1
|
Huan C, Wang J, He Y, Liu Y, Tian X, Lyu Q, Wang Z, Ji G, Yan Z. Efficient strategy for employing HN-AD bacterium enhanced biofilter reactors to remove NH 3 and reduce secondary pollution. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135802. [PMID: 39312845 DOI: 10.1016/j.jhazmat.2024.135802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
Heterotrophic nitrification-aerobic denitrification (HN-AD) strain (Paracoccus denitrificans HY-1) was employed in this study to enhance the removal efficiency of NH3 in a biological trickling filter (BTF) reactor. The results demonstrated that inoculation with HY-1 and packed with bamboo charcoal as filler significantly improved the RE of NH3 in BTF, reaching 96.52 % under 27 s of empty bed residence time (EBRT) and 812.56 ppm of inlet gas concentration. Meanwhile, the titer of NH4+-N, NO2--N, and NO3--N in the circulating fluid were merely 8.52 mg/L, 5.14 mg/L, and 18.07 mg/L, respectively. Microbial community and metabolism analyses revealed that HY-1 have successfully colonized in the BTF, and the high expression of denitrification-related genes (nar, nap, nir, nor and nos) further confirmed that the inoculation of HY-1 greatly improved both nitrification and denitrification metabolism. Furthermore, the biofilter reactor inoculated with HY-1 was applied at a large-scale piggery and exhibited remarkable odor removal effect, in which 99.61 % of NH3 and 96.63 % of H2S were completely eliminated. In general, the HN-AD bacterium could strengthen the performance of BTF reactor and reduce the secondary pollution of circulating fluid during bio-deodorization.
Collapse
Affiliation(s)
- Chenchen Huan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, Shaanxi Province 710064, PR China; School of Water and Environment, Chang'an University, Xi'an, Shaanxi Province 710064, PR China
| | - Jialing Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Yue He
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Yang Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Xueping Tian
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Qingyang Lyu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Zhenhong Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, Shaanxi Province 710064, PR China; School of Water and Environment, Chang'an University, Xi'an, Shaanxi Province 710064, PR China
| | - Gaosheng Ji
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Zhiying Yan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China.
| |
Collapse
|
2
|
Wang S, Yan Y, Zhang J, Yang J, Chai F, Li S. Enhancing removal performance of ortho xylene by adding polydimethylsiloxane into two-stage biofilter. BIORESOURCE TECHNOLOGY 2024; 414:131625. [PMID: 39414165 DOI: 10.1016/j.biortech.2024.131625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024]
Abstract
A two-stage biofilter was built, augmented with polydimethylsiloxane (PDMS), to enhance the degradation of ortho xylene (o-xylene), and evaluate the feasibility of different PDMS concentrations for improving the removal effect. The results showed that PDMS concentration of 0.50 % significantly enhanced the purification efficiency and mineralization rate of o-xylene to 85(±1)% and 81 %, respectively. Simultaneously, the surface tension of the circulating liquid was reduced by 31.91 mN/m. Furthermore, the polysaccharide concentration of biofilters were increased by 6.90 mg/g and 7.38 mg/g, respectively, while the protein concentration was enhanced by 7.98 mg/g and 9.29 mg/g, respectively. It is worth noting that Sphingomonas and Sphingobium emerged as the dominant bacterial genera after intensification. Fusarium and Cladosporium became the predominant fungal genera in BTF1 and BTF2, respectively. Therefore, the two-stage biofilter containing bacteria and fungi combined with the addition of PDMS can effectively improve the degradation effect.
Collapse
Affiliation(s)
- Shu Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Yuxi Yan
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; School of Environment, Harbin Institute of Technology, Harbin 150001, China
| | - Jing Zhang
- Minquan County Water Conservancy Bureau, Minquan County People's Government, Shangqiu 476000, China
| | - Jiao Yang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China.
