1
|
Zuo X, Sun M, Bai H, Zhang S, Luan J, Yu Q, Fu Z, Zhao Q, Sun M, Zhao X, Feng X. The effects of 17β-trenbolone and bisphenol A on sexual behavior and social dominance via the hypothalamic-pituitary-gonadal axis in male mice. J Environ Sci (China) 2025; 151:54-67. [PMID: 39481959 DOI: 10.1016/j.jes.2024.02.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 11/03/2024]
Abstract
17β-Trenbolone (17-TB) is well documented as an environmental endocrine disruptor in aquatic biological studies, but its effects on mammals remain poorly understood. Furthermore, 17-TB acts as a hormone with properties similar to testosterone, and the consequences of juvenile exposure on adult social behavior remain uncertain. Bisphenol A (BPA) acts as an estrogen-like hormone, compared to 17-TB. Three-week-old male Balb/c mice were exposed orally to 17-TB (100 µg/(kg·day)) and BPA (4 mg/(kg·day)) for 28 days. Assessments of social interactions and a three-chamber test showed that 17-TB increased virility in male mice, intensified both male and female sexual behavior, and attracted and accepted female mice. It also increased social dominance through tube tests in male mice and markedly activated the c-Fos+ immune response in the medial prefrontal cortex (mPFC) and basal amygdala (BLA). ELISA data showed that 17-TB and BPA exposure significantly affected serum gonadotropin-releasing hormone (GnRH), growth hormone (GH), estradiol (E2), and luteinizing hormone (LH) levels, as well as testicular lesions and androgen receptor (ARβ) and estrogen receptor (ERα) synthesis. Testicular transcriptomic analysis further confirmed that could disrupt steroid synthesis and linoleic acid-related biometabolic processes. These findings suggest the influence of 17-TB and BPA exposure on sexual behavior and fertility in male mice, possibly through modulation of the hypothalamic-pituitary-gonadal axis. This study provides insights relevant to human reproductive health and neuro-social behavioral research, and the potential risk of environmental disturbances should not be overlooked.
Collapse
Affiliation(s)
- Xiang Zuo
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Minghe Sun
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin 300071, China
| | - Huijuan Bai
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Shuhui Zhang
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Jialu Luan
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Qian Yu
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Zhenhua Fu
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin 300071, China
| | - Qili Zhao
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin 300071, China
| | - Mingzhu Sun
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin 300071, China
| | - Xin Zhao
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin 300071, China.
| | - Xizeng Feng
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China.
| |
Collapse
|
2
|
Chang J, Xiao G. Cyanidin-3-O-glucoside inhibits the malignant progression of colorectal cancer by regulating Kruppel-like factor 4-mediated ERK/p38 signaling pathway. Toxicol Appl Pharmacol 2025; 497:117268. [PMID: 39971139 DOI: 10.1016/j.taap.2025.117268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/04/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
BACKGROUND Cyanidin-3-O-glucoside (Cy3g) is a natural anthocyanin, showing favorable anti-cancer efficacy in colorectal cancer (CRC). However, its specific mechanism in CRC remains largely unexplored. OBJECTIVE This study aimed to investigate the underlying mechanisms of Cy3g on CRC. METHODS Cell viability of human CRC cell lines (SW620, HT29, LS174T, and HCT116) and normal colon fibroblast cell line (CCD-18Co) treated with Cy3g was detected by CCK-8. Effects of Cy3g on malignant characteristics of SW620 cells were determined by CCK-8, EdU, colony formation, wound healing, Transwell, and flow cytometry assays. To further elucidate Cy3g's mechanism in CRC, KLF4 expression was detected by RT-qPCR, and expression of the extracellular signal-related kinase (ERK) and p38 was examined by western blotting. The effects and mechanisms of Cy3g on CRC progression were further validated in a xenograft mouse model. RESULTS Cy3g significantly inhibited the cell viability of human CRC cell lines but rarely affected the cell viability of normal colon fibroblast. Cy3g dose-dependently inhibited proliferation, migration, and invasion and promoted apoptosis of SW620 cells. Moreover, Cy3g upregulated KLF4 expression and inactivated the ERK/p38 pathway in a concentration-dependent manner. KLF4 knockdown reversed the inhibitory effects of Cy3g on the malignant characteristics of SW620 and expression of ERK and p38. Animal experiments further validated that Cy3g inhibited tumor growth without altering body weight, activated KLF4, and suppressed the ERK/p38 pathway in CRC model mice. CONCLUSION Cy3g inhibits CRC progression by suppressing the KLF4-mediated ERK/p38 pathway, offering new insights into CRC prevention and treatment.
