1
|
Zhao J, Chen Y, Tao Q, Schreiber L, Suresh K, Frei M, Alam MS, Li B, Zhou Y, Baer M, Hochholdinger F, Wang C, Yu P. Enhanced CO 2 Coordinates the Spatial Recruitment of Diazotrophs in Rice Via Root Development. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39526402 DOI: 10.1111/pce.15259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Understanding the reciprocal interaction between root development and coadapted beneficial microbes in response to elevated CO2 (eCO2) will facilitate the identification of nutrient-efficient cultivars for sustainable agriculture. Here, systematic morphological, anatomical, chemical and gene expression assays performed under low-nitrogen conditions revealed that eCO2 drove the development of the endodermal barrier with respect to L-/S-shaped lateral roots (LRs) in rice. Next, we applied metabolome and endodermal-cell-specific RNA sequencing and showed that rice adapts to eCO2 by spatially recruiting diazotrophs via flavonoid secretion in L-shaped LRs. Using the rice Casparian strip mutant Oscasp1-1, we confirmed that reduced lignin deposition selectively recruits the diazotrophic family of Oxalobacteraceae to confer tolerance to low nitrogen availability.
Collapse
Affiliation(s)
- Junwen Zhao
- College of Resources, Sichuan Agricultural University, Chengdu, China
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
- Institute of Agricultural Engineering, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Yuting Chen
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Lukas Schreiber
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Kiran Suresh
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Michael Frei
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding I, Justus Liebig University Giessen, Giessen, Germany
| | - Muhammad Shahedul Alam
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding I, Justus Liebig University Giessen, Giessen, Germany
| | - Bing Li
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yaping Zhou
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Marcel Baer
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Frank Hochholdinger
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Changquan Wang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Peng Yu
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
2
|
Yang H, Yu H, Wang S, Huang H, Ye D, Zhang X, Liu T, Wang Y, Zheng Z, Li T. Comparative transcriptomics reveals the key pathways and genes of cadmium accumulation in the high cadmium-accumulating rice (Oryza Sativa L.) line. ENVIRONMENT INTERNATIONAL 2024; 193:109113. [PMID: 39509840 DOI: 10.1016/j.envint.2024.109113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
The high cadmium (Cd)-accumulating rice line Lu527-8 (H8) has already been proven to exhibit elevated Cd concentration and translocation over the normal rice line Lu527-4 (N4). H8 and N4 are sister lines that diverged from the same parents, while the molecular mechanisms underlying the genotypic differences in Cd enrichment between the two rice lines remains unclear. Here an in-depth exploration was performed via transcriptome analysis with 2919 and 2563 differentially expressed genes (DEGs) in H8 and N4 identified, respectively. Gene ontology(GO) enrichment revealed that Cd-stressed rice both exhibited enhanced defense and antioxidant responses, while N4 displayed unique categories related to cell wall biosynthesis. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified 5 mutual pathways between H8 and N4. Many genes associated with cell wall biosynthesis were identified as the Cd-responsive DEGs. Enhanced phenylpropanoid biosynthesis and unique diterpenoid biosynthesis resulted in intensified lignin biosynthesis, which likely led to apoplastic barrier formation, subsequently blocked Cd inflow and reduced radial Cd transport in the root, thereby limited Cd translocation into aerial parts in N4. The key genes OsPAL6 and OsPAL8 that encode phenylalanine ammonia lyase (PAL), and gibberellin (GA) biosynthesis-related key genes including OsCPS2, OsCPS4, OsKSL4, OsKSL7 and some CYP superfamily members played vital roles in the process. Meanwhile, the greater upregulation of Cd transporters, such as OsIRT1/2, some OsABCs, OsYSLs, and OsZIPs in H8, accounted for the higher root absorption of Cd compared to N4. These findings unveil the molecular basis of the differential Cd concentration and translocation between the two rice lines, contributing valuable insights to the theory of Cd accumulation in rice.
Collapse
Affiliation(s)
- Huan Yang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Lab for Bioresource Recovery, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Haiying Yu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Shengwang Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Huagang Huang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Daihua Ye
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xizhou Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Tao Liu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yongdong Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Zicheng Zheng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Tingxuan Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
3
|
Zhu QY, Ren ML, Jiang YJ, He C, Ding ZJ, Zheng SJ, Wang ZG, Jin CW. Co-mutation of OsLPR1/3/4/5 provides a promising strategy to minimize Cd contamination in rice grains. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135165. [PMID: 38996675 DOI: 10.1016/j.jhazmat.2024.135165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Minimizing cadmium (Cd) contamination in rice grains is crucial for ensuring food security and promoting sustainable agriculture. Utilizing genetic modification to generate rice varieties with low Cd accumulation is a promising strategy due to its cost-effectiveness and operational simplicity. Our study demonstrated that the CRISPR-Cas9-mediated quadruple mutation of the multicopper oxidase genes OsLPR1/3/4/5 in the japonica rice cultivar Tongjing 981 had little effect on yields. However, a notable increase was observed in the cell wall functional groups that bind with Cd. As a result, the quadruple mutation of OsLPR1/3/4/5 enhanced Cd sequestration within the cell wall while reducing Cd concentrations in both xylem and phloem sap, thereby inhibiting Cd transport from roots to shoots. Consequently, Cd concentrations in brown rice and husk in oslpr1/3/4/5 quadruple mutants (qm) decreased by 52% and 55%, respectively, compared to the wild-type. These findings illustrate that the quadruple mutation of OsLPR1/3/4/5 is an effective method for minimizing Cd contamination in rice grains without compromising yields. Therefore, the quadruple mutation of OsLPR1/3/4/5 via biotechnological pathways may represent a valuable strategy for the generation of new rice varieties with low Cd accumulation.
