1
|
Xue Z, Sui F, Qi Y, Pan S, Wang N, Bian R, Joseph S, Zhang X, Li L, Pan G. Differences in soil Cd immobilization and blockage of rice Cd uptake by biochar derived from crop residue and bone - A 2-year field experiment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117533. [PMID: 39674027 DOI: 10.1016/j.ecoenv.2024.117533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Biochar is widely recognized as an effective amendment for soils contaminated with cadmium (Cd). However, the properties and elemental compositions of biochar derived from different feedstocks may significantly impact the transfer of Cd in the soil-rice system. This study conducted a two-year field trial in Cd-contaminated paddy soil. Rapeseed straw biochar (REB), rice husk biochar (RHB), and bone char (BOC) were applied once at rates of 0 t ha-1 (CK) and 15 t ha-1, respectively. The results indicated that biochar significantly decreased grain Cd concentrations by on average of 60.1 % and 22.9 % in 2021 and 2022, respectively. BOC significantly decreased CaCl2-Cd concentration by on average of 52.1 % and 64.7 % during two rice growing seasons, which was higher than that of crop biochar (22.7 % and 17.8 %). Soil exchangeable Ca and dissolved P in BOC treatment were higher, and had significantly negatively correlated with CaCl2-Cd (r = -0.50; r = -0.724). REB with higher S content efficiently increased the proportion of organics and sulfides bounding Cd. Except for BOC, REB and RHB significantly enhanced Cd fixation in IP by 44.4 %-92.0 % and 42.8 %-59.5 % in two years, in which IP-bound Fe and IP-bound Cd in REB were by 10.9 % and by 9.11 %-27.4 % higher than those of RHB respectively. The electron donating capacity of REB was 2.21-folds higher than that of RHB, which could promote IP formation by enhancing Fe(Ⅲ) reduction. RHB decreased Cd transformation from roots to shoots by 20.6 %-30.3 % compared to REB and BOC. Higher Si content in rice root in RHB treatment may promote complexation and deposition of Si hemicellulose-bound Cd in the root cell walls. This study reveals the important role of biochar's elemental composition and properties in soil Cd immobilization and the mitigation of rice Cd uptake.
Collapse
Affiliation(s)
- Zhongjun Xue
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Fengfeng Sui
- School of Environmental Science and Engineering, Yancheng Institute of Technology, No. 211 Jianjun East Road, Yancheng 224051, China; Jiangsu Engineering Research Center of Biomass Waste Pyrolytic Carbonization & Application, Yancheng 224051, China
| | - Yanjie Qi
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Siyu Pan
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Ning Wang
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Rongjun Bian
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Stephen Joseph
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China; School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Xuhui Zhang
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China.
| | - Lianqing Li
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China.
| | - Genxing Pan
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| |
Collapse
|
2
|
Yu X, Yu L, Wang H, Duan Y, Li X, Zhao X, Wei H. Upcycling Waste Biomass to Biochar: Feedstocks, Catalytic Mechanisms, and Applications in Advanced Oxidation for Wastewater Decontamination. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:6-26. [PMID: 39750544 DOI: 10.1021/acs.langmuir.4c03683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Advanced oxidation technology plays an important role in wastewater treatment due to active substances with high redox potential. Biochar is a versatile and functional biomass material. It can be used for resource management of various waste biomasses. In addition, carbonaceous materials are commonly used to enhance the synergistic mechanisms of advanced oxidation processes, because of their good electrical conductivity and metal-free leaching. Biochar produced from waste biomass through pyrolysis has catalytic potential, is cost-effective, and is environmentally friendly. It is commonly used to activate hydrogen peroxide, persulfate, ozone, photocatalysis, and other systems for degrading organic pollutants in water. This review provides a summary of the feedstocks, pyrolysis conditions, and modification methods used in biochar production. It also described the effects of these factors on the yield, structure, and active sites of the biochar. The review summarized the mechanisms of various catalytic systems and their applications in wastewater decontamination, as well as their potential for practical application. Eventually, the limitations of this current technique and the outlook for future research were noted.