Collapse
Affiliation(s)
- Jian Chang
- Department of oncology, Affiliated Hospital of Shaoxing University, Shaoxing 312000, China
| | - Geqiong Xiao
- Department of oncology, Affiliated Hospital of Shaoxing University, Shaoxing 312000, China.
| |
Collapse
|
3
|
Zhang XK, Li X, Han XX, Sun DY, Wang YQ, Cao ZZ, Liu L, Meng ZH, Li GJ, Dong YJ, Li DY, Peng XQ, Zou HJ, Zhang D, Xu XF. Cadmium induces spontaneous abortion by impairing endometrial stromal cell decidualization. Toxicology 2025; 511:154069. [PMID: 39892737 DOI: 10.1016/j.tox.2025.154069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
Cadmium (Cd) is a toxic heavy metal with a high propensity to accumulate within the body, and Cd accumulation has been shown to cause organ damage. However, it is unclear whether Cd accumulation is a cause of impaired decidualization, which induces to spontaneous abortion (SA). In this study, we found that the decidual Cd concentration was increased in patients with SA and positively correlated with the occurrence of SA. The levels of two decidualization markers (prolactin, PRL and insulin-like growth factor binding protein 1, IGFBP1) were reduced in the decidua of all-cause SA patients. Using 8-week ICR female mice, we further established a uterus-specific Cd accumulation mouse model and verified that Cd-accumulating mice had increased numbers of absorbed fetuses and defective decidualization. Finally, using in vitro-cultured human ENdometrial stromal cells (hEnSCs), we found that Cd accumulation significantly inhibited decidualization; and moreover, Cd treatment downregulated the regulatory genes upstream of PRL and IGFBP1 such as PGR, ESR1, ESR2 and FOXO1. This study suggests that Cd accumulation could produce impaired decidualization by downregulating the upstream regulators of PRL and IGFBP1, thereby increasing the risk of SA. Our study offered new possibilities for the prevention and treatment of spontaneous abortion.
Collapse
Affiliation(s)
- Xue-Ke Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Xuan Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Xing-Xing Han
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Dong-Ying Sun
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yu-Qin Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Zi-Zhuo Cao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Lu Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Zi-Han Meng
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Guo-Jing Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yu-Jie Dong
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Dan-Yang Li
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Xiao-Qing Peng
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, Anhui 230032, China
| | - Hui-Juan Zou
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Dong Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Xiao-Feng Xu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, Anhui 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
4
|
Zhang J, Liu W, Cui F, Kolehmainen M, Chen J, Zhang L, Zarei I. Exploring the potential protective role of anthocyanins in mitigating micro/nanoplastic-induced reproductive toxicity: A steroid receptor perspective. J Pharm Anal 2025; 15:101148. [PMID: 39925697 PMCID: PMC11803829 DOI: 10.1016/j.jpha.2024.101148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/28/2024] [Accepted: 11/10/2024] [Indexed: 02/11/2025] Open
Abstract
Microplastics and nanoplastics (MPs/NPs) are ubiquitous environmental pollutants that act as endocrine-disrupting chemicals (EDCs), raising significant concerns about their impact on human health. Research highlights the hazardous effects of MPs/NPs on both male and female reproductive systems, influencing germ cells, embryo development, and progeny. Additionally, studies show that MPs/NPs affect the gene expression of anabolic steroid hormones in vitro and in vivo, inducing reproductive toxicity through mechanisms such as oxidative stress and inflammation. Considering these adverse effects, identifying natural compounds that can mitigate the toxicity of MPs/NPs is increasingly important. Plants offer a wealth of antioxidants and anti-inflammatory compounds that can counteract these harmful effects. Among these, anthocyanins, natural colorants responsible for the vibrant hues of fruits and flowers, exhibit a wide range of biological activities, including antioxidant, anti-inflammatory, and anti-neoplastic properties. Moreover, anthocyanins can modulate sex hormone levels and alleviate reproductive toxicity. Cyanidin-3-glucoside (C3G), one of the most extensively studied anthocyanins, shows promise in reducing reproductive toxicity, particularly in females, and in protecting male reproductive organs, including the testis and epididymis. This protective effect is believed to result from its interaction with steroid receptors, specifically the androgen and estrogen receptors (ERs). These findings highlight the need to explore the mechanisms by which anthocyanins mitigate the reproductive toxicity caused by MPs/NPs. This review provides novel insights into how natural compounds can be leveraged to lessen the impact of environmental contaminants on human health, especially concerning reproductive health.