Collapse
Affiliation(s)
- Qing Yang Zhu
- State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou 310058, China
| | - Meng Lian Ren
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Yi Jie Jiang
- State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou 310058, China
| | - Chao He
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Zhong Jie Ding
- State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou 310058, China
| | - Shao Jian Zheng
- State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou 310058, China
| | - Ze Gang Wang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China.
| | - Chong Wei Jin
- State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Liu J, Lv Y, Li M, Wu Y, Li B, Wang C, Tao Q. Peroxidase in plant defense: Novel insights for cadmium accumulation in rice (Oryza sativa L.). JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134826. [PMID: 38852248 DOI: 10.1016/j.jhazmat.2024.134826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Phenylpropanoid biosynthesis plays crucial roles in the adaptation to cadmium (Cd) stress. Nevertheless, few reports have dabbled in physiological mechanisms of such super pathway regulating Cd accumulation in plants. Herein, by integrating transcriptomic, histological and molecular biology approaches, the present study dedicated to clarify molecular mechanism on how rice adapt to Cd stress via phenylpropanoid biosynthesis. Our analysis identified that the enhancement of phenylpropanoid biosynthesis was as a key response to Cd stress. Intriguingly, POD occupied a significant part in this process, with the number of POD related genes accounted for 26/29 of all upregulated genes in phenylpropanoid biosynthesis. We further used SHAM (salicylhydroxamic acid, the POD inhibitor) to validate that POD exhibited a negative correlation with the Cd accumulation in rice tissues, and proposed two intrinsic molecular mechanisms on POD in contributing to Cd detoxification. One strategy was that POD promoted the formation of lignin and CSs both in endodermis and exodermis for intercepting Cd influx. In detail, inhibited POD induced by external addition of SHAM decreased the content of lignin by 50.98-66.65 % and delayed percentage of the DTIP-CS to root length by 39.17-104.51 %. The other strategy was expression of transporter genes involved in Cd uptake, including OsIRT1, OsIRT2, OsZIP1 and OsZIP, negatively regulated by POD. In a word, our findings firstly draws a direct link between POD activity and the Cd accumulation, which is imperative for the breeding of rice with low-Cd-accumulating capacity in the future.
Collapse
Affiliation(s)
- Jiahui Liu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yunxuan Lv
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Meng Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yingjie Wu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Bing Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Changquan Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
5
|
Wang Y, Cui T, Niu K, Ma H. Integrated proteomics, transcriptomics, and metabolomics offer novel insights into Cd resistance and accumulation in Poa pratensis. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134727. [PMID: 38824780 DOI: 10.1016/j.jhazmat.2024.134727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/08/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
Kentucky bluegrass (Poa pratensis L., KB) demonstrates superior performance in both cadmium (Cd) accumulation and tolerance; however, the regulatory mechanisms and detoxification pathways in this species remain unclear. Therefore, phenotype, root ultrastructure, cell wall components, proteomics, transcriptomics, and metabolomics were analyzed under the hydroponic system to investigate the Cd tolerance and accumulation mechanisms in the Cd-tolerant KB variety 'Midnight (M)' and the Cd-sensitive variety 'Rugby II (R)' under Cd stress. The M variety exhibited higher levels of hydroxyl and carboxyl groups as revealed by Fourier transform infrared spectroscopy spectral analysis. Additionally, a reduced abundance of polysaccharide degradation proteins was observed in the M variety. The higher abundance of glutathione S-transferase and content of L-cysteine-glutathione disulfide and oxidized glutathione in the M variety may contribute to better performance of the M variety under Cd stress. Additionally, the R variety had an enhanced content of carboxylic acids and derivatives, increasing the Cd translocation capacity. Collectively, the down-regulation of cell wall polysaccharide degradation genes coupled with the up-regulation of glutathione metabolism genes enhances the tolerance to Cd stress in KB. Additionally, lignification of the endodermis and the increase in carboxylic acids and derivatives play crucial roles in the redistribution of Cd in KB.
Collapse
Affiliation(s)
- Yong Wang
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-US. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu 730070, China
| | - Ting Cui
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-US. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu 730070, China
| | - Kuiju Niu
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-US. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu 730070, China
| | - Huiling Ma
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-US. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu 730070, China.
| |
Collapse
|
6
|
Wang Y, Cui T, Niu K, Ma H. Root cell wall polysaccharides and endodermal barriers restrict long-distance Cd translocation in the roots of Kentucky bluegrass. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116633. [PMID: 38941659 DOI: 10.1016/j.ecoenv.2024.116633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/13/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
Soil Cd pollution is a significant environmental issue faced by contemporary society. Kentucky bluegrass is considered a potential phytoremediation species, as some varieties have excellent cadmium (Cd) tolerance. However, the mechanisms of Cd accumulation and transportation in Kentucky bluegrass are still not fully understood. The Cd-tolerant Kentucky bluegrass cultivar 'Midnight' (M) exhibits lower Cd translocation efficiency and a higher leaf Cd concentration compared to the Cd-sensitive cultivar 'Rugby II' (R). We hypothesized that Cd translocation from roots to shoots in cultivar M is hindered by the endodermal barriers and cell wall polysaccharides; hence, we conducted Cd distribution, cytological observation, cell wall component, and transcriptomic analyses under Cd stress conditions using the M and R cultivars. Cd stress resulted in the thickening of the endodermis and increased synthesis of cell wall polysaccharides in both the M and R cultivars. Endodermis development restricted the radical transport of Cd from the root cortex to the stele, while the accumulation of cell wall polysaccharides promoted the binding of Cd to the cell wall. These changes further inhibited the long-distance translocation of Cd from the roots to the aerial parts. Furthermore, the M cultivar exhibited limited long-distance Cd translocation efficiency compared to the R cultivar, which was attributed to the enhanced development of endodermal barriers and increased Cd binding by cell wall polysaccharides. This study provides valuable insights for screening high Cd transport efficiency in Kentucky bluegrass based on anatomical structure and genetic modification.