| | - Fengguang Chai
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Shunyi Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
3
|
Gloc M, Paździor K, Kudzin M, Mrozińska Z, Kucińska-Król I, Żyłła R. Assessment of Potential Use of a Composite Based on Polyester Textile Waste as Packing Elements of a Trickle Bed Bioreactor. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2028. [PMID: 38730835 PMCID: PMC11084930 DOI: 10.3390/ma17092028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Biological wastewater treatment using trickle bed reactors is a commonly known and used solution. One of the key elements of the proper operation of the trickle bed bioreactor is the appropriate selection of biofilm support elements. The respective properties of the bioreactor packing media used can influence, among other things, the efficiency of the treatment process. In this study, the possibility of polyester waste material usage for the preparation of the biofilm support elements was tested. The following properties were checked: adsorption capacity, swelling, surface morphology, microbicidal properties, as well as the possibility of their use in biological wastewater treatment. The tested elements did not adsorb copper nor showed microbicidal properties for bacterial strains Escherichia coli and Staphylococcus aureus as well as fungal strains Aspergillus niger and Chaetomium globosum. The hydrophilic and rough nature of the element surface was found to provide a friendly support for biofilm formation. The durability of the elements before and after their application in the biological treatment process was confirmed by performing tests such as compressive strength, FTIR analysis, hardness analysis and specific surface area measurement. The research confirmed the applicability of the packing elements based on polyester textile waste to the treatment of textile wastewater. The treatment efficiency of the model wastewater stream was above 90%, while in the case of a stream containing 60% actual industrial wastewater it was above 80%. The proposed solution enables the simultaneous management of textile waste and wastewater treatment, which is consistent with the principles of a circular economy. The selected waste raw material is a cheap and easily available material, and the use of the developed packing elements will reduce the amount of polyester materials ending up in landfills.
Collapse
Affiliation(s)
- Martyna Gloc
- Lukasiewicz Research Network-Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Street, 90-570 Lodz, Poland (Z.M.)
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz Univeristy of Technology, 213 Wolczanska Street, 90-924 Lodz, Poland
| | - Katarzyna Paździor
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz Univeristy of Technology, 213 Wolczanska Street, 90-924 Lodz, Poland
| | - Marcin Kudzin
- Lukasiewicz Research Network-Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Street, 90-570 Lodz, Poland (Z.M.)
| | - Zdzisława Mrozińska
- Lukasiewicz Research Network-Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Street, 90-570 Lodz, Poland (Z.M.)
| | - Iwona Kucińska-Król
- Lukasiewicz Research Network-Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Street, 90-570 Lodz, Poland (Z.M.)
| | - Renata Żyłła
- Lukasiewicz Research Network-Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Street, 90-570 Lodz, Poland (Z.M.)
| |
Collapse
|
4
|
Zhang L, Huang X, Chen W, Fu G, Zhang Z. Microalgae-assisted heterotrophic nitrification-aerobic denitrification process for cost-effective nitrogen and phosphorus removal from high-salinity wastewater: Performance, mechanism, and bacterial community. BIORESOURCE TECHNOLOGY 2023; 390:129901. [PMID: 37871742 DOI: 10.1016/j.biortech.2023.129901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/15/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
A microalgae-assisted heterotrophic nitrification-aerobic denitrification (HNAD) system for efficient nutrient removal from high-salinity wastewater was constructed for the first time as a cost-effective process in the present study. Excellent nutrient removal (∼100.0 %) was achieved through the symbiotic system. The biological removal process, biologically induced phosphate precipitation (BIPP), microalgae uptake, and ammonia stripping worked together for nutrient removal. Furthermore, the biological removal process achieved by biofilm contributed to approximately 55.3-71.8 % of nitrogen removal. BIPP undertook approximately 45.6-51.8 % of phosphorus removal. Batch activity tests confirmed that HNAD fulfilled an extremely critical role in nitrogen removal. Microalgal metabolism drove BIPP to achieve efficient phosphorus removal. Moreover, as the main HNAD bacteria, OLB13 and Thauera were enriched. The preliminary energy flow analysis demonstrated that the symbiotic system could achieve energy neutrality, theoretically. The findings provide novel insights into strategies of low-carbon and efficient nutrient removal from high-salinity wastewater.
