1
|
Zhao C, Li W, Hu J, Hong C, Xing Y, Wang H, Ling W, Wang Y, Feng L, Feng W, Hou J, Zhai X, Liu C. Preparation of functionalized porous chitin carbon to enhance the H 2O 2 production and Fe 3+ reduction properties of Electro-Fenton cathodes for efficient degradation of RhB. ENVIRONMENTAL RESEARCH 2024; 261:119775. [PMID: 39134112 DOI: 10.1016/j.envres.2024.119775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/25/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
The performance of Electro-Fenton (EF) cathode materials is primarily assessed by H2O2 yield and Fe3+ reduction efficiency. This study explores the impact of pore structure in chitin-based porous carbon on EF cathode effectiveness. We fabricated mesoporous carbon (CPC-700-2) and microporous carbon (ZPC-700-3) using template and activation methods, retaining nitrogen from the precursors. CPC-700-2, with mesopores (3-5 nm), enhanced O2 diffusion and oxygen reduction, producing up to 778 mg/L of H2O2 in 90 min. ZPC-700-3, with a specific surface area of 1059.83 m2/g, facilitated electron transport and ion diffusion, achieving a Fe2+/Fe3+ conversion rate of 79.9%. EF systems employing CPC-700-2 or ZPC-700-3 as the cathode exhibited superior degradation performance, achieving 99% degradation of Rhodamine B, efficient degradation, and noticeable decolorization. This study provides a reference for the preparation of functionalized carbon cathode materials for efficient H2O2 production and effective Fe3+ reduction in EF systems.
Collapse
Affiliation(s)
- Chengwang Zhao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wei Li
- Beijing ENFI Environmental Protection Co., Ltd., Beijing, 100038, China
| | - Jiashuo Hu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chen Hong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hao Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wei Ling
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yijie Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Lihui Feng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Weibo Feng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jiachen Hou
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xinlin Zhai
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chenran Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
2
|
Gao B, Tan J, Wang R, Zeng Q, Wen Y, Zhang Q, Wang J, Zeng Q. Intensive investigation of the synergistic effects between electrocatalysis and peroxymonosulfate activation for efficient organic elimination. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135719. [PMID: 39241363 DOI: 10.1016/j.jhazmat.2024.135719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/19/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Hybrid systems combined eletrocatalysis and Fenton-like process attract a lot of attention due their outstanding performance and unique mechanism. Here, we proposed an efficient, cost-effective, and versatile electrochemical activation (ECA) system for efficient water purification, and intensively studied the synergistic effects between electrocatalysis and peroxymonosulfate (PMS)-based advanced oxidation. The ECA system achieved complete removal of 20 ppm tetracycline hydrochloride (TCH) in 15 min, with a rate constant of 0.338 min-1. Its performance was assessed across various operational parameters (PMS dosage, pH, applied voltage, electrode interval, temperature, co-existed ions, biomass, different oxidants), demonstrating its broad applicability and stability. Excellent degradation and mineralization for other 12 kinds of refractory organic pollutants were also achieved. The outstanding performance can be attributed to the synergistic effect in the system, in which electrocatalytic reduction of dissolved oxygen generated H2O2 and O2•-, boosting the number of reactive species, such as 1O2, by interacting with PMS. Furthermore, the presence of organic matter promotes electron transfer, amplifying the system's degradation capability. These findings not only highlight the ECA system's effectiveness in organic pollutant removal but also offer insights into the underlying degradation mechanisms, paving the way for future advancements in water purification technologies.
Collapse
Affiliation(s)
- Beibei Gao
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Jin Tan
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Rongzhong Wang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Qingming Zeng
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Yanjun Wen
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Qingyan Zhang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Jiachen Wang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Qingyi Zeng
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, PR China.