Collapse
Affiliation(s)
- Xiaohong Yu
- College of Environment and Ecology, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province China
| | - Li Yu
- College of Environment and Ecology, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province China
| | - Hongtao Wang
- College of Environment and Ecology, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province China
| | - Yun Duan
- College of Environment and Ecology, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province China
| | - Xingfa Li
- College of Environment and Ecology, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province China
| | - Xia Zhao
- College of Environment and Ecology, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province China
| | - Huangzhao Wei
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
3
|
Chen L, Yang X, Huang F, Zhu X, Wang Z, Sun S, Dong F, Qiu T, Zeng Y, Fang L. Unveiling biochar potential to promote safe crop production in toxic metal(loid) contaminated soil: A meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124309. [PMID: 38838809 DOI: 10.1016/j.envpol.2024.124309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Biochar application emerges as a promising and sustainable solution for the remediation of soils contaminated with potentially toxic metal (loid)s (PTMs), yet its potential to reduce PTM accumulation in crops remains to be fully elucidated. In our study, a hierarchical meta-analysis based on 276 research articles was conducted to quantify the effects of biochar application on crop growth and PTM accumulation. Meanwhile, a machine learning approach was developed to identify the major contributing features. Our findings revealed that biochar application significantly enhanced crop growth, and reduced PTM concentrations in crop tissues, showing a decrease trend of grains (36.1%, 33.6-38.6%) > shoots (31.1%, 29.3-32.8%) > roots (27.5%, 25.7-29.2%). Furthermore, biochar modifications were found to amplify its remediation potential in PTM-contaminated soils. Biochar application was observed to provide favorable conditions for reducing PTM uptake by crops, primarily through decreasing available PTM concentrations and improving overall soil quality. Employing machine learning techniques, we identified biochar properties, such as surface area and C content as a key factor in decreasing PTM bioavailability in soil-crop systems. Furthermore, our study indicated that biochar application could reduce probabilistic health risks associated with of the presence of PTMs in crop grains, thereby contributing to human health protection. These findings highlighted the essential role of biochar in remediating PTM-contaminated lands and offered guidelines for enhancing safe crop production.
Collapse
Affiliation(s)
- Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China
| | - Xing Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, Renmin Road, Haikou, 570228, China
| | - Fengyu Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiaozhen Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhe Wang
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang, 621010, China
| | - Shiyong Sun
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang, 621010, China
| | - Faqin Dong
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang, 621010, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China
| | - Yi Zeng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Linchuan Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
4
|
Radziemska M, Blazejczyk A, Gusiatin MZ, Cydzik-Kwiatkowska A, Majewski G, Brtnický M. Compost-diatomite-based phytostabilization course under extreme environmental conditions in terms of high pollutant contents and low temperatures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174917. [PMID: 39034003 DOI: 10.1016/j.scitotenv.2024.174917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/05/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
The effects of changes in environmental temperatures on the immobilization or removal of cationic potentially toxic elements (PTE) in heavily polluted soils are often poorly understood, although both are widely studied in the context of phytostabilization. To address this issue, a novel compost-diatomite hybrid (CDH) amendment was developed and applied for assisted phytostabilization at two external temperature regimes. (Cd/Ni/Cu/Zn)-extremely polluted soils (unenriched and CDH-enriched) were cultivated with perennial ryegrass and native soil microbiome under greenhouse conditions and then transferred to freeze-thaw conditions (FTC). The decrease in metal potential toxicity in soils subjected to phytostabilization following both temperature treatments was characterized by a combination of sequential extraction and atomic absorption measurements. The soil microbiome was characterized by high-throughput sequencing. In a relative comparison, the greatest decrease in the content of all PTEs in CDH-enriched soil (compared to unenriched soil) appeared in FTC. Furthermore, under the influence of FTC, in the relative comparison between two CDH-enriched soils (exposed-, and not-exposed- to FTC) and two unenriched soils (exposed-, and not-exposed- to FTC), the content of all PTEs decreased more sharply in the CDH-enriched series than in the unenriched series. The largest redistribution into four sequentially extracted fractions in CDH-enriched soil was found for Zn. Based on the distribution pattern, Zn immobilization was greater in CDH-enriched soil in FTC. CDH increased species richness in the soil, while FTC stimulated the growth of Bacteroidia, Alphaproteobacteria, Theromomicrobia, and Gammaproteobacteria. The analysis of the functionalities of the microbiome indicated enhanced metal transportation and defense systems in samples exposed to FTC. The current research is crucial for understanding how extreme environmental conditions in both cases high pollutant levels and low temperatures affect the movement and transformation of PTEs in polluted soils during phytostabilization.
