1
|
Matranxhi B, Mertens B, Anthonissen R, Maes J, Ny A, de Witte P, Brouhon JM, De Bast B, Elskens M. Assessment of receptor-mediated activity (AhR and ERα), mutagenicity, and teratogenicity of metal shredder wastes in Wallonia, Belgium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55263-55279. [PMID: 39225929 DOI: 10.1007/s11356-024-34820-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
In this study, hazardous wastes including fluff, dust, and scrubbing sludge were sampled in 2019 from two metal shredding facilities located in Wallonia, Belgium. To assess the extent of the contamination, a global approach combining chemical and biological techniques was used, to better reflect the risks to health and the environment. The samples investigated induced significant in vitro aryl hydrocarbon receptor (AhR) agonistic bioactivities and estrogenic receptor (ERα) (ant)agonistic bioactivities in the respective CALUX (chemical activated luciferase gene expression) bioassays. The mutagenicity of the samples was investigated with the bacterial reverse gene mutation test using the Salmonella typhimurium TA98 and TA100 strains. Except for the sludge sample (site 3), all samples induced a mutagenic response in the TA98 strain (± S9 metabolic fraction) whereas in the TA100 strain (+ S9 metabolic fraction), only the sludge sample (site 2) showed a clear mutagenic effect. The in vivo toxicity/teratogenicity of the shredder wastes was further evaluated with zebrafish embryos. Except for the dust sample (site 2), all samples were found to be teratogenic as they returned teratogenic indexes (TIs) > 1. The high levels of contamination, the mutagenicity, and the teratogenicity of these shredder wastes raise significant concerns about their potential negative impacts on both human health and environment.
Collapse
Affiliation(s)
- Besarta Matranxhi
- Laboratory of Archaeology, Environmental Changes and Geo-Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Ixelles, Belgium
| | - Birgit Mertens
- Sciensano, SD Chemical and Physical Health Risks, Rue Juliette Wytsman 14, 1050, Ixelles, Belgium
| | - Roel Anthonissen
- Sciensano, SD Chemical and Physical Health Risks, Rue Juliette Wytsman 14, 1050, Ixelles, Belgium
| | - Jan Maes
- Laboratory for Molecular Biodiscovery, KU Leuven, Gasthuisberg Campus O&N 2, Herestraat 49, 3000, Leuven, Belgium
| | - Annelii Ny
- Laboratory for Molecular Biodiscovery, KU Leuven, Gasthuisberg Campus O&N 2, Herestraat 49, 3000, Leuven, Belgium
| | - Peter de Witte
- Laboratory for Molecular Biodiscovery, KU Leuven, Gasthuisberg Campus O&N 2, Herestraat 49, 3000, Leuven, Belgium
| | - Jean-Marc Brouhon
- Walloon Air and Climate Agency (AwAC), Public Service of Wallonia, Jambes, Belgium
| | - Benoit De Bast
- Walloon Air and Climate Agency (AwAC), Public Service of Wallonia, Jambes, Belgium
| | - Marc Elskens
- Laboratory of Archaeology, Environmental Changes and Geo-Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Ixelles, Belgium.
| |
Collapse
|
2
|
Cseresznye A, Hardy EM, Ait Bamai Y, Cleys P, Poma G, Malarvannan G, Scheepers PTJ, Viegas S, Martins C, Porras SP, Santonen T, Godderis L, Verdonck J, Poels K, João Silva M, Louro H, Martinsone I, Akūlova L, van Dael M, van Nieuwenhuyse A, Mahiout S, Duca RC, Covaci A. HBM4EU E-waste study: Assessing persistent organic pollutants in blood, silicone wristbands, and settled dust among E-waste recycling workers in Europe. ENVIRONMENTAL RESEARCH 2024; 250:118537. [PMID: 38408627 DOI: 10.1016/j.envres.2024.118537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
E-waste recycling is an increasingly important activity that contributes to reducing the burden of end-of-life electronic and electrical apparatus and allows for the EU's transition to a circular economy. This study investigated the exposure levels of selected persistent organic pollutants (POPs) in workers from e-waste recycling facilities across Europe. The concentrations of seven polychlorinated biphenyls (PCBs) and eight polybrominated diphenyl ethers (PBDEs) congeners were measured by GC-MS. Workers were categorized into five groups based on the type of e-waste handled and two control groups. Generalized linear models were used to assess the determinants of exposure levels among workers. POPs levels were also assessed in dust and silicone wristbands (SWB) and compared with serum. Four PCB congeners (CB 118, 138, 153, and 180) were frequently detected in serum regardless of worker's category. With the exception of CB 118, all tested PCBs were significantly higher in workers compared to the control group. Controls working in the same company as occupationally exposed (Within control group), also displayed higher levels of serum CB 180 than non-industrial controls with no known exposures to these chemicals (Outwith controls) (p < 0.05). BDE 209 was the most prevalent POP in settled dust (16 μg/g) and SWB (220 ng/WB). Spearman correlation revealed moderate to strong positive correlations between SWB and dust. Increased age and the number of years smoked cigarettes were key determinants for workers exposure. Estimated daily intake through dust ingestion revealed that ΣPCB was higher for both the 50th (0.03 ng/kg bw/day) and 95th (0.09 ng/kg bw/day) percentile exposure scenarios compared to values reported for the general population. This study is one of the first to address the occupational exposure to PCBs and PBDEs in Europe among e-waste workers through biomonitoring combined with analysis of settled dust and SWB. Our findings suggest that e-waste workers may face elevated PCB exposure and that appropriate exposure assessments are needed to establish effective mitigation strategies.