| |
Collapse
|
3
|
Soufi A, Hajjaoui H, Boumya W, Elmouwahidi A, Baillón-García E, Abdennouri M, Barka N. Recent trends in magnetic spinel ferrites and their composites as heterogeneous Fenton-like catalysts: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121971. [PMID: 39074433 DOI: 10.1016/j.jenvman.2024.121971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
In recent years, there has been a growing interest in utilizing spinel ferrite and their nanocomposites as Fenton-like catalysts. The use of these materials offers numerous advantages, including ability to efficiently degrade pollutants and potential for long-term and repeated use facilitated by their magnetic properties that make them easily recoverable. The remarkable catalytic properties, stability, and reusability of these materials make them highly attractive for researchers. This paper encompasses a comprehensive review of various aspects related to the Fenton process and the utilization of spinel ferrite and their composites in catalytic applications. Firstly, it provides an overview of the background, principles, mechanisms, and key parameters governing the Fenton reaction, along with the role of physical field assistance in enhancing the process. Secondly, it delves into the advantages and mechanisms of H2O2 activation induced by different spinel ferrite and their composites for the removal of organic pollutants, shedding light on their efficacy in environmental remediation. Thirdly, the paper explores the application of these materials in various Fenton-like processes, including Fenon-like, photo-Fenton-like, sono-Fenton-like, and electro-Fenton-like, for the effective removal of different types of contaminants. Furthermore, it addresses important considerations such as the toxicity, recovery, and reuse of these materials. Finally, the paper presents the challenges associated with H2O2 activation by these materials, along with proposed directions for future improvements.
Collapse
Affiliation(s)
- Amal Soufi
- Sultan Moulay Slimane University of Beni Mellal, Multidisciplinary Research and Innovation Laboratory, FP Khouribga, BP. 145, 2500, Khouribga, Morocco
| | - Hind Hajjaoui
- Sultan Moulay Slimane University of Beni Mellal, Multidisciplinary Research and Innovation Laboratory, FP Khouribga, BP. 145, 2500, Khouribga, Morocco
| | - Wafaa Boumya
- Sultan Moulay Slimane University of Beni Mellal, Multidisciplinary Research and Innovation Laboratory, FP Khouribga, BP. 145, 2500, Khouribga, Morocco
| | - Abdelhakim Elmouwahidi
- Materiales Polifuncionales Basados en Carbono (UGR-Carbon), Dpto. Química Inorgánica - Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente - Universidad de Granada (UEQ-UGR), ES18071, Granada, Spain
| | - Esther Baillón-García
- Materiales Polifuncionales Basados en Carbono (UGR-Carbon), Dpto. Química Inorgánica - Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente - Universidad de Granada (UEQ-UGR), ES18071, Granada, Spain
| | - Mohamed Abdennouri
- Sultan Moulay Slimane University of Beni Mellal, Multidisciplinary Research and Innovation Laboratory, FP Khouribga, BP. 145, 2500, Khouribga, Morocco
| | - Noureddine Barka
- Sultan Moulay Slimane University of Beni Mellal, Multidisciplinary Research and Innovation Laboratory, FP Khouribga, BP. 145, 2500, Khouribga, Morocco.
| |
Collapse
|
4
|
Lee J, Ly QV, Cui L, Truong HB, Park Y, Hwang Y. Singlet oxygen dominant-activation by hollow structural cobalt-based MOF/peroxymonosulfate system for micropollutant removal. CHEMOSPHERE 2024; 364:143250. [PMID: 39251156 DOI: 10.1016/j.chemosphere.2024.143250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/27/2024] [Accepted: 09/01/2024] [Indexed: 09/11/2024]
Abstract
Despite the keen interest in potentially using the metal-organic framework (MOF) in advanced oxidation processes (AOPs), their application for environmental abatement and the corresponding degradation mechanisms have remained largely elusive. This study explores the use of cobalt-based MOF (CoMOF) for peroxymonosulfate (PMS) activation to remove tetracycline (TC) from water resources. Under optimal conditions, the given catalytic system could achieve a TC removal of 83.3%. Radical quenching tests and EPR analysis revealed that SO4•-, HO•, •O2-, and 1O2 could participate in the catalytic degradation, but the discernible removal mechanism was mainly ascribed to the nonradical pathway induced by 1O2. At only 5 mg/L of CoMOF, the performance of the catalytic system was superior to that of PMS alone for different types of micropollutants. The CoMOF/PMS system could also reliably deal with typical anions in water, such as Cl-, SO42-, HCO3-, and PO43-. The MOF catalyst could last for four cycles with a minor decrease in reactivity of ∼30%. However, the removal performance decreased markedly when aromatic natural organic matter (NOM) were present in the water bodies, and the effectiveness was lower in alkaline or acidic environments. Our work offers insights into the catalytic degradation of CoMOF/PMS applied in contaminated water remediation and serves as a baseline for fabricating an efficient MOF with enhanced catalytic performance and stability.