Collapse
Affiliation(s)
- Yong Wang
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Ting Cui
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Kuiju Niu
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Huiling Ma
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| |
Collapse
|
7
|
Pan B, Zhu X, Huang L, Cai K, Li YW, Cai QY, Feng NX, Mo CH. Root-zone regulation and longitudinal translocation cause intervarietal differences for phthalates accumulation in vegetables. CHEMOSPHERE 2024; 359:142322. [PMID: 38761823 DOI: 10.1016/j.chemosphere.2024.142322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
Selecting and cultivating low-accumulating crop varieties (LACVs) is the most effective strategy for the safe utilization of di-(2-ethylhexyl) phthalate (DEHP)-contaminated soils, promoting cleaner agricultural production. However, the adsorption-absorption-translocation mechanisms of DEHP along the root-shoot axis remains a formidable challenge to be solved, especially for the research and application of LACV, which are rarely reported. Here, systematic analyses of the root surface ad/desorption, root apexes longitudinal allocation, uptake and translocation pathway of DEHP in LACV were investigated compared with those in a high-accumulating crop variety (HACV) in terms of the root-shoot axis. Results indicated that DEHP adsorption was enhanced in HACV by root properties, elemental composition and functional groups, but the desorption of DEHP was greater in LACV than HACV. The migration of DEHP across the root surface was controlled by the longitudinal partitioning process mediated by root tips, where more DEHP accumulated in the root cap and meristem of LACV due to greater cell proliferation. Furthermore, the longitudinal translocation of DEHP in LACV was reduced, as evidenced by an increased proportion of DEHP in the root apoplast. The symplastic uptake and xylem translocation of DEHP were suppressed more effectively in LACV than HACV, because DEHP translocation in LACV required more energy, binding sites and transpiration. These results revealed the multifaceted regulation of DEHP accumulation in different choysum (Brassica parachinensis L.) varieties and quantified the pivotal regulatory processes integral to LACV formation.
Collapse
Affiliation(s)
- Bogui Pan
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Xiaoqiong Zhu
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Li Huang
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Kunzheng Cai
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Tropical Agricultural Environment in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
| | - Yan-Wen Li
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Quan-Ying Cai
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Nai-Xian Feng
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Ce-Hui Mo
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
8
|
Cao K, Jaime-Pérez N, Mijovilovich A, Morina F, Bokhari SNH, Liu Y, Küpper H, Tao Q. Symplasmic and transmembrane zinc transport is modulated by cadmium in the Cd/Zn hyperaccumulator Sedum alfredii. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116272. [PMID: 38564870 DOI: 10.1016/j.ecoenv.2024.116272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
This study investigated the influence of Cd (25 µM) on Zn accumulation in a hyperaccumulating (HE) and a non-hyperaccumulating (NHE) ecotype of Sedum alfredii Hance at short-term supply of replete (Zn5, 5 µM) and excess (Zn400, 400 µM) Zn. Cd inhibited Zn accumulation in both ecotypes, especially under Zn400, in organs with active metal sequestration, i.e. roots of NHE and shoots of HE. Direct biochemical Cd/Zn competition at the metal-protein interaction and changes in transporter gene expression contributed to the observed accumulation patterns in the roots. Specifically, in HE, Cd stimulated SaZIP4 and SaPCR2 under Zn5, but downregulated SaIRT1 and SaZIP4 under Zn400. However, Cd downregulated related transporter genes, except for SaNRAMP1, in NHE, irrespective of Zn. Cadmium stimulated casparian strip (CSs) development in NHE, as part of the defense response, while it had a subtle effect on the (CS) in HE. Moreover, Cd delayed the initiation of the suberin lamellae (SL) in HE, but stimulated SL deposition in NHE under both Zn5 or Zn400. Changes in suberization were mainly ascribed to suberin-biosynthesis-related genes and hormonal signaling. Altogether, Cd regulated Zn accumulation mainly via symplasmic and transmembrane transport in HE, while Cd inhibited both symplasmic and apoplasmic Zn transport in NHE.
Collapse
Affiliation(s)
- Ke Cao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Noelia Jaime-Pérez
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics & Biochemistry, Branišovská 1160/31, České Budějovice 370 05, Czech Republic
| | - Ana Mijovilovich
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics & Biochemistry, Branišovská 1160/31, České Budějovice 370 05, Czech Republic
| | - Filis Morina
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics & Biochemistry, Branišovská 1160/31, České Budějovice 370 05, Czech Republic
| | - Syed Nadeem Hussain Bokhari
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics & Biochemistry, Branišovská 1160/31, České Budějovice 370 05, Czech Republic
| | - Yunqi Liu
- Zhongguancun Xuyue Non-invasive Micro-test Technology Industrial Alliance, Beijing, China
| | - Hendrik Küpper
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics & Biochemistry, Branišovská 1160/31, České Budějovice 370 05, Czech Republic; University of South Bohemia, Department of Experimental Plant Biology, Branišovská 1160/31, České Budějovice 370 05, Czech Republic.
| | - Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
9
|
Dong Q, Wu Y, Wang H, Li B, Huang R, Li H, Tao Q, Li Q, Tang X, Xu Q, Luo Y, Wang C. Integrated morphological, physiological and transcriptomic analyses reveal response mechanisms of rice under different cadmium exposure routes. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133688. [PMID: 38310845 DOI: 10.1016/j.jhazmat.2024.133688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/04/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
Rice (Oryza sativa) is one of the major cereal crops and takes up cadmium (Cd) more readily than other crops. Understanding the mechanism of Cd uptake and defense in rice can help us avoid Cd in the food chain. However, studies comparing Cd uptake, toxicity, and detoxification mechanisms of leaf and root Cd exposure at the morphological, physiological, and transcriptional levels are still lacking. Therefore, experiments were conducted in this study and found that root Cd exposure resulted in more severe oxidative and photosynthetic damage, lower plant biomass, higher Cd accumulation, and transcriptional changes in rice than leaf Cd exposure. The activation of phenylpropanoids biosynthesis in both root and leaf tissues under different Cd exposure routes suggests that increased lignin is the response mechanism of rice under Cd stress. Moreover, the roots of rice are more sensitive to Cd stress and their adaptation responses are more pronounced than those of leaves. Quantitative PCR revealed that OsPOX, OsCAD, OsPAL and OsCCR play important roles in the response to Cd stress, which further emphasize the importance of lignin. Therefore, this study provides theoretical evidence for future chemical and genetic regulation of lignin biosynthesis in crop plants to reduce Cd accumulation.