Collapse
Affiliation(s)
- Linfang Zhang
- College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaodan Huang
- College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenting Chen
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Guokai Fu
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China.
| | - Zhi Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China
| |
Collapse
|
5
|
Huan C, Wang Z, Tong X, Zeng Y, Liu Y, Cheng Y, Lyu Q, Yan Z, Tian X. Performance evaluation of H 2S and NH 3 removal by biological trickling filter reactors with various fillers under heterotrophic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165804. [PMID: 37499835 DOI: 10.1016/j.scitotenv.2023.165804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
A pilot-scale biological trickling filter (BTF) reactor (13.5 L) packed with different fillers (Pine bark, Cinder, Straw, and MBBR (mobile bed biofilm reactor) filler was employed to evaluate their removal performance of H2S and NH3 after heterotrophic bacterium addition, and some parameters, including different packing heights, empty bed residence time (EBRT), inlet titers, loading ratios, and restart trial, were investigated in this study. According to the experimental results, BTF filled with pine bark exhibited better removal efficiency than other reactors under a variety of conditions. The removal efficiency of H2S and NH3 reached to as high as 81.31 % and 91.72 %, respectively, with the loading range of 3.29-67.70 g/m3·h. Moreover, due to the addition of heterotrophic bacterium, the removal efficiency was enhanced and capable to eliminate majority of H2S and NH3 even though the packing height was reduced to 400 mm. After 15 days of idle, the BTF reactor was able to resume rapidly and execute deodorization with high efficiency. The degradation mechanism was further explored by a thorough examination of microbial species which degraded contaminants, as well as by functional prediction and correlation analyses. In a word, these results laid a foundation for the application of heterotrophic microorganisms in BTF, which could improve the removal efficiency of biological deodorization.
Collapse
Affiliation(s)
- Chenchen Huan
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, Shaanxi Province 710064, PR China; CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; School of Water and Environment, Chang'an University, Xi'an, Shaanxi Province 710064, PR China
| | - Zhenhong Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, Shaanxi Province 710064, PR China; School of Water and Environment, Chang'an University, Xi'an, Shaanxi Province 710064, PR China.
| | - Xinyu Tong
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yong Zeng
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yang Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yapeng Cheng
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Qingyang Lyu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Zhiying Yan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xueping Tian
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
6
|
Promnuan K, Sittijunda S, Reungsang A. Evaluation of commercial moving bed media and sugarcane bagasse as packing material in biotrickling filter for hydrogen sulfide removal. BIORESOURCE TECHNOLOGY 2023; 388:129788. [PMID: 37741580 DOI: 10.1016/j.biortech.2023.129788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023]
Abstract
This study compared two biotrickling filter packing materials for hydrogen sulfide removal. Inlet H2S concentrations and empty-bed retention time were tested on the two biotrickling filters. First reactor (BT1) had immobilized sulfur-oxidizing bacteria on commercial moving-bed media, whereas second reactor (BT2) had sulfur-oxidizing bacteria on sugarcane bagasse. The study found that BT1 performed best at 120 s empty-bed retention time, 422.39 g/m3·h hydrogen sulfide loading rate, resulted in 416 g/m3·h hydrogen sulfide elimination capacity. In contrast, BT2 performed best at 180 s empty-bed retention time, 278.77 g/m3·h hydrogen sulfide loading rate, and 273 g/m3·h elimination capacity was achieved. High-throughput sequencing showed Acidithobacillus spp. dominated the sulfur-oxidizing bacteria consortium. Sugarcane bagasse may receive less hydrogen sulfide loading than moving bed medium under optimal conditions, but its low cost and reasonable removal capacity of hydrogen sulfide -containing industrial gases in a biotrickling filter system make it an excellent alternative packing material.
Collapse
Affiliation(s)
- Kanathip Promnuan
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sureewan Sittijunda
- Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Alissara Reungsang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand; Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen 40002, Thailand; Academy of Science, Royal Society of Thailand, Bangkok 10300, Thailand.