Collapse
Affiliation(s)
- Jiaojiao Zhang
- College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China
| | - Wenyi Liu
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Fuqiang Cui
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Marjukka Kolehmainen
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Science, University of Eastern Finland, Kuopio, 70211, Finland
| | - Jing Chen
- College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China
| | - Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, N2L3G1, Canada
| | - Iman Zarei
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Science, University of Eastern Finland, Kuopio, 70211, Finland
| |
Collapse
|
5
|
Hao R, Li F, Sun-Waterhouse D, Li D. The roles of MicroRNAs in cadmium toxicity and in the protection offered by plant food-derived dietary phenolic bioactive substances against cadmium-induced toxicity. Food Chem 2024; 460:140483. [PMID: 39032304 DOI: 10.1016/j.foodchem.2024.140483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Cadmium, a harmful food contaminant, poses severe health risks. There are ongoing efforts to reduce cadmium pollution and alleviate its toxicity, including plant-based dietary intervention. This review hypothesizes that microRNAs (miRNAs), as regulatory eukaryotic transcripts, play crucial roles in modulating cadmium-induced organ damage, and plant food-derived bioactive compounds provide protective effects via miRNA-mediated mechanisms. The review reveals that there are interplays between certain miRNAs and plant food-derived dietary bioactive substances when these bioactives, especially phenolics, counteract cadmium toxicity through regulating physiologic and pathologic events (including oxidative stress, apoptosis, autophagy and inflammation). The review discusses common miRNA-associated physiologic/pathologic events and signal pathways shared by the cadmium toxicity and dietary intervention processes. This paper identifies the existing knowledge gaps and potential future work (e.g. joint actions between miRNAs and other noncoding RNAs in the fights against cadmium). The insights provided by this review can improve food safety strategies and public health outcomes.
Collapse
Affiliation(s)
- Rili Hao
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, People's Republic of China
| | - Feng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, People's Republic of China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, People's Republic of China.
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, People's Republic of China.
| |
Collapse
|
6
|
Fan Y, Jiang X, Xiao Y, Li H, Chen J, Bai W. Natural antioxidants mitigate heavy metal induced reproductive toxicity: prospective mechanisms and biomarkers. Crit Rev Food Sci Nutr 2024; 64:11530-11542. [PMID: 37526321 DOI: 10.1080/10408398.2023.2240399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Heavy metals are harmful environmental pollutants that have attracted widespread attention, attributed to their health hazards to humans and animals. Due to the non-degradable property of heavy metals, organisms are inevitably exposed to heavy metals such as arsenic (As), cadmium (Cd), lead (Pb), and mercury (Hg). Several studies revealed that heavy metals can cause reproductive damage by the excessive production of reactive oxygen species (ROS), which exacerbates oxidative stress, inflammation, and endocrine disruption. Natural antioxidants, mainly polyphenols, carotenoids, and vitamins, have been shown to mitigate heavy metal-induced reproductive toxicity potentially. In this review, accumulated evidences on the influences of four non-essential heavy metals As, Cd, Pb, and Hg on both males and females reproductive system were established. The purpose of this review is to explore the potential mechanisms of the effects of heavy metals on reproductive function and point out the potential biomarkers of natural antioxidants interventions toward heavy metal-induced reproductive toxicity. Notably, increasing evidence proven that the regulations of hypothalamic-pituitary-gonadal axis, Nrf2, MAPK, or NF-κB pathways are the important mechanisms for the amelioration of heavy metal induced reproductive toxicity by natural antioxidants. It also provided a promising guidance for prevention and management of heavy metal-induced reproductive toxicity.