Collapse
Affiliation(s)
- Qin Dong
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Yingjie Wu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| | - Haidong Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Bing Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Rong Huang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiquan Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoyan Tang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiang Xu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Youlin Luo
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Changquan Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
10
|
Liu C, Chang J, Yang J, Li H, Wu J, Wu J, Dai X, Wei F, Zhang X, Su X, Xia Z. Overexpression of NtDOGL4 improves cadmium tolerance through abscisic acid signaling pathway in tobacco. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133462. [PMID: 38215520 DOI: 10.1016/j.jhazmat.2024.133462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
The DELAY OF GERMINATION1-LIKE (DOGL) genes play an essential role in diverse biological processes in plants. However, their exact involvement in the response to cadmium (Cd) stress via the ABA pathway remains unclear. Here, we focused on NtDOGL4, a tobacco DOGL gene whose expression is highly induced upon exposure to Cd. Overexpression of NtDOGL4 in tobacco resulted in elevated endogenous ABA levels, reduced Cd accumulation, and increased tolerance to Cd. Moreover, NtDOGL4 overexpression led to decreased accumulation of reactive oxygen species (ROS) and improved ROS scavenging capacity under Cd stress. Further analyses revealed the direct binding of the transcription factor ABSCISIC ACID-INSENSITIVE 5 (ABI5) to the NtDOGL4 promoter, positively regulating its expression in tobacco. Notably, NtDOGL4 overexpression promoted suberin formation and deposition, while suppressing the expression of Cd transporter genes in tobacco roots, as evidenced by histochemical staining, suberin fraction determination, and qRT-PCR assays. Collectively, our results demonstrate that NtDOGL4 overexpression reduces Cd accumulation, thereby improving Cd stress tolerance through the modulation of antioxidant system, transcription of Cd transporters, and suberin deposition. Notably, the NtABI5-NtDOGL4 module functions as a positive regulator in tobacco's Cd tolerance, underscoring its potential as a molecular target for developing low-Cd crops to ensure environmental safety.
Collapse
Affiliation(s)
- Can Liu
- College of Life Science, Henan Agricultural University, Zhengzhou 450046, China; College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Jianbo Chang
- Henan Provincial Tobacco Company, Zhengzhou 450018, China
| | - Jianxin Yang
- Henan Provincial Tobacco Company, Zhengzhou 450018, China
| | - Hongchen Li
- Henan Provincial Tobacco Company, Zhengzhou 450018, China
| | - Jiang Wu
- Henan Provincial Tobacco Company, Zhengzhou 450018, China
| | - Junlin Wu
- Henan Provincial Tobacco Company, Zhengzhou 450018, China
| | - Xiaoyan Dai
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China.
| | - Fengjie Wei
- Henan Provincial Tobacco Company, Zhengzhou 450018, China.
| | - Xiaoquan Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China.
| | - Xinhong Su
- Henan Provincial Tobacco Company, Zhengzhou 450018, China.
| | - Zongliang Xia
- College of Life Science, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
11
|
Shen C, Huang B, Hu L, Yuan H, Huang Y, Wang Y, Sun Y, Li Y, Zhang J, Xin J. Comparative transcriptome analysis and Arabidopsis thaliana overexpression reveal key genes associated with cadmium transport and distribution in root of two Capsicum annuum cultivars. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133365. [PMID: 38163407 DOI: 10.1016/j.jhazmat.2023.133365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
The molecular mechanisms underlying high and low cadmium (Cd) accumulation in hot pepper cultivars remain unclear. In this study, comparative transcriptome analysis of root between high-Cd (J) and low-Cd (Z) cultivars was conducted under hydroponic cultivation with 0 and 0.4 mg/L Cd, respectively. The results showed that J enhanced the root uptake of Cd by elevating the expression of Nramp5 and counteracting Cd toxicity by increasing the expression of genes, such as NIR1, GLN1, and IAA9. Z reduced Cd accumulation by enhancing the cell wall lignin synthesis genes PAL, COMT, 4CL, LAC, and POD and the Cd transporters ABC, MTP1, and DTX1. Elevated expression of genes related to sulfur metabolism was observed in Z, potentially contributing to its ability to detoxify Cd. To investigate the function of CaCOMT1, an Arabidopsis thaliana overexpression line (OE-CaCOMT1) was constructed. The results revealed that OE-CaCOMT1 drastically increased the lignin content by 38-42% and reduced the translocation of Cd to the aboveground parts by 32%. This study provides comprehensive insights into the mechanisms underlying Cd accumulation in hot pepper cultivars using transcriptome analysis. Moreover, this study elucidates the critical function of CaCOMT1, providing a theoretical foundation for the production of low-Cd vegetables for food safety.