| |
Collapse
|
7
|
Ansari SA, Shakeel A, Sawarkar R, Maddalwar S, Khan D, Singh L. Additive facilitated co-composting of lignocellulosic biomass waste, approach towards minimizing greenhouse gas emissions: An up to date review. ENVIRONMENTAL RESEARCH 2023; 224:115529. [PMID: 36822534 DOI: 10.1016/j.envres.2023.115529] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Although the composting of lignocellulosic biomass is an emerging waste-to-wealth approach towards organic waste management and circular economy, it still has some environmental loopholes that must be addressed to make it more sustainable and reliable. The significant difficulties encountered when composting lignocellulosic waste biomass are consequently discussed in this study, as well as the advances in science that have been achieved throughout time to handle these problems in a sustainable manner. It discusses an important global concern, the emission of greenhouse gases during the composting process which limits its applicability on a broader scale. Furthermore, it discusses in detail, how different organic minerals and biological additives modify the physiochemical and biological characteristics of compost, aiming at developing eco-friendly compost with minimum odor, greenhouse gases emission and an optimum C/N ratio. It brings novel insights by demonstrating the effect of additives on the microbial enzymes and their pathways involved in the degradation of lignocellulosic biomass. This review also highlights the limitations of the application of additives in composting and suggests possible ways to overcome these limitations in the future for the sustainable and eco-friendly management of agricultural waste. The present review concludes that the use of additives in the co-composting of lignocellulosic biomass can be a viable remedy for the ongoing issues with the management of lignocellulosic waste.
Collapse
Affiliation(s)
- Suhel Aneesh Ansari
- Environmental Biotechnology and Genomics Division, CSIR NEERI, Nagpur, India.
| | - Adnan Shakeel
- Environmental Biotechnology and Genomics Division, CSIR NEERI, Nagpur, India.
| | - Riya Sawarkar
- Environmental Biotechnology and Genomics Division, CSIR NEERI, Nagpur, India.
| | - Shrirang Maddalwar
- Environmental Biotechnology and Genomics Division, CSIR NEERI, Nagpur, India.
| | - Debishree Khan
- Environmental Biotechnology and Genomics Division, CSIR NEERI, Nagpur, India.
| | - Lal Singh
- Environmental Biotechnology and Genomics Division, CSIR NEERI, Nagpur, India.
| |
Collapse
|
8
|
Zhu Q, Wu P, Chen B, Wu Q, Cao F, Wang H, Mei Y, Liang Y, Sun X, Chen Z. Improving NH 3 and H 2S removal efficiency with pilot-scale biotrickling filter by co-immobilizing Kosakonia oryzae FB2-3 and Acinetobacter baumannii L5-4. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:33181-33194. [PMID: 36474037 DOI: 10.1007/s11356-022-24426-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
In this study, two NH4+-N and S2- removal strains, namely, Kosakonia oryzae (FB2-3) and Acinetobacter baumannii (L5-4), were isolated from the packing materials in a long-running biotrickling filter (BTF). The removal capacities of combined FB2-3 and L5-4 (FB2-3 + L5-4) toward 100 mg L-1 of NH4+-N and 200 mg L-1 of S2- reached 97.31 ± 1.62% and 98.57 ± 1.12% under the optimal conditions (32.0 °C and initial pH = 7.0), which were higher than those of single strain. Then, FB2-3 and L5-4 liquid inoculums were prepared, and their concentrations respectively reached 1.56 × 109 CFU mL-1 and 1.05 × 109 CFU mL-1 by adding different resuspension solutions and protective agents after 12-week storage at 25 °C. Finally, pilot-scale BTF test showed that NH3 and H2S in the real exhaust gases from a pharmaceutical factory were effectively removed with removal rates > 87% and maximum elimination capacities were reached 136 g (NH3) m-3 h-1 and 176 g (H2S) m-3 h-1 at 18 °C-34 °C and pH 4.0-7.0 in the BTF loaded with bamboo charcoal packing materials co-immobilized with FB2-3 and L5-4. After co-immobilization of FB2-3 and L5-4, in the bamboo charcoal packing materials, the new microbial diversity composition contained the dominant genera of Acinetobacter, Mycobacterium, Kosakonia, and Sulfobacillus was formed, and the diversity of entire bacterial community was decreased, compared to the control. These results indicate that FB2-3 and L5-4 have potential to be developed into liquid ready-to-use inoculums for effectively removing NH3 and H2S from exhaust gases in BTF.
