefore, this ICA could be used as an alternative means for the rapid determination of NOV in a large number of beef and chicken samples.
Collapse
Affiliation(s)
- Hongtao Jiang
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Xinxin Xu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Shanshan Song
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Aihong Wu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Liqiang Liu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Hua Kuang
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| |
Collapse
|
25
|
Novel Dual-Color Immunochromatographic Assay Based on Chrysanthemum-like Au@polydopamine and Colloidal Gold for Simultaneous Sensitive Detection of Paclobutrazol and Carbofuran in Fruits and Vegetables. Foods 2022; 11:foods11111564. [PMID: 35681314 PMCID: PMC9180898 DOI: 10.3390/foods11111564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/23/2022] Open
Abstract
To ensure food safety and prevent the toxic effects of paclobutrazol (PBZ) and carbofuran (CAR) on humans, a sensitive and rapid method for the detection of PBZ and CAR in fruits and vegetables is required. Herein, a highly sensitive PBZ monoclonal antibody (PBZ mAb) and CAR monoclonal antibody (CAR mAb) with half-inhibitory concentrations (IC50) at 0.77 and 0.82 ng mL−1 were prepared, respectively. We proposed a novel dual-color immunochromatographic assay (ICA) with two test lines (T1 and T2) and an independent control line (C) based on chrysanthemum-like Au@Polydopamine (AuNC@PDA) and colloidal gold (AuNPs) for the simultaneous and sensitive detection of PBZ and CAR with naked-eye detection limits of 10 and 5 μg kg−1, respectively. The limits of detection (LOD) for PBZ and CAR were 0.117 and 0.087 μg kg−1 in orange, 0.109 and 0.056 μg kg−1 in grape, and 0.131 and 0.094 μg kg−1 in cabbage mustard, respectively. The average recoveries of PBZ and CAR in orange, grape, and cabbage mustard were 97.86−102.83%, with coefficients of variation from 8.94 to 11.05. The detection results of this method for 30 samples (orange, grapes, and cabbage mustard) agreed well with those of liquid chromatography–tandem mass spectrometry. The novel dual-color ICA was sensitive, rapid, and accurate for the simultaneous detection of PBZ and CAR in real samples.
Collapse
|
26
|
Xu X, Xu X, Wu A, Song S, Kuang H, Xu C, Liu L. Ultrasensitive detection of four organic arsenic compounds at the same time using a five-link cardboard-based assay. Food Chem 2022; 390:133214. [PMID: 35597086 DOI: 10.1016/j.foodchem.2022.133214] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/26/2022] [Accepted: 05/11/2022] [Indexed: 11/04/2022]
Abstract
In order to effectively control the excessive use of organic arsenic reagents in livestock and poultry products, there is an urgent need to develop a method for rapid detection of multiple organic arsenic reagents. In this study, two haptens were designed and derivatized around the structural formula of roxarsone, and a highly-sensitive group-selective mAb 3F2 was prepared, which can simultaneously detect roxarsone, 4-aminophenylarsonic acid, 2-aminophenylarsonic acid and phenylarsonic acid. We further developed a colloidal gold immunochromatographic test strip (ICS) and prepared a five-link card that can simultaneously detect four organic arsenics in chicken and pork samples. Its quantitative detection limits (LOQ) for the four compounds in chicken and pork samples were 0.06 and 0.32 ng/mL, 0.11 and 0.29 ng/mL, 0.34 and 0.99 ng/mL, and 0.88 and 1.5 ng/mL, respectively. This multi-ICS detection provides a powerful tool for the on-site detection and rapid screening of organic arsenic reagents in actual samples.
Collapse
Affiliation(s)
- Xiaoxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Aihong Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Shanshan Song
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
27
|
Xiong J, He S, Wang Z, Xu Y, Zhang L, Zhang H, Jiang H. Dual-readout fluorescence quenching immunochromatographic test strips for highly sensitive simultaneous detection of chloramphenicol and amantadine based on gold nanoparticle-triggered photoluminescent nanoswitch control. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128316. [PMID: 35101753 DOI: 10.1016/j.jhazmat.2022.128316] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Herein, a novel fluorescence quenching immunochromatographic test strip (FQICTS) for simultaneous detection of chloramphenicol (CAP) and amantadine (AMD) was developed on the basis of inner filter effect (IFE), with the combination of gold nanoparticles (AuNPs) and highly luminescent green-emitting gold nanoclusters (AuNCs) as the IFE quencher/donor pair. The AuNPs could quench the excitation light and emission light of AuNCs and achieve a high IFE efficiency due to dual spectral overlapping. Under optimal conditions, the "turn-on" mode of the AuNCs-based dual-readout FQICTS showed good linearity for CAP detection in chicken samples from 0.05 ng/g to 10 ng/g, with a limit of detection (LOD) of 0.043 ng/g. The linear range of AMD is 0.5-50 ng/g, with LOD of 0.45 ng/g. The visual LODs of CAP and AMD in "turn-on" mode were 200 and 10 times lower than that in "turn-off" mode, respectively. The "turn-on" mode of FQICTS showed high recovery for detecting CAP (82.5-94.5%) and AMD (81.9-110.7%) spiked into chicken samples. The performance and practicability of the established method were verified with commercial enzyme-immunoassay kits, and good correlations were observed. Overall, the newly developed AuNCs-based dual-readout FQICTS is a promising on-site screening tool for rapid, high-sensitivity detection of multiple food contaminants in practical applications.