Collapse
Affiliation(s)
- Chuang Shen
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Baifei Huang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Lu Hu
- Hunan Huanbaoqiao Ecology and Environment Engineering Co., Ltd., Changsha 410221, China
| | - Haiwei Yuan
- Hunan Huanbaoqiao Ecology and Environment Engineering Co., Ltd., Changsha 410221, China
| | - Yingying Huang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Yanbin Wang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Yingfang Sun
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Yi Li
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Jirong Zhang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Junliang Xin
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China.
| |
Collapse
|
12
|
Zhang X, Xue W, Qi L, Zhang C, Wang C, Huang Y, Wang Y, Peng L, Liu Z. Malic acid inhibits accumulation of cadmium, lead, nickel and chromium by down-regulation of OsCESA and up-regulation of OsGLR3 in rice plant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122934. [PMID: 37967709 DOI: 10.1016/j.envpol.2023.122934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/26/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023]
Abstract
Malic acid (MA) plays an important role in plant tolerance to toxic metals, but its effect in restricting the transport of harmful metals remains unclear. In this study, japonica rice NPB and its fragile-culm mutant fc8 with low cellulose and thin cell wall were used to investigate the influence of MA on the accumulation of 4 toxic elements (Cd, Pb, Ni, and Cr) and 8 essential elements (K, Mg, Ca, Fe, Mn, Zn, Cu and Mo) in rice. The results showed that fc8 accumulated less toxic elements but more Ca and glutamate in grains and vegetative organs than NPB. After foliar application with MA at rice anthesis stage, the content of Cd, Pb, Ni significantly decreased by 27.9-41.0%, while those of Ca and glutamate significantly increased in both NPB and fc8. Therefore, the ratios between Cd and Ca in grains of NPB (3.4‰) and fc8 (1.5‰) were greatly higher than that in grains of NPB + MA (1.1‰) and fc8+MA (0.8‰) treatments. Meanwhile, the expression of OsCEAS4,7,8,9 for the cellulose synthesis in secondary cell walls were down-regulated and cellulose content in vegetative organs of NPB and fc8 decreased by 16.7-21.1%. However, MA application significantly up-regulated the expression of GLR genes (OsGLR3.1-3.5) and raised the activity of glutamic-oxalacetic transaminease for glutamate synthesis in NPB and fc8. These results indicate that hazard risks of toxic elements in foods can be efficiently reduced through regulating cellulose biosynthesis and GLR channels in plant by combining genetic modification in vivo and malic acid application in vitro.
Collapse
Affiliation(s)
- Xin Zhang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China; Hainan Research Academy of Environmental Sciences, Haikou, 571126, China
| | - Weijie Xue
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China
| | - Lin Qi
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China
| | - Changbo Zhang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China
| | - Changrong Wang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China
| | - Yongchun Huang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China
| | - Yanting Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), College of Biotechnology & Food Science, Hubei University of Technology, Wuhan, 430068, China
| | - Liangcai Peng
- Key Laboratory of Fermentation Engineering (Ministry of Education), College of Biotechnology & Food Science, Hubei University of Technology, Wuhan, 430068, China
| | - Zhongqi Liu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China.
| |
Collapse
|
13
|
Zhang ZW, Fu YF, Yang XY, Yuan M, Zheng XJ, Luo XF, Zhang MY, Xie LB, Shu K, Reinbothe S, Reinbothe C, Wu F, Feng LY, Du JB, Wang CQ, Gao XS, Chen YE, Zhang YY, Li Y, Tao Q, Lan T, Tang XY, Zeng J, Chen GD, Yuan S. Singlet oxygen induces cell wall thickening and stomatal density reducing by transcriptome reprogramming. J Biol Chem 2023; 299:105481. [PMID: 38041932 PMCID: PMC10731243 DOI: 10.1016/j.jbc.2023.105481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/12/2023] [Accepted: 11/17/2023] [Indexed: 12/04/2023] Open
Abstract
Singlet oxygen (1O2) has a very short half-life of 10-5 s; however, it is a strong oxidant that causes growth arrest and necrotic lesions on plants. Its signaling pathway remains largely unknown. The Arabidopsis flu (fluorescent) mutant accumulates a high level of 1O2 and shows drastic changes in nuclear gene expression. Only two plastid proteins, EX1 (executer 1) and EX2 (executer 2), have been identified in the singlet oxygen signaling. Here, we found that the transcription factor abscisic acid insensitive 4 (ABI4) binds the promoters of genes responsive to 1O2-signals. Inactivation of the ABI4 protein in the flu/abi4 double mutant was sufficient to compromise the changes of almost all 1O2-responsive-genes and rescued the lethal phenotype of flu grown under light/dark cycles, similar to the flu/ex1/ex2 triple mutant. In addition to cell death, we reported for the first time that 1O2 also induces cell wall thickening and stomatal development defect. Contrastingly, no apparent growth arrest was observed for the flu mutant under normal light/dim light cycles, but the cell wall thickening (doubled) and stomatal density reduction (by two-thirds) still occurred. These results offer a new idea for breeding stress tolerant plants.
Collapse
Affiliation(s)
- Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Yu-Fan Fu
- College of Resources, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Xin-Yue Yang
- College of Resources, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Xiao-Jian Zheng
- College of Resources, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Xiao-Feng Luo
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Meng-Yao Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Lin-Bei Xie
- College of Resources, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Kai Shu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Steffen Reinbothe
- Laboratoire de Génétique Moléculaire des Plantes and Biologie Environnementale et Systémique (BEeSy), Université Grenoble Alpes, Grenoble, France
| | - Christiane Reinbothe
- Laboratoire de Génétique Moléculaire des Plantes and Biologie Environnementale et Systémique (BEeSy), Université Grenoble Alpes, Grenoble, France
| | - Fan Wu
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China
| | - Ling-Yang Feng
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Jun-Bo Du
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Chang-Quan Wang
- College of Resources, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Xue-Song Gao
- College of Resources, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Yang-Er Chen
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Yan-Yan Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Yang Li
- College of Resources, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Ting Lan
- College of Resources, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Xiao-Yan Tang
- College of Resources, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Guang-Deng Chen
- College of Resources, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China.