Collapse
Affiliation(s)
- Qiuyan Zhu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Pengyu Wu
- College of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, People's Republic of China
| | - Budong Chen
- Chuhuan Science and Technology Co., Ltd, Hangzhou, 310000, People's Republic of China
| | - Qijun Wu
- Chuhuan Science and Technology Co., Ltd, Hangzhou, 310000, People's Republic of China
| | - Feifei Cao
- Chuhuan Science and Technology Co., Ltd, Hangzhou, 310000, People's Republic of China
| | - Hao Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yuxia Mei
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yunxiang Liang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xiaowen Sun
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zhenmin Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
9
|
Xiao X, An X, Jiang Y, Wang L, Li Z, Lai F, Zhang Q. A newly developed consortium with a highly efficient thiocyanate degradation capacity: A comprehensive investigation of the degradation and detoxification potential. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120878. [PMID: 36526057 DOI: 10.1016/j.envpol.2022.120878] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Thiocyanate-containing wastewater harms ecosystems and can cause serious damage to animals and plants, so it is urgent to treat it effectively. In this study, a new efficient thiocyanate-degrading consortium was developed and its degradation characteristics were studied. It was found that up to 154.64 mM thiocyanate could be completely degraded by this consortium over 6 days of incubation, with a maximum degradation rate of 1.53 mM h-1. High-throughput sequencing analysis showed that Thiobacillus (77.78%) was the predominant thiocyanate-degrading bacterial genus. Plant toxicology tests showed that the germination index of mung bean and rice seeds cultured with media obtained after thiocyanate degradation by the consortium increased by 94% and 84.83%, respectively, compared with the control group without thiocyanate degradation. Cytotoxicity tests showed that thiocyanate without degradation significantly decreased the Neuro-2a cell activity and mitochondrial membrane potential; induced reactive oxygen species generation and apoptosis; increased the cellular Ca2+ concentration; and damaged the cell nucleus and DNA. Furthermore, the thiocyanate degradation products produced the consortium were almost totally non-toxic, revealing the same characteristics as those of the control using distilled water. This study shows that the consortium has a high degradation efficiency and detoxification characteristics, as well as great application potential in bioremediation of industrial thiocyanate-containing wastewater.
Collapse
Affiliation(s)
- Xiaoshuang Xiao
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, PR China.
| | - Xuejiao An
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Yuling Jiang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Liuwei Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Zelin Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Fenju Lai
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Qinghua Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, PR China.
| |
Collapse
|
10
|
Zhang L, Li S, Zhang S, Cai H, Fang W, Shen Z. Recovery trajectories of the bacterial community at distances in the receiving river under wastewater treatment plant discharge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116622. [PMID: 36368207 DOI: 10.1016/j.jenvman.2022.116622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Microbes in rivers are an important part of the biogeochemical cycle in aquatic ecosystems, and understanding the major factors that influence the composition of microbial communities has an important role in assessing and improving ecosystem functioning. A high-throughput 16 S rRNA gene sequencing technique was employed to sequence bacterial communities in 21 sediment samples and 21 water samples from an urban river WWTP (wastewater treatment plant) discharge. A systematic study of changes in bacterial community composition in downstream river sediment and water was conducted. The study found that compared with the bacterial diversity in the natural upstream area of the wastewater outfall, the bacterial diversity in the sediment lower reaches decreased significantly, while the bacterial abundance and diversity in the water increased significantly. The Mantel test and redundancy analysis showed that the downstream distance and physicochemical properties were significantly related to the succession of bacterial communities in the sediment downstream of the WWTP discharge. Among them, TOC (total organic carbon) was the most important factor affecting the change in the bacterial community in the downstream sediment. The physicochemical properties were significantly correlated with the succession of bacterial communities in the water downstream of the WWTP discharge. Among them, TN (total nitrogen), PO43--P (phosphorus phosphate) and TP (total phosphorus) were the main factors that affected the change in the bacterial community in the downstream water. Key taxa in the co-occurrence network at different distances downstream reflected the depth of the effect of the WWTP effluent on the bacterial community. The bacterial community in the lower reaches of the river sediment showed a strong recovery ability under the influence of pollutants, while the bacterial community in the lower reaches of the river water was difficult to recover under the influence of pollutants. In general, pollutants contained in effluent are the key to changing the composition of bacterial communities in the lower reaches of the river, but exogenous bacteria in effluent are not. This study provides a basis for further improving the effluent discharge standards of WWTPs in the future.