Collapse
Affiliation(s)
- Jueun Lee
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Quang Viet Ly
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - LeLe Cui
- Membrane & Nanotechnology-Enabled Water Treatment Center, Institute of Environment and Ecology, Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Hai Bang Truong
- Optical Materials Research Group, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Yuri Park
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea.
| | - Yuhoon Hwang
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea.
| |
Collapse
|
5
|
Rabeie B, Mahmoodi NM. Green and environmentally friendly architecture of starch-based ternary magnetic biocomposite (Starch/MIL100/CoFe 2O 4): Synthesis and photocatalytic degradation of tetracycline and dye. Int J Biol Macromol 2024; 274:133318. [PMID: 38917917 DOI: 10.1016/j.ijbiomac.2024.133318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
The presence of tetracycline and dye as organic contaminants has led to the poisoning of wastewater. The aim of this study is to synthesize a novel biocomposite material by decorating natural starch polymer granules with metal-organic framework (MIL100) and cobalt ferrite magnetic (CoFe2O4) nanoparticles. The synthesized ternary magnetic biocomposite (Starch/MIL100/CoFe2O4) was used for the photocatalytic degradation of methylene blue (MB) and tetracycline (TCN) using LED visible light. The synthesis of the biocomposite was confirmed through comprehensive analyses (XRD, SEM, FTIR, BET, EDX, MAP, DRS, pHzpc, TGA, and Raman). The evaluation examined the influence of initial pollutant concentration, catalyst dosage, pH, and the impact of anions on pollutant removal. The results show that the pollutant degradation ability of biocomposite has been significantly improved, so that the base biopolymer, starch, achieved 18% tetracycline degradation, but when decorated with MIL100 and cobalt ferrite, it increased to 91.2%. It was observed that the degradation for methylene blue improved from 12% for starch to 96.6% for the magnetic biocomposite. The tetracycline degradation decreased by more than 20% in the presence of NaCl, NaNO3, and Na2SO4. The finding shows that the biocomposite adheres to first-order kinetics for both pollutants. The scavengers test identified hydroxyl radicals as the most effective active species in the degradation process. High stability, even after passing 5 cycles of recycling was observed for the biocomposite. The results indicated that the facile and green synthesized Starch/MIL100/CoFe2O4 magnetic biocomposite could be used as an effective photocatalyst for the degradation of Tetracycline and dye at room temperature.
Collapse
Affiliation(s)
- Bahareh Rabeie
- Department of Environmental Research, Institute for Color Science and Technology, Tehran, Iran.
| | - Niyaz Mohammad Mahmoodi
- Department of Environmental Research, Institute for Color Science and Technology, Tehran, Iran.
| |
Collapse
|
6
|
Wang M, Song Z, Shen Q, Zeng H, Su X, Sun F, Dong W, Xing D, Zhou G. Simultaneous enhanced antibiotic pollutants removal and sustained permeability of the membrane involving CoFe 2O 4/MoS 2 catalyst initiated with simple H 2O 2 backwashing. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135086. [PMID: 39024762 DOI: 10.1016/j.jhazmat.2024.135086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
Membranes for wastewater treatment should ideally exhibit sustainable high permeate production, enhanced pollutant removal, and intrinsic physical rejection. In this study, CoFe2O4/MoS2 serves as a non-homogeneous phase catalyst; it is combined with polyether sulfone membranes via liquid-induced phase separation to simultaneously sustain membrane permeability and enhance antibiotic pollutant degradation. The prepared catalytic membranes have higher pure water flux (329.34 L m-2 h-1) than pristine polyethersulfone membranes (219.03 L m-2 h-1), as well as higher mean pore size, porosity, and hydrophilicity. Under a moderate transmembrane pressure (0.05 MPa), tetracycline (TC) in synthetic and real wastewater was degraded by the optimal catalytic membrane by 72.7 % and 91.2 %, respectively. Owing to the generation of the reactive oxygen species (ROS) during the Fenton-like reaction process, the catalytic membrane could exclude the natural organics during the H2O2 backwash step and selectively promote fouling degradation in the membrane channel. The irreversible fouling ratio of the catalyzed membrane was significantly reduced, and the flux recovery rate increased by up to 91.6 %. A potential catalytic mechanism and TC degradation pathways were proposed. This study offers valuable insights for designing catalytic membranes with enhanced filtration performance.