Collapse
Affiliation(s)
- Yueyao Fan
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Xinwei Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Yuhang Xiao
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Haiwei Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Jiali Chen
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Zhang Z, Yuan X, Zhao Z, Liu Y, Zhou Y, Zhu Z. Cyanidin-3-O-glucoside attenuates LPS-induced endometritis in mice via regulating PPARγ activation. Nat Prod Res 2024:1-5. [PMID: 39021079 DOI: 10.1080/14786419.2024.2381040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Endometritis is a common disease that endangers human and animal health. Cyanidin-3-O-glucoside (C3G), a kind of anthocyanin, exists in a variety of plants and shows many biological activities. Here, we investigated the effect and mechanism of C3G on LPS-induced endometritis in mice. The results showed that C3G significantly decreased wet to dry weight (W/D) ratio of uterine, improved uterine pathological injury, and inhibited MPO activity. Further mechanism investigation showed that the activation of NFκB pathway and the levels of TNF-a, IL-1β, and IL-6 were significantly suppressed after C3G treatment. Conversely, C3G promoted LPS-induced the activation of the PPARγ/ABCA1 pathway. Interestingly, the anti-inflammatory effect of C3G was significantly weakened by GW9662, a PPARγ inhibitor. In addition, the anti-oxidative stress effect of C3G was also found. For the first time, our results showed that treatment with C3G might be a new strategy for treating endometritis.
Collapse
Affiliation(s)
- Zecai Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing, China
- Engineering Research Center for Prevention and Control of Cattle Diseases, Daqing, Heilongjiang Province, China
| | - Xueying Yuan
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing, China
- Engineering Research Center for Prevention and Control of Cattle Diseases, Daqing, Heilongjiang Province, China
| | - Zhicheng Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing, China
- Engineering Research Center for Prevention and Control of Cattle Diseases, Daqing, Heilongjiang Province, China
| | - Yu Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing, China
- Engineering Research Center for Prevention and Control of Cattle Diseases, Daqing, Heilongjiang Province, China
| | - Yulong Zhou
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing, China
- Engineering Research Center for Prevention and Control of Cattle Diseases, Daqing, Heilongjiang Province, China
| | - Zhanbo Zhu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing, China
- Engineering Research Center for Prevention and Control of Cattle Diseases, Daqing, Heilongjiang Province, China
| |
Collapse
|
8
|
Khan MZ, Khan A, Chen W, Chai W, Wang C. Advancements in Genetic Biomarkers and Exogenous Antioxidant Supplementation for Safeguarding Mammalian Cells against Heat-Induced Oxidative Stress and Apoptosis. Antioxidants (Basel) 2024; 13:258. [PMID: 38539792 PMCID: PMC10967571 DOI: 10.3390/antiox13030258] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 11/11/2024] Open
Abstract
Heat stress represents a pervasive global concern with far-reaching implications for the reproductive efficiency of both animal and human populations. An extensive body of published research on heat stress effects utilizes controlled experimental environments to expose cells and tissues to heat stress and its disruptive influence on the physiological aspects of reproductive phenotypic traits, encompassing parameters such as sperm quality, sperm motility, viability, and overall competence. Beyond these immediate effects, heat stress has been linked to embryo losses, compromised oocyte development, and even infertility across diverse species. One of the primary mechanisms underlying these adverse reproductive outcomes is the elevation of reactive oxygen species (ROS) levels precipitating oxidative stress and apoptosis within mammalian reproductive cells. Oxidative stress and apoptosis are recognized as pivotal biological factors through which heat stress exerts its disruptive impact on both male and female reproductive cells. In a concerted effort to mitigate the detrimental consequences of heat stress, supplementation with antioxidants, both in natural and synthetic forms, has been explored as a potential intervention strategy. Furthermore, reproductive cells possess inherent self-protective mechanisms that come into play during episodes of heat stress, aiding in their survival. This comprehensive review delves into the multifaceted effects of heat stress on reproductive phenotypic traits and elucidates the intricate molecular mechanisms underpinning oxidative stress and apoptosis in reproductive cells, which compromise their normal function. Additionally, we provide a succinct overview of potential antioxidant interventions and highlight the genetic biomarkers within reproductive cells that possess self-protective capabilities, collectively offering promising avenues for ameliorating the negative impact of heat stress by restraining apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 511464, China
| | - Wenting Chen
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Wenqiong Chai
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| |
Collapse
|
9
|
Jiang Y, Li X, Zhang Y, Wu B, Li Y, Tian L, Sun J, Bai W. Mechanism of action of anthocyanin on the detoxification of foodborne contaminants-A review of recent literature. Compr Rev Food Sci Food Saf 2024; 23:e13259. [PMID: 38284614 DOI: 10.1111/1541-4337.13259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 01/30/2024]
Abstract
Foodborne contaminants refer to substances that are present in food and threaten food safety. Due to the progress in detection technology and the rising concerns regarding public health, there has been a surge in research focusing on the dangers posed by foodborne contaminants. These studies aim to explore and implement strategies that are both safe and efficient in mitigating the associated risks. Anthocyanins, a class of flavonoids, are abundantly present in various plant species, such as blueberries, grapes, purple sweet potatoes, cherries, mulberries, and others. Numerous epidemiological and nutritional intervention studies have provided evidence indicating that the consumption of anthocyanins through dietary intake offers a range of protective effects against the detrimental impact of foodborne contaminants. The present study aims to differentiate between two distinct subclasses of foodborne contaminants: those that are generated during the processing of food and those that originate from the surrounding environment. Furthermore, the impact of anthocyanins on foodborne contaminants was also summarized based on a review of articles published within the last 10 years. However, further investigation is warranted regarding the mechanism by which anthocyanins target foodborne contaminants, as well as the potential impact of individual variations in response. Additionally, it is important to note that there is currently a dearth of clinical research examining the efficacy of anthocyanins as an intervention for mitigating the effects of foodborne pollutants. Thus, by exploring the detoxification effect and mechanism of anthocyanins on foodborne pollutants, this review thereby provides evidence, supporting the utilization of anthocyanin-rich diets as a means to mitigate the detrimental effects of foodborne contaminants.