Collapse
Affiliation(s)
- Lei Zhang
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou, 239000, China.
| | - Shuo Li
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou, 239000, China
| | - Siqing Zhang
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou, 239000, China
| | - Hua Cai
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou, 239000, China
| | - Wangkai Fang
- School of Earth and Environment, Anhui University of Science & Technology, Huainan, 232000, China
| | - Zhen Shen
- Nanjing Institute of Geography and Limnology Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
11
|
Huan C, Yan Z, Sun J, Liu Y, Zeng Y, Qin W, Cheng Y, Tian X, Tan Z, Lyu Q. Nitrogen removal characteristics of efficient heterotrophic nitrification-aerobic denitrification bacterium and application in biological deodorization. BIORESOURCE TECHNOLOGY 2022; 363:128007. [PMID: 36155812 DOI: 10.1016/j.biortech.2022.128007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
A heterotrophic nitrifying aerobic denitrifying (HN-AD) strain HY-1 with excellent capacity, identified as Paracoccus denitrificans, was isolated from activated sludge. HY-1 was capable of removing NH4+, NO2-, and NO3- with the corresponding rate of 17.33 mg-N L-1 h-1, 21.83 mg-N L-1 h-1, and 32.37 mg-N L-1 h-1, as well as the mixture of multiple nitrogen sources. Meanwhile, HY-1 could execute denitrification function under anaerobic conditions with a rate of 14.56 mg-N L-1 h-1. HY-1 required less energy investment, which exhibited average denitrification rate of 5.19 mg-N L-1 h-1 at carbon-nitrogen ratio was 1. After nitrification-denitrification metabolic pathway analysis, HY-1 was applied in a biological trickling filter reactor for compost deodorization. The results showed that adding of HY-1 greatly reduced the ionic concentration of NH4+ and NO3- in the circulating liquid without impairing the deodorization effect (NH3 removal rate>98.07%). These findings extend the field of application of HN-AD and provide new insights for biological deodorization.
Collapse
Affiliation(s)
- Chenchen Huan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, Shaanxi Province 710064, China; School of Water and Environment, Chang'an University, Xi'an, Shaanxi Province 710064, China
| | - Zhiying Yan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jiang Sun
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yang Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yong Zeng
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Wei Qin
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yapeng Cheng
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xueping Tian
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Zhouliang Tan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Qingyang Lyu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
12
|
Bu J, Wan Q, Deng Z, Liu H, Li T, Zhou C, Zhong S. Waste coal cinder catalyst enhanced electrocatalytic oxidation and persulfate advanced oxidation for the degradation of sulfadiazine. CHEMOSPHERE 2022; 303:134880. [PMID: 35584712 DOI: 10.1016/j.chemosphere.2022.134880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Waste coal cinder, a kind of waste cinder discharged from coal combustion of thermal power plants, industrial and civil boilers, and other equipment, was rich in metal oxides with catalytic activity. In this work, waste coal cinder was used to enhance electrochemical coupling peroxymonosulfate (PMS) advanced oxidation degradation of sulfadiazine (SD). The surface morphology, elemental composition, and electrocatalytic activity of waste coal cinder were characterized by various characterization instruments. The results show that compared with simple electrocatalytic oxidation, electrocatalytic oxidation + waste coal cinder and electrocatalytic coupled persulfate oxidation, electrocatalytic oxidation + PMS advanced oxidation + waste coal cinder has the largest removal efficiency (99.95%) and mineralization rates (90.16%) of SD in 90 min, indicating that the introduction of waste coal cinder greatly increases the degradation efficiency. •OH and SO4-• were detected during the process of degradation. The optimal degradation process parameters were explored through different voltage, pH, plate spacing, aeration flow rate, potassium peroxymonosulfate sulfate complex salt dose, and Na2SO4 dosage. Cycling experiments show waste coal cinder has good structural stability. Through the analysis of triple quadrupole liquid chromatography-mass spectrometry (LC-MS), we put forward three possible ways of SD degradation. This research will provide a novel vision for water treatment.