Collapse
Affiliation(s)
- Mingming Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zi Song
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Qi Shen
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Haojie Zeng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xiaoli Su
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Feiyun Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Wenyi Dong
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dingyu Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guofei Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
7
|
Xu Z, Ma X, He F, Lu M, Zhang J, Wang S, Dong P, Zhao C. In situ generated iron oxide nanosheet on iron foam electrode for enhanced electro-Fenton performance toward pharmaceutical wastewater treatment. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133193. [PMID: 38103298 DOI: 10.1016/j.jhazmat.2023.133193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/25/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Electro-Fenton (EF) is considered to be an effective technology for the purification of organic wastewater containing antibiotics, but the construction of accessible and efficient heterogeneous EF catalytic materials still faces challenges. In this study, an iron foam-derived electrode (FeOx/if-400) was prepared by a simple method (chemical oxidation combined heat treatment). The fabricated electrode presented great EF degradation efficiency under wide pH range (almost completely removing 50 mg L-1 TNZ within 60 min) and maintained great stability after consecutive operation (>95% removal after six cycles). Also, the FeOx/if-400 electrode showed good purification ability for pharmaceutical wastewater as evaluated by the quadrupole time-of-flight mass spectrometry and the three-dimensional excitation-emission matrix fluorescence spectroscopy. Based on experimental results, characterization analysis, and density functional theory (DFT) calculations, the EF reaction mechanism of FeOx/if-400 electrode and the organics degradation pathways in simulated and real matrices were proposed. Significantly, the biotoxicity assessment of the degradation intermediate products was revealed by ECOSAR software and relative inhibition of E. coli, which fully proved the environmental friendliness of the EF process by the FeOx/if-400 cathode. This work provides a green and effective EF system, showing a promising application potential in the field of organic wastewater treatment containing antibiotic contaminants.
Collapse
Affiliation(s)
- Zhenzhan Xu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Xiaolin Ma
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Fengting He
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Mingjie Lu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Jinqiang Zhang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Shuaijun Wang
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Pei Dong
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China.
| | - Chaocheng Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China.
| |
Collapse
|
8
|
Cheng S, Wu B, Pang Y, Shen X. Highly efficient heterogeneous electro-Fenton reaction for tetracycline degradation by Fe-Ni LDH@ZIF-67 modified carbon cloth cathode: Mechanism and toxicity assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120336. [PMID: 38367502 DOI: 10.1016/j.jenvman.2024.120336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
In this work, a novel and efficient Fe-Ni LDH@ZIF-67 catalyst modified carbon cloth (CC) cathode was developed for tetracycline (TC) degradation in heterogeneous electro-Fenton (Hetero-EF) process. Compared to Fe-Ni LDH/CC (75.7%), TC degradation rate of Fe-Ni LDH@ZIF-67/CC cathode increased to 95.6% within 60 min. The synergistic effect of hetero-EF and anodic oxidation process accelerated electron transfer, the maximum H2O2 production of Fe-Ni LDH@ZIF-67/CC electrode reached 264 mg/L, improving utilization efficiency of H2O2. The cathode possessing a satisfied TC degradation performance over a wide pH (3-9). Free radical capture experiment revealed the collaboration of ·O2-, ·OH, and 1O2 play a significant role in TC degradation. The 5 cycles experiment and metal ion leaching experiment showed that the proposed Fe-Ni LDH@ZIF-67/CC has good recyclability and stability. In addition, the proposed Fe-Ni LDH@ZIF-67/CC cathode achieved satisfying performance in real water (tap water: 97.3%, lake water: 97.7%), demonstrating the possibility for practical application. TC degradation pathways were proposed by theory analysis and experimental results. The toxicity of TC intermediates was reduced by Hetero-EF degradation according to Toxicity Estimation Software Tool and Escherichia coli growth inhibition experiments. This work provides a novel modified cathode to improve removal efficiency of antibiotics in wastewater.
Collapse
Affiliation(s)
- Shuting Cheng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Bingqing Wu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China
| | - Yuehong Pang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China.