Collapse
Affiliation(s)
- Adam Cseresznye
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Emilie M Hardy
- Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), Luxembourg, Luxembourg
| | - Yu Ait Bamai
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium; Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Paulien Cleys
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Giulia Poma
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Govindan Malarvannan
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Paul T J Scheepers
- Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - Susana Viegas
- Comprehensive Health Research Center, NOVA National School of Public Health, Public Health Research Centre, NOVA University Lisbon, Lisbon, Portugal
| | - Carla Martins
- Comprehensive Health Research Center, NOVA National School of Public Health, Public Health Research Centre, NOVA University Lisbon, Lisbon, Portugal
| | - Simo P Porras
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Tiina Santonen
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Lode Godderis
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium; Idewe, External Service for Prevention and Protection at Work, Heverlee, Belgium
| | - Jelle Verdonck
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Katrien Poels
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Maria João Silva
- ToxOmics -Centre for Toxicogenomics and Human Health, Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), NOVA Medical School, Lisbon, Portugal
| | - Henriqueta Louro
- ToxOmics -Centre for Toxicogenomics and Human Health, Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), NOVA Medical School, Lisbon, Portugal
| | - Inese Martinsone
- Institute of Occupational Safety and Environmental Health, Rīgas Stradiņš University, Riga, Latvia
| | - Lāsma Akūlova
- Institute of Occupational Safety and Environmental Health, Rīgas Stradiņš University, Riga, Latvia
| | - Maurice van Dael
- Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - An van Nieuwenhuyse
- Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), Luxembourg, Luxembourg; Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Selma Mahiout
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Radu Corneliu Duca
- Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), Luxembourg, Luxembourg; Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Adrian Covaci
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
3
|
Habib K, Mohammadi E, Vihanga Withanage S. A first comprehensive estimate of electronic waste in Canada. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130865. [PMID: 36764257 DOI: 10.1016/j.jhazmat.2023.130865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/24/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Detailed analysis of electronic waste (e-waste) generation and composition is of utmost importance for the proper management of growing e-waste stream worldwide, containing both hazardous and valuable materials. Considering the absence of such comprehensive and up-to-date studies in Canada, this work presents the first estimate of put-on-market electrical and electronic equipment (EEE), the in-use stocks of EEE and e-waste generation in Canada from 1971 to 2030 for 51 product categories comprising 198 product types. Using a dynamic material flow analysis (MFA), the put-on-market EEE is estimated based on trade data retrieved from national and international import and export statistics, and the in-use stocks of EEE and the resulting e-waste are calculated using the Weibull distribution function. The results show that the total mass of EEE within the 60-year period is estimated to be 42.3 million tonnes, with an annual average growth rate of approximately 0.5%. By 2030, the total accumulated in-use stock of EEE is estimated to exceed 13 million tonnes. The estimated e-waste over the 60-year timespan is 29.1 million tonnes. The total annual e-waste generation in Canada is calculated to be 252 kilo tonnes (kt) and 954 kt in the years 2000 and 2020 respectively, which is estimated to reach 1.2 million tonnes by 2030. The e-waste generation per capita increased from 8.3 kg in 2000 to 25.3 kg in 2020 and is estimated to reach 31.5 kg by 2030. This quantification provides valuable insights to policymakers for setting up targets for waste reduction and identifying the resource circularity potential for efficient management of e-waste.
Collapse
Affiliation(s)
- Komal Habib
- School of Environment, Enterprise and Development (SEED), Faculty of Environment, University of Waterloo, 200 University Ave West, Waterloo, Ontario N2L3G1, Canada.
| | - Elham Mohammadi
- School of Environment, Enterprise and Development (SEED), Faculty of Environment, University of Waterloo, 200 University Ave West, Waterloo, Ontario N2L3G1, Canada
| | - Sohani Vihanga Withanage
- School of Environment, Enterprise and Development (SEED), Faculty of Environment, University of Waterloo, 200 University Ave West, Waterloo, Ontario N2L3G1, Canada
| |
Collapse
|