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China.
| |
Collapse
|
14
|
Jing H, Yang W, Chen Y, Yang L, Zhou H, Yang Y, Zhao Z, Wu P, Zia-Ur-Rehman M. Exploring the mechanism of Cd uptake and translocation in rice: Future perspectives of rice safety. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165369. [PMID: 37433335 DOI: 10.1016/j.scitotenv.2023.165369] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023]
Abstract
Cadmium (Cd) contamination in rice fields has been recognized as a severe global agro-environmental issue. To reach the goal of controlling Cd risk, we must pay more attention and obtain an in-depth understanding of the environmental behavior, uptake and translocation of Cd in soil-rice systems. However, to date, these aspects still lack sufficient exploration and summary. Here, we critically reviewed (i) the processes and transfer proteins of Cd uptake/transport in the soil-rice system, (ii) a series of soil and other environmental factors affecting the bioavailability of Cd in paddies, and (iii) the latest advances in regard to remediation strategies while producing rice. We propose that the correlation between the bioavailability of Cd and environmental factors must be further explored to develop low Cd accumulation and efficient remediation strategies in the future. Second, the mechanism of Cd uptake in rice mediated by elevated CO2 also needs to be given more attention. Meanwhile, more scientific planting methods (direct seeding and intercropping) and suitable rice with low Cd accumulation are important measures to ensure the safety of rice consumption. In addition, the relevant Cd efflux transporters in rice have yet to be revealed, which will promote molecular breeding techniques to address the current Cd-contaminated soil-rice system. The potential for efficient, durable, and low-cost soil remediation technologies and foliar amendments to limit Cd uptake by rice needs to be examined in the future. Conventional breeding procedures combined with molecular marker techniques for screening rice varieties with low Cd accumulation could be a more practical approach to select for desirable agronomic traits with low risk.
Collapse
Affiliation(s)
- Haonan Jing
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Wentao Yang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China.
| | - Yonglin Chen
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Liyu Yang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Hang Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yang Yang
- College of Environment and Ecology, Hunan Agriculture University, Changsha 410128, China
| | - Zhenjie Zhao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Pan Wu
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | | |
Collapse
|
15
|
Yang H, Yu H, Wang S, Bayouli IT, Huang H, Ye D, Zhang X, Liu T, Wang Y, Zheng Z, Meers E, Li T. Root radial apoplastic transport contributes to shoot cadmium accumulation in a high cadmium-accumulating rice line. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132276. [PMID: 37625294 DOI: 10.1016/j.jhazmat.2023.132276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Radial transport of cadmium (Cd) in roots governs the amount of Cd loaded into xylem vessels, where Cd ions are translocated upward into shoots, while the mechanism of differential Cd radial transport between the high Cd-accumulating rice line Lu527-8 and the normal rice line Lu527-4 remains ambiguous. A higher Cd distribution in cross sections and root apoplast and higher bypass flow of Cd were found in Lu527-8, explaining a greater Cd translocation through the apoplastic pathway. The lower relative area of the epidermis and the constant relative area of the cortex in Lu527-8 opened-up root radial transport for Cd. Deposition of apoplastic barriers (Casparian strips and suberin lamellae) was stimulated by Cd, which effectively prevented Cd from entering the stele through the apoplastic pathway. In Lu527-8, apoplastic barriers were further from the root apex with lower expression of genes responsible for biosynthesis of Casparian strips and suberin lamellae, enhancing radial transport of Cd. Our data revealed that the higher radial apoplastic transport of Cd played an integral role in Cd translocation, contributed to a better understanding of the mechanism involved in high Cd accumulation in Lu527-8 and helped achieve the practical application of phytoextraction.
Collapse
Affiliation(s)
- Huan Yang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Lab for bioresource recovery, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Haiying Yu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Shengwang Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Ines Terwayet Bayouli
- Lab for bioresource recovery, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Huagang Huang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Daihua Ye
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xizhou Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Tao Liu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yongdong Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Zicheng Zheng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Erik Meers
- Lab for bioresource recovery, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Tingxuan Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
16
|
Zhao S, Zhang Q, Xiao W, Chen D, Hu J, Gao N, Huang M, Ye X. Comparative transcriptome analysis reveals key genes and coordinated mechanisms in two rice cultivars differing in cadmium accumulation. CHEMOSPHERE 2023; 338:139489. [PMID: 37451631 DOI: 10.1016/j.chemosphere.2023.139489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Although Cd accumulation varies among rice varieties is recognized, the underlying mechanisms are not well clarified. In this study, comparative transcriptome analysis were performed by hydroponic culture system with two rice varieties, Y1540 (high Cd accumulator) and Y15 (low Cd accumulator) under 20 μM Cd stress. Results revealed 17,320 differentially expressed genes (DEGs) in roots of Y15 (7,655 upregulated and 9,665 downregulated) and 17,386 DEGs in roots of Y1540 (8,823 upregulated and 8,563 downregulated) expose to 20 μM Cd stress. Gene ontology (GO) analysis enriched 24 and 26 terms in Y15 and Y1540 respectively, including 23 common terms. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment showed 27 and 28 significant pathways in Y15 and Y1540 respectively, with 19 common pathways. Different responses to Cd stress between cultivars were not only reflected in differently enriched GO terms and KEGG pathways but also in different DEGs of 23 common GO terms and significant sequences represented by p-values of 19 common KEGG pathways. Both cultivars resist Cd through common processes with different weights; hence glutathione metabolism, mineral absorption, biosynthesis of secondary metabolites, and degradation of aromatic compounds could be playing a more important role in Y1540, whereas ribosome biogenesis in eukaryotes, mismatch repair, aminoacyl-tRNA biosynthesis, and the cell cycle maybe playing a more important role in Y15. Weighted gene co-expression network analysis (WGCNA) showed that five and three modules were clustered in Y15 and Y1540, respectively, with yellow and brown modules in Y15 and brown modules in Y1540 being significantly related to Cd stress. Further analysis showed that most of hub genes in Y15 were related to signal transduction or transcription factors, while most of hub genes in Y1540 were related to binding, metabolic, and secondary metabolic processes, which demonstrated their different response patterns at transcriptomic level to Cd stress.