Collapse
Affiliation(s)
- Jincheng Xiong
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Shuang He
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Zile Wang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Yuliang Xu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Liang Zhang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Huixia Zhang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Haiyang Jiang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China.
| |
Collapse
|
28
|
Chang Y, Chen Y, Jiao S, Lu X, Fang Y, Liu Y, Zhao Y, Zhan X, Zhu G, Guo Y. A Novel Full-length IgG Recombinant Antibody Highly Specific to Clothianidin and Its Application in Immunochromatographic Assay. BIOSENSORS 2022; 12:bios12040233. [PMID: 35448293 PMCID: PMC9032790 DOI: 10.3390/bios12040233] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/04/2022] [Accepted: 04/10/2022] [Indexed: 01/12/2023]
Abstract
The toxicity of clothianidin to non-target organisms has gradually attracted world-wide attention. It is essential to develop reliable methods for the on-site detection of clothianidin residue. In this study, analogue-based heterologous ic-ELISAs were designed to rapidly screen desirable hybridomas, which could be used for the construction of recombinant antibodies (RAbs) against clothianidin. Based on the antibody variable region genes, two full-length IgG RAbs (1F7-RAb and 5C3-RAb) were produced by the mammalian cell expression system. The performance of the two RAbs was characterized and compared by heterologous ic-ELISAs and non-competitive surface plasmon resonance (SPR) assays. Using heterologous ic-ELISAs, the 1F7-RAb exhibited highly specific and sensitive recognition to clothianidin with an IC50 of 4.62 μg/L, whereas the 5C3-RAb could bind to both clothianidin and dinotefuran. The results of the non-competitive SPR assay further verified that the 1F7-RAb had a higher specificity and affinity to clothianidin than the 5C3-RAb. Finally, a gold immunochromatographic assay based on the novel antibody, 1F7-RAb, was developed for rapid detection of clothianidin with high sensitivity (visual detection limit of 2.5 μg/L), specificity, and good reproducibility, which can be used as an effective supervision tool for clothianidin residue in agricultural and environmental samples.
Collapse
Affiliation(s)
- Yunyun Chang
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.C.); (S.J.); (X.L.); (Y.F.); (Y.Z.); (G.Z.)
| | - Yang Chen
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.C.); (S.J.); (X.L.); (Y.F.); (Y.Z.); (G.Z.)
| | - Shasha Jiao
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.C.); (S.J.); (X.L.); (Y.F.); (Y.Z.); (G.Z.)
| | - Xinying Lu
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.C.); (S.J.); (X.L.); (Y.F.); (Y.Z.); (G.Z.)
| | - Yihua Fang
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.C.); (S.J.); (X.L.); (Y.F.); (Y.Z.); (G.Z.)
| | - Yihua Liu
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.C.); (S.J.); (X.L.); (Y.F.); (Y.Z.); (G.Z.)
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Correspondence: (Y.L.); (Y.G.)
| | - Ying Zhao
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.C.); (S.J.); (X.L.); (Y.F.); (Y.Z.); (G.Z.)
| | - Xiuping Zhan
- Shanghai Agricultural Technology Extension Service Center, Shanghai 201103, China;
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.C.); (S.J.); (X.L.); (Y.F.); (Y.Z.); (G.Z.)
| | - Yirong Guo
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.C.); (S.J.); (X.L.); (Y.F.); (Y.Z.); (G.Z.)
- Correspondence: (Y.L.); (Y.G.)
| |
Collapse
|
29
|
Ultrasensitive detection of phenolphthalein in slimming products by gold-based immunochromatographic paper. J Pharm Biomed Anal 2022; 212:114609. [DOI: 10.1016/j.jpba.2022.114609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 12/20/2022]
|
30
|
Yao J, Xu X, Liu H, Xu L, Liu L, Kuang H, Xu C. Sensitive immunochromatographic assay for the detection of the dimethachlone fungicide in tomatoes and lettuces. NEW J CHEM 2022. [DOI: 10.1039/d2nj00721e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A sensitive and rapid gold nanoparticle-based immunochromatographic strip (GNP-ICS) for the detection of dimethachlone (DMT) in tomatoes and lettuces.
Collapse
Affiliation(s)
- Jingjing Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Haiying Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Liguang Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
31
|
Li S, Ge W, Suryoprabowo S, Liu J, Kuang H, Zhu J, Liu L, Xu C. A paper-based sensor for rapid and ultrasensitive detection of ibuprofen in water and herbal tea. Analyst 2021; 146:6874-6882. [PMID: 34633393 DOI: 10.1039/d1an01533h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
As the use of non-steroidal anti-inflammatory drugs (NSAIDS) increases, their side effects have also attracted attention. Ibuprofen is one of the most widely-used NSAIDs. In this study, we screened the highly-sensitive and specific antibody 6E10, with an IC50 of 1.92 ng mL-1, and a linear range of 0.53-6.97 ng mL-1. In this study, we developed a rapid lateral flow immunochromatographic assay (ICA) strip method to detect ibuprofen in water or herbal tea. The cut-off limit of the strip is 10 ng mL-1 in water, and concentrations as low as 1 ng mL-1 can be detected in herbal tea samples, with the results obtained by the naked eye within 6 min. All the data were confirmed by high performance liquid chromatography-quadrupole time of flight-mass spectrometry (HPLC-QTOF-MS). This lateral-flow ICA strip is thus a rapid tool for on-site detection and screening of ibuprofen in water and herbal tea.
Collapse
Affiliation(s)
- Shaozhen Li
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Wenliang Ge
- Wuxi No. 2 People's Hospital, Wuxi, 214002, Jiangsu, People's Republic of China.
| | - Steven Suryoprabowo
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Jie Liu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Hua Kuang
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Jianping Zhu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Liqiang Liu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|