| | - Xiaofang Shen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
9
|
Keyikoğlu R, Khataee A, Orooji Y. Degradation of emerging pollutants on bifunctional ZnFeV LDH@graphite felt cathode through prominent catalytic activity in heterogeneous electrocatalytic processes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118090. [PMID: 37182481 DOI: 10.1016/j.jenvman.2023.118090] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/12/2023] [Accepted: 05/02/2023] [Indexed: 05/16/2023]
Abstract
The heterogeneous Electro-Fenton (EF) process is a promising wastewater treatment technology that can generate onsite H2O2, and operate in a wide pH range without generating a metal sludge. However, the heterogeneous EF process needs bifunctional cathode electrodes that can have high activity in 2e- oxygen reduction reaction and H2O2 decomposition. Herein, ZnFeV layered double hydroxide (LDH), as a heterogeneous catalyst, was coated on the graphite felt (ZnFeV LDH@GF) cathode using the electrophoretic deposition method. ZnFeV LDH@GF cathode was able to generate 59.8 ± 5.9 mg L-1 H2O2 in 90 min under a constant supply of O2. EF process with ZnFeV LDH@GF cathode exhibited 89.8 ± 6.8% removal efficiency for pharmaceutical (ciprofloxacin) at neutral pH. Remarkably, the apparent reaction rate constant (kapp) of the ZnFeV LDH@GF-EF was 2.14 times that of the EF process with pristine GF. ZnFeV LDH coating increased the hydroxyl radical (•OH) production of the EF process from 1.74 mM to 3.65 mM. The pathway of •OH production is thought to be a single electron transfer from redox couples of Fe2+/Fe3+ and [Formula: see text] to H2O2. After 10 reuse cycles, the ZnFeV LDH@GF cathode retained 90.2% of its efficiency. Eight intermediate compounds were identified by GC-MS including cyclic compounds and aliphatic compounds.
Collapse
Affiliation(s)
- Ramazan Keyikoğlu
- Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400, Gebze, Turkey; Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, 04318, Leipzig, Germany
| | - Alireza Khataee
- Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400, Gebze, Turkey; Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
10
|
Wu F, Nan J, Wang T, Ge Z, Liu B, Chen M, Ye X. Highly selective electrosynthesis of H 2O 2 by N, O co-doped graphite nanosheets for efficient electro-Fenton degradation of p-nitrophenol. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130733. [PMID: 36630877 DOI: 10.1016/j.jhazmat.2023.130733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/24/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
The activity and selectivity of the cathode towards electrosynthesis of H2O2 are critical for electro-Fenton process. Herein, nickel-foam modified with N, O co-doped graphite nanosheets (NO-GNSs/Ni-F) was developed as a cathode for highly efficient and selective electrosynthesis of H2O2. Expectedly, the accumulation of H2O2 at pH= 3 reached 494.2 mg L-1 h-1, with the selectivity toward H2O2 generation reaching 93.0%. The synergistic effect of different oxygen-containing functional groups and N species on the performance and selectivity of H2O2 electrosynthesis was investigated by density functional theory calculations, and the combination of epoxy and graphitic N (EP + N) was identified as the most favorable configuration with the lowest theoretical overpotential for H2O2 generation. Moreover, NO-GNSs/Ni-F was applied in the electro-Fenton process for p-nitrophenol degradation, resulting in 100% removal within 15 min with the kinetic rate constant of 0.446 min-1 and 97.6% mineralization within 6 h. The efficient removal was mainly attributed to the generation of bulk ·OH. Furthermore, NO-GNSs/Ni-F exhibited excellent stability. This work provides a workable option for the enhancement of H2O2 accumulation and the efficient degradation of pollutants in electro-Fenton system.
Collapse
Affiliation(s)
- Fangmin Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Tianzuo Wang
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Applied Catalysis, Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Zhencheng Ge
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Bohan Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Meng Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xuesong Ye
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
11
|
Tang Q, Luo S, Gao H, Fan Y, Bao W, Gao Y, Sun Y, Yang C. N-doped graphene aerogel cathode with internal aeration for enhanced degradation of p-nitrophenol by electro-Fenton process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:23481-23493. [PMID: 36327069 DOI: 10.1007/s11356-022-23868-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
A columnar N-doped graphene aerogel (NGA) was successfully fabricated by one-step hydrothermal synthesis using L-hydroxyproline as reductant, N-doping, and swelling agent, and it was used as the cathode with internal aeration mode for the electro-Fenton degradation of p-nitrophenol. Owing to the stable solid-liquid-gas three-phase interface, more active defects, and modulated nitrogen dopants, the NGA cathode exhibited enhanced electrocatalytic activity. H2O2 could be continuously electro-generated via a two-electron oxygen reduction, and the yield of H2O2 was 153.3 mg·L-1·h-1 with the low electric energy consumption of 15.3 kWh kg-1. Simultaneously, the NGA cathode had better charge transfer capability with N-doping, which was conducive to the conversion of Fe3+/Fe2+. Under the optimal condition, nearly 100% removal of p-nitrophenol and 84% removal of TOC were obtained within 60 and 120 min, respectively. The NGA cathode also presented good stability and versatile applicability in different water matrices. Therefore, the NGA is a cost-effective cathode material in electro-Fenton system with adequate activity and reuse stabilization.