Collapse
Affiliation(s)
- Shouping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Qi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Wendan Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - De Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jing Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Na Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Miaojie Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xuezhu Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
17
|
Dong Q, Wu Y, Li B, Chen X, Peng L, Sahito ZA, Li H, Chen Y, Tao Q, Xu Q, Huang R, Luo Y, Tang X, Li Q, Wang C. Multiple insights into lignin-mediated cadmium detoxification in rice (Oryza sativa). JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131931. [PMID: 37379605 DOI: 10.1016/j.jhazmat.2023.131931] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/06/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023]
Abstract
Cadmium (Cd) is readily absorbed by rice and enters the food chain, posing a health risk to humans. A better understanding of the mechanisms of Cd-induced responses in rice will help in developing solutions to reduce Cd uptake in rice. Therefore, this research attempted to reveal the detoxification mechanisms of rice in response to Cd through physiological, transcriptomic and molecular approaches. The results showed that Cd stress restricted rice growth, led to Cd accumulation and H2O2 production, and resulted cell death. Transcriptomic sequencing revealed glutathione and phenylpropanoid were the major metabolic pathways under Cd stress. Physiological studies showed that antioxidant enzyme activities, glutathione and lignin contents were significantly increased under Cd stress. In response to Cd stress, q-PCR results showed that genes related to lignin and glutathione biosynthesis were upregulated, whereas metal transporter genes were downregulated. Further pot experiment with rice cultivars with increased and decreased lignin content confirmed the causal relationship between increased lignin and reduced Cd in rice. This study provides a comprehensive understanding of lignin-mediated detoxification mechanism in rice under Cd stress and explains the function of lignin in production of low-Cd rice to ensure human health and food safety.
Collapse
Affiliation(s)
- Qin Dong
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Yingjie Wu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| | - Bing Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xi Chen
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Lu Peng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Zulfiqar Ali Sahito
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yulan Chen
- Sichuan tobacco company, Liangshanzhou company, Xichang 615000, China
| | - Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiang Xu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Rong Huang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Youlin Luo
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoyan Tang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiquan Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Changquan Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
18
|
Chen A, Liu T, Deng Y, Xiao R, Zhang T, Wang Y, Yang Y, Lakshmanan P, Shi X, Zhang F, Chen X. Nitrate _dependent suberization regulates cadmium uptake and accumulation in maize. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162848. [PMID: 36931522 DOI: 10.1016/j.scitotenv.2023.162848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/14/2023] [Accepted: 03/09/2023] [Indexed: 05/13/2023]
Abstract
In this study, effect of nitrate-dependent suberization in maize root on cadmium (Cd) uptake and accumulation was investigated. Suberization in maize roots was significantly lower in plants grown with a high nitrate supply compared with low nitrate. This decrease was seen in the total amount of suberin, in which the aliphatic suberin amount was significantly decreased, whereas no difference in aromatic suberin content between different N-treatments. RNA-sequencing showed that suberin biosynthesis genes were upregulated in low nitrate treatment, which correlated well with the increased suberin content. Bioimaging and xylem sap analysis showed that reduced exodermal and endodermal suberization in roots of plants grown under high nitrate promoted radial Cd transport along the crown root. The enhanced suberization in crown roots of plants grown in low nitrate restricted the radial transport of Cd from epidermis to cortex via decreased accessibility to Cd related transporters at the plasmalemma. Also, under low nitrate supply, the Cd transport gene ZmNramp5 was upregulated in the crown root, which may enhance Cd uptake by root tip where exodermis and endodermis were not fully suberized. These results suggest that high nitrate supply enhances Cd uptake and radial transport in maize roots by reducing exodermal and endodermal suberization.
Collapse
Affiliation(s)
- Anle Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Tong Liu
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Yan Deng
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Ran Xiao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Tong Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yuan Wang
- Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Yuheng Yang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Prakash Lakshmanan
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia 4067, QLD, Australia
| | - Xiaojun Shi
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Fusuo Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing 100193, China.
| | - Xinping Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China.
| |
Collapse
|
19
|
Cui T, Wang Y, Niu K, Dong W, Zhang R, Ma H. Auxin alleviates cadmium toxicity by increasing vacuolar compartmentalization and decreasing long-distance translocation of cadmium in Poa pratensis. JOURNAL OF PLANT PHYSIOLOGY 2023; 282:153919. [PMID: 36706576 DOI: 10.1016/j.jplph.2023.153919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/10/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Kentucky bluegrass (Poa pratensis L.) hyperaccumulates cadmium (Cd) and exhibits a hypertolerance. Thus, it has potential for the phytoremediation of Cd-containing soil. Auxin signaling is involved in the response to Cd stress. However, the mechanisms of auxin-mediated detoxification and Cd translocation in plants remain unclear. This study aimed to investigate the effects of exogenous application of indole-3-acetic acid (IAA) on the Cd translocation, subcellular Cd distribution, chemical forms of Cd, and transcriptional regulation of Kentucky bluegrass. The results showed that the exogenous application of IAA increased the amount of organelle-bound Cd and vacuole-compartmentalized Cd in root cells, reduced the Cd concentration in the leaf tissues (epidermis, mesophyll, and vascular bundle) and root tissues (rhizodermis and cortex) but increased in the stele, and alleviate Cd-induced leaf chlorosis and growth inhibition. The expression of genes associated with Cd transporters (ABCs, ZIPs, NASs, OPTs, and YSLs), phosphatases, oxalate decarboxylases and lignin biosynthesis were significantly regulated by exogenous IAA under Cd stress. A positive regulation of phosphatases and oxalate decarboxylases genes related to an increase in phosphate- and oxalate-bound Cd, as well as a decrease in pectate- and protein-bound Cd and inorganic Cd, thereby contributing to a decrease in Cd phytotoxicity. The significant regulation of Cd transporters associated with decreasing the long-distance translocation of Cd, and the activation of lignin biosynthesis may contribute to the development of root endodermal barriers and increase the deposition of undissolved Cd phosphates and oxalate-bound Cd in the stele. These results revealed the important role of auxin in Cd detoxification and translocation in Kentucky bluegrass and they provide a theoretical basis for the phytoremediation of Cd-containing soil.