Collapse
Affiliation(s)
- Yan Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
- The Sixth Affiliated Hospital, Jinan University, Dongguan, PR China
| | - Yulin Zhang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Biyu Wu
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Yuxi Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| |
Collapse
|
10
|
Cai D, Li X, Xu Q, Li H, Liu R, Chen J, Jiang X, Sun J, Lai C, Bai W. Cyanidin-3- O-glucoside and protocatechuic acid alleviate heat stress-induced testicular damage. Food Funct 2023; 14:2200-2211. [PMID: 36756975 DOI: 10.1039/d2fo03423a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Testicular hyperthermia induced by unhealthy living habits and pathological or occupational factors can cause spermatogenic dysfunction with an outcome of sub-fertility or even infertility. Cyanidin-3-O-glucoside (C3G) is the most typical anthocyanin in foods that has been recognized as an antioxidant with promising protection for male reproduction. However, its specific effect against testicular hyperthermia and the mechanisms involving its primary gastrointestinal metabolite protocatechuic acid (PCA) are still unexplored. In the present study, testicular hyperthermia in mice was established by employing a single hot water bath at 43 °C for 30 min. C3G and PCA were intragastrically given to investigate their prevention ability against heat stress-induced testicular damage. It was found that C3G and PCA restored the external diameter and thickness, and alleviated atrophy and vacuolation of seminiferous tubules. Simultaneously, C3G and PCA enhanced testicular heat stress tolerance through reducing superfluous eIF2α phosphorylation and stress granule formation. C3G and PCA effectively improved the testicular antioxidant system and regulated the IRE1α-XBP1 pathway, contributing to mitigatory spermatogenesis dysfunction and testicular damage. This finding revealed that anthocyanins were the novel compounds for alleviating testicular damage, and provided a reliable theoretical basis for improving male fertility disturbed by heat stress.
Collapse
Affiliation(s)
- Dongbao Cai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, 510632, PR China.
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, 510632, PR China.
| | - Qingjie Xu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, 510632, PR China.
| | - Haiwei Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, 510632, PR China.
| | - Ruijing Liu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, 510632, PR China.
| | - Jiali Chen
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, 510632, PR China.
| | - Xinwei Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, 510632, PR China.
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Caiyong Lai
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, PR China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
11
|
Liang S, Li X, Liu R, Hu J, Li Y, Sun J, Bai W. Malvidin-3- O-Glucoside Ameliorates Cadmium-Mediated Cell Dysfunction in the Estradiol Generation of Human Granulosa Cells. Nutrients 2023; 15:nu15030753. [PMID: 36771459 PMCID: PMC9921828 DOI: 10.3390/nu15030753] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Cadmium (Cd) is a frequent environmental pollutant associated with biological toxicity that can harm female reproduction. Anthocyanins have been reported to reduce the toxicity of Cd. In the present study, the protective effects and underlying mechanisms of malvidin-3-O-glucoside (M3G) against the toxicity of Cd on female reproduction in KGN cells (human ovarian granulosa-like tumor cells) were investigated. After treating cells with 10 µmol/L cadmium chloride, the results showed that M3G lessened Cd-induced KGN cell cytotoxicity better than malvidin and malvidin-3,5-O-diglucoside. Additionally, M3G significantly decreased the Cd-induced generation of reactive oxygen species, inhibited the Cd-induced arrest of the G2/M phase of the cell cycle, and increased estradiol (E2) production. According to transcriptomic results, M3G reduced the abnormal expression of genes that responded to estrogen. Additionally, M3G promoted the endogenous synthesis and secretion of E2 by controlling the expression of CYP17A1 and HSD17B7. The current findings indicated that M3G is of great potential to prevent Cd-induced female reproductive impairment as a dietary supplement.