Collapse
Affiliation(s)
- Qian Tang
- Key Laboratory of Environmental Materials and Pollution Control, The Education Department of Jilin Province, Jilin Normal University, Siping, 136000, China.
- School of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, China.
| | - Sijia Luo
- School of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, China
| | - Hang Gao
- School of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, China
| | - Yixin Fan
- School of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, China
| | - Wenqi Bao
- School of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, China
| | - Yonghui Gao
- Key Laboratory of Environmental Materials and Pollution Control, The Education Department of Jilin Province, Jilin Normal University, Siping, 136000, China
| | - Yuwei Sun
- Key Laboratory of Environmental Materials and Pollution Control, The Education Department of Jilin Province, Jilin Normal University, Siping, 136000, China
- School of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, China
| | - Chunwei Yang
- Key Laboratory of Environmental Materials and Pollution Control, The Education Department of Jilin Province, Jilin Normal University, Siping, 136000, China
- School of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, China
| |
Collapse
|
12
|
Cui L, Zhao X, Xie H, Zhang Z. Overcoming the Activity–Stability Trade-Off in Heterogeneous Electro-Fenton Catalysis: Encapsulating Carbon Cloth-Supported Iron Oxychloride within Graphitic Layers. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lele Cui
- Institute of Environmental Engineering and Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong518055, China
- Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong518055, China
- School of Environment, Tsinghua University, Beijing100084, China
| | - Xiaoyu Zhao
- Institute of Environmental Engineering and Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong518055, China
- Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong518055, China
- School of Environment, Tsinghua University, Beijing100084, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd, Hangzhou, Zhejiang310003, China
| | - Zhenghua Zhang
- Institute of Environmental Engineering and Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong518055, China
- Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong518055, China
- School of Environment, Tsinghua University, Beijing100084, China
| |
Collapse
|
13
|
Gao H, Zhang Y, Xia H, Mao X, Zhu X, Miao S, Shi M, Zha S. The Piezo-Fenton synergistic effect of ferroelectric single-crystal BaTiO 3 nanoparticles for high-efficiency catalytic pollutant degradation in aqueous solution. Dalton Trans 2022; 51:11876-11883. [PMID: 35876113 DOI: 10.1039/d2dt01248k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nano-ferroelectric materials have excellent piezoelectric performance and can degrade organic dye by ultrasonic vibration in an aqueous solution. Here, BaTiO3 (BT) nanoparticles were prepared by a sol-gel/hydrothermal method and further applied in dye degradation in wastewater. BT nanoparticles exhibited excellent catalytic performance for organic dye molecule degradation through the piezo-Fenton synergistic effect. It was found that both the degradation efficiency and reaction rate were boosted by the increase of the molecular weight of organic dyes. The degradation efficiency toward different organic dyes exhibited a trend of CR > ABK > TH > RhB > MB > MO. For example, a high piezo-Fenton-catalytic degradation ratio of 82.8% at 5 min and 0.337 min-1 rate constant were achieved for the CR dye solution (10 mg L-1), which were 3.2 and 6.4 times the corresponding values of piezo-catalytic only degradation. These results mainly originate from the intrinsic properties of BT nanoparticles that can enhance the separation of charge and promote the formation of hydrogen peroxide (H2O2) and hydroxyl radicals (·OH) under ultrasonic vibration. Furthermore, the reaction of Fe(II) with H2O2 can further enhance the formation of ·OH, which can accelerate the degradation of organic dyes. These results indicate that the piezo-Fenton synergistic effect may provide a new clue for the development of the wastewater treatment field under mechanical vibration.
Collapse
Affiliation(s)
- Hongcheng Gao
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui, Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing 246011, China.
| | - Yuanguang Zhang
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui, Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing 246011, China.
| | - Hongyu Xia
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui, Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing 246011, China.
| | - Xiaoxia Mao
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui, Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing 246011, China.
| | - Xiaojing Zhu
- Research Center of Advanced Chemical Equipment, Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515041, China
| | - Shihao Miao
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui, Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing 246011, China.
| | - Mengqin Shi
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River in Anhui of Anhui, Provincial Education Department, College of Resources and Environment, Anqing Normal University, Anqing 246011, China.
| | - Shijiao Zha
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China.
| |
Collapse
|