Collapse
Affiliation(s)
- Ting Cui
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China
| | - Yong Wang
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China
| | - Kuiju Niu
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China
| | - Wenke Dong
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China
| | - Ran Zhang
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China
| | - Huiling Ma
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China.
| |
Collapse
|
20
|
Dong Q, Tao Q, Li B, Huang R, Xu Q, Li H, Shen J, Chen X, Li Q, Tang X, Kačík F, Kováč J, Ďurkovič J, Wu Y, Wang C. The mechanism of enhanced lignin regulating foliar Cd absorption and yield in rice (Oryza sativa L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114481. [PMID: 38321693 DOI: 10.1016/j.ecoenv.2022.114481] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 02/08/2024]
Abstract
The impact of atmospheric deposition of cadmium (Cd) in cereal crops has become a global concern. Enhanced lignin content was expected to benefit the plant performance against Cd exposure. To date, however, the underlying mechanisms of lignin regulating foliar Cd absorption in rice (Oryza sativa L.) and its effect on grain yield remains unclear. In present study, the effect and mechanism of rice in response to leaf Cd exposure were investigated using 113Cd stable isotope and a lignin-increased rice mutant. The highest Cd uptake efficiency and uptake amount was observed in wild type (WT) plant grown in the maturity period, which were 3-fold higher than in mutant plant. Compared to WT, the mutant exhibited 14.75% and 25.43% higher contents in G- and S-unit of lignin monomers. Lignin biosynthesis and polymerization related genes (OsPAL/OsCOMT/Os4CL3/OsLAC5/OsLAC15) were significantly up-regulated in mutants. In addition, the enzyme activities involved in the above process were also significantly increased by 1.24-1.49-fold. The increased Cd retention in cell wall and decreased gene expression levels of OsNRAMP5, OsHMA3 and OsIRT1 in mutant indicated that lignin effectively inhibited Cd transportion in plant tissues. Moreover, the antioxidant capacity and photosynthesis efficiency in mutant plant were obviously improved, leading to higher Cd tolerance and increased grain yield. Our results revealed the molecular and physiological mechanisms of enhanced lignin regulating foliar Cd absorption and yield in rice, and provided the valuable rice genotype to ensure food safety.
Collapse
Affiliation(s)
- Qin Dong
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Bing Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Rong Huang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiang Xu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Huanxiu Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Jie Shen
- China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xi Chen
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiquan Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoyan Tang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - František Kačík
- Department of Chemistry and Chemical Technologies, Technical University in Zvolen, 96001 Zvolen, Slovakia
| | - Ján Kováč
- Department of Phytology, Technical University in Zvolen, 96001 Zvolen, Slovakia
| | - Jaroslav Ďurkovič
- Department of Phytology, Technical University in Zvolen, 96001 Zvolen, Slovakia
| | - Yingjie Wu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| | - Changquan Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
21
|
Xiao B, Huang J, Guo J, Lu X, Zhu L, Wang J, Zhou C. Flooding-induced rhizosphere Clostridium assemblage prevents root-to-shoot cadmium translocation in rice by promoting the formation of root apoplastic barriers. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129619. [PMID: 35868081 DOI: 10.1016/j.jhazmat.2022.129619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Water managements are the most effective agricultural practices for restraining cadmium (Cd) uptake and translocation in rice, which closely correlated with rhizosphere assembly of beneficial microbiome. However, the role of the assemblage of specific microbiota in controlling root-to-shoot Cd translocation in rice remains scarcely clear. The aim of this study was to ascertain how water managements shaped rhizosphere microbiome and mediated root-to-shoot Cd translocation. To disentangle the acting mechanisms of water managements, we performed an experiment monitoring Cd uptake and transport in rice and changes in soil microbial communities in response to continuously flooding and moistening irrigation. Continuously flooding changed rhizosphere microbial communities, leading to the increased abundance of anaerobic bacteria such as Clostridium populations. Weighted gene co-expression network analysis (WGCNA) showed that a dominant OTU163, corresponding to Clostridium sp. CSP1, exhibited a strong negative correlation with root-to-shoot Cd translocation. An integrated analysis of transcriptome and metabolome further indicated that the Clostridium-secreted butyric acid was involved in the regulation of phenylpropanoid pathway in rice roots. The formation of endodermal suberized barriers and lignified xylems was remarkably enhanced in the Clostridium-treated roots, which led to more Cd retained in root cell wall and less Cd in the xylem sap. Collectively, our results indicate that the development of root apoplastic barriers can be orchestrated by beneficial Clostridium strains that are assembled by host plants grown under flooding regime, thereby inhibiting root-to-shoot Cd translocation.
Collapse
Affiliation(s)
- Bing Xiao
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu 233100, China
| | - Jiameng Huang
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu 233100, China
| | - Jiansheng Guo
- School of Medicine, Zhejiang University, Hangzhou 310058, China; School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Xiaoming Lu
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu 233100, China
| | - Lin Zhu
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu 233100, China; School of Life Science and Technology, Tongji University, Shanghai 200092, China.
| | - Jianfei Wang
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu 233100, China
| | - Cheng Zhou
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu 233100, China; Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|