Collapse
Affiliation(s)
- Shuer Liang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
- The Sixth Affiliated Hospital, Jinan University, Dongguan 523576, China
| | - Ruijing Liu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Jun Hu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Yue Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Correspondence: author: (J.S.); (W.B.); Tel.: +86-150-13236805 (J.S.); +86-020-85226630 (W.B.)
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
- Correspondence: author: (J.S.); (W.B.); Tel.: +86-150-13236805 (J.S.); +86-020-85226630 (W.B.)
| |
Collapse
|
12
|
Hu X, Li X, Deng P, Zhang Y, Liu R, Cai D, Xu Q, Jiang X, Sun J, Bai W. The consequence and mechanism of dietary flavonoids on androgen profiles and disorders amelioration. Crit Rev Food Sci Nutr 2022; 63:11327-11350. [PMID: 35796699 DOI: 10.1080/10408398.2022.2090893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Androgen is a kind of steroid hormone that plays a vital role in reproductive system and homeostasis of the body. Disrupted androgen balance serves as the causal contributor to a series of physiological disorders and even diseases. Flavonoids, as an extremely frequent family of natural polyphenols, exist widely in plants and foods and have received great attention when considering their inevitable consumption and estrogen-like effects. Mounting evidence illustrates that flavonoids have a propensity to interfere with androgen synthesis and metabolism, and also have a designated improvement effect on androgen disorders. Therefore, flavonoids were divided into six subclasses based on the structural feature in this paper, and the literature about their effects on androgens published in the past ten years was summarized. It could be concluded that flavonoids have the potential to regulate androgen levels and biological effects, mainly by interfering with the hypothalamic-pituitary-gonadal axis, androgen synthesis and metabolism, androgen binding with its receptors and membrane receptors, and antioxidant effects. The faced challenges about androgen regulation by flavonoids masterly include target mechanism exploration, individual heterogeneity, food matrixes interaction, and lack of clinical study. This review also provides a scientific basis for nutritional intervention using flavonoids to improve androgen disorder symptoms.
Collapse
Affiliation(s)
- Xiang Hu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Pan Deng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, PR China
| | - Yulin Zhang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Ruijing Liu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
- Key Laboratory for Bio-Based Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, PR China
| | - Dongbao Cai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Qingjie Xu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Xinwei Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| |
Collapse
|
13
|
Cyanidin-3-O-Glucoside Supplement Improves Sperm Quality and Spermatogenesis in a Mice Model of Ulcerative Colitis. Nutrients 2022; 14:nu14050984. [PMID: 35267960 PMCID: PMC8912864 DOI: 10.3390/nu14050984] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/19/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Impaired fertility and low sperm quality are the global health problem with high attention. It has been noted that inflammation may impact fertility by affecting testicular spermatogenesis. Cyanidin-3-O-glucoside is a natural functional pigment with various health benefits. Nevertheless, studies on the mechanism by which C3G protects male reproduction in mice with ulcerative colitis remain scarce. The purpose of this study is to illustrate the potential mechanism of C3G for improving impaired fertility caused by colitis. A DSS-induced colitis model was applied to assess the effects of sperm quality with colitis and the health benefit role of C3G. Results indicated that C3G-treated mice exhibited higher body weight, longer colon length, less crypt damage and focal inflammation infiltration. Being consistent with that, low sperm count, low testis weight, high inflammation levels and abnormal thickness of seminiferous epithelium also observed in the DSS group were significantly recovered upon C3G treatment. These findings suggested that colitis has a close link to impaired fertility. Further analysis found that C3G could significantly suppress the inflammatory mediators in serum. Results conjointly indicated that C3G might improve the impaired fertility of mice with colitis by inhibiting inflammatory cytokines through the blood–testis barrier. C3G could be a promising daily supplement for ameliorating impaired fertility caused by colitis.
Collapse
|