Collapse
Affiliation(s)
- Jiaqi Bu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Qingqing Wan
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Zhiwei Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Hui Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Tianhao Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Shian Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China.
| |
Collapse
|
13
|
Effects of Water Content and Irrigation of Packing Materials on the Performance of Biofilters and Biotrickling Filters: A Review. Processes (Basel) 2022. [DOI: 10.3390/pr10071304] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Biofilters (BFs) and biotrickling filters (BTFs) are two types of bioreactors used for treatment of volatile organic compounds (VOCs). Both BFs and BTFs use packing materials in which various microorganisms are immobilised. The water phase in BFs is stationary and used to maintain the humidity of packing materials, while BTFs have a mobile liquid phase. Optimisation of irrigation of packing materials is crucial for effective performance of BFs and BTFs. A literature review is presented on the influence of water content of packing materials on the biofiltration efficiency of various pollutants. Different configurations of BFs and BTFs and their influence on moisture distribution in packing materials were discussed. The review also presents various packing materials and their irrigation control strategies applied in recent biofiltration studies. The sources of this review included recent research articles from scientific journals and several review articles discussing BFs and BTFs.
Collapse
|
14
|
Wei D, Liu L, Shi J, Yan W, Chen X, Li X. Biodesulfurization of thiosulfate by a Pseudomonas strain PSP1 and the investigation of underlying metabolic mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:33764-33773. [PMID: 35029825 DOI: 10.1007/s11356-022-18648-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
The increasing public expectations for good air quality have necessitated the development of biodeodorization technology. Among different malodorous pollutants, H2S has attracted extensive attention and diverse biodesulfurization technology has been developed for efficient H2S removal. In this study, a novel heterotrophic Pseudomonas strain, PSP1, was isolated from biogas slurry and its biodesulfurization ability was investigated. Culture conditions of 30 °C and 200 rpm were determined as the optimal for both cell growth and thiosulfate conversion. Under such conditions, the highest OD600 value was observed as 6.74 and 50 mM thiosulfate within 10 h. PSP1 was found to convert thiosulfate to sulfane which could be decomposed into elemental sulfur and therefore achieved desulfurization. However, this process was relatively weak as more than 60% thiosulfate was converted into soluble tetrathionate. The whole genome sequencing and functional annotation identified the genes in PSP1 associated with sulfur metabolism and the RT-qPCR analysis quantified the expression level of corresponding genes. The expression level of tsdA, which was responsible for tetrathionate production, was around 60 folds higher than genes for sulfane production (e.g. TST1, cysI). Further research would focus on the enhancement of sulfane production pathway through metabolic engineering tools.
Collapse
Affiliation(s)
- Dong Wei
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai, 200241, China
| | - Li Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai, 200241, China
| | - Jiping Shi
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai, 200241, China
| | - Weizhi Yan
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai, 200241, China
| | - Xiaojia Chen
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Xiang Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai, 200241, China.
| |
Collapse
|
15
|
Yao X, Shi Y, Wang K, Wang C, He L, Li C, Yao Z. Highly efficient degradation of hydrogen sulfide, styrene, and m-xylene in a bio-trickling filter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152130. [PMID: 34863757 DOI: 10.1016/j.scitotenv.2021.152130] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/21/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
Controlling the release of malodorous gas discharged from wastewater treatment plants (WWTPs) has become an urgent environmental problem in recent years. In this study, a bio-trickling filter (BTF) inoculated with microorganisms acclimated to activated sludge in a WWTP was used as the degradation equipment. A continuous degradation experiment with hydrogen sulfide, styrene, and m-xylene in the BTF lasted for 84 days (12 weeks). The degradation capacities of the BTF for hydrogen sulfide, styrene, and m-xylene were evaluated, and the synergy and inhibition among the substrates during biodegradation are discussed. The results indicated that the degradation efficiencies of the BTF were as high as 99.2% for hydrogen sulfide, 94.6% for styrene, and 100.0% for m-xylene. When the empty bed residence time was 30 s, the maximum elimination capacities (EC) achieved for hydrogen sulfide was 38 g m-3 h-1, for styrene was 200 g m-3 h-1, and for m-xylene was 75 g m-3 h-1. Furthermore, the microbial species and quantity of microorganisms in the middle and top of the BTF were much higher than those at the bottom of the BTF. A variety of microorganisms in the BTF can efficiently degrade the typical and highly toxic malodorous gases released from WWTPs. This study can help increase the understanding of the degradation of a mixture of sulfur-containing substances and aromatic hydrocarbons in BTF degradation and promote the development of technologies for the reduction of a complex mixture of malodorous gas emissions from organic wastewater treatment.
Collapse
Affiliation(s)
- Xiaolong Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Yue Shi
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Ke Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Chun Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Li He
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Changming Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|