Collapse
Affiliation(s)
- Maja Radziemska
- Institute of Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Aurelia Blazejczyk
- Institute of Civil Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Mariusz Z Gusiatin
- Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Słoneczna St. 45G, 10-719 Olsztyn, Poland
| | - Agnieszka Cydzik-Kwiatkowska
- Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Słoneczna St. 45G, 10-719 Olsztyn, Poland
| | - Grzegorz Majewski
- Institute of Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Martin Brtnický
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic
| |
Collapse
|
5
|
Biswas PP, Chen WH, Lam SS, Park YK, Chang JS, Hoang AT. A comprehensive study of artificial neural network for sensitivity analysis and hazardous elements sorption predictions via bone char for wastewater treatment. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133154. [PMID: 38103286 DOI: 10.1016/j.jhazmat.2023.133154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/19/2023]
Abstract
Using bone char for contaminated wastewater treatment and soil remediation is an intriguing approach to environmental management and an environmentally friendly way of recycling waste. The bone char remediation strategy for heavy metal-polluted wastewater was primarily affected by bone char characteristics, factors of solution, and heavy metal (HM) chemistry. Therefore, the optimal parameters of HM sorption by bone char depend on the research being performed. Regarding enhancing HM immobilization by bone char, a generic strategy for determining optimal parameters and predicting outcomes is crucial. The primary objective of this research was to employ artificial neural network (ANN) technology to determine the optimal parameters via sensitivity analysis and to predict objective function through simulation. Sensitivity analysis found that for multi-metals sorption (Cd, Ni, and Zn), the order of significance for pyrolysis parameters was reaction temperature > heating rate > residence time. The primary variables for single metal sorption were solution pH, HM concentration, and pyrolysis temperature. Regarding binary sorption, the incubation parameters were evaluated in the following order: HM concentrations > solution pH > bone char mass > incubation duration. This approach can be used for further experiment design and improve the immobilization of HM by bone char for water remediation.
Collapse
Affiliation(s)
- Partha Pratim Biswas
- College of Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
| | - Wei-Hsin Chen
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan.
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Center for Global Health Research (CGHR), Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Taiwan
| | - Anh Tuan Hoang
- Faculty of Automotive Engineering, Dong A University, Danang, Vietnam
| |
Collapse
|
6
|
Xiao J, Li X, Zhang X, Cao Y, Vithanage M, Bolan N, Wang H, Zhong Z, Chen G. Contrasting effect of pristine, ball-milled and Fe-Mn modified bone biochars on dendroremediation potential of Salix jiangsuensis "172" for cadmium- and zinc-contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:123019. [PMID: 38008255 DOI: 10.1016/j.envpol.2023.123019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/20/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Bone biochar (BC) has a high capacity for the immobilization of potentially toxic elements (PTEs); however, its effect on dendroremediation efficiency remains unclear. Therefore, this study aimed to determine the effects of various concentrations (0, 0.5, 1, and 2 wt%) of BC, ball-milled BC (MBC), and Fe-Mn oxide-modified BC (FMBC) on soil properties, plant growth, and metal accumulation in Salix jiangsuensis "172" (SJ-172) grown in cadmium (Cd)- and zinc (Zn)-contaminated soil. BC and MBC promoted the photosynthetic rate, mineral element absorption, and plant growth of SJ-172, whereas FMBC inhibited the growth of SJ-172. Different biochars greatly influenced the concentrations of Cd and Zn in tissues of SJ-172. BC and MBC elevated the Cd levels, whereas FMBC decreased the Cd content in the leaves, stems, and cuttings of SJ-172. Unlikely, BC, MBC and FMBC show no evident change to the Zn concentration in the aboveground tissues of SJ-172, while decreased root Cd and Zn content compared with the control. MBC, at a 2.0% application rate, significantly increased the translocation factors of Cd (55.0%) and Zn (40.87%), whereas BC and FMBC demonstrated no significant effects compared with the control (P > 0.05). Moreover, 2.0% BC and MBC increased Cd and Zn accumulation in SJ-172 by 28.40 and 41.14, and 25.89 and 36.16%, respectively, whereas 2.0% FMBC reduced Cd and Zn accumulation by 53.20% and 13.18 %, respectively, compared with the control. The phytoremediation potential of SJ-172 for Cd- and Zn-contaminated soils was enhanced by MBC and BC, whereas it was lowered by FMBC compared to the control. These results provide novel insights for the application of fast-growing trees assisted by biochar amendments in the dendroremediation of severely PTEs-contaminated soil.
Collapse
Affiliation(s)
- Jiang Xiao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Xiaogang Li
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Xiaoping Zhang
- China National Bamboo Research Center, National Forestry and Grassland Administration, Hangzhou, 310012, China
| | - Yini Cao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China; Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Zheke Zhong
- China National Bamboo Research Center, National Forestry and Grassland Administration, Hangzhou, 310012, China
| | - Guangcai Chen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China.
| |
Collapse
|
7
|
Yu Q, Liu H, Lv G, Liu X, Wang L, Liao L. Mechanistic insight into lead immobilization on bone-derived carbon/hydroxyapatite composite at low and high initial lead concentration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165910. [PMID: 37524186 DOI: 10.1016/j.scitotenv.2023.165910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/06/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
The contamination of heavy metal lead has a serious impact on the natural environment and organisms. Among various materials for lead removal, animal bone derived hydroxyapatite has received extensive attention. However, there are different opinions among researchers regarding the mechanism of lead removal by hydroxyapatite, possibly due to varying initial lead concentrations used in different studies and lack of accuracy in the study of lead removal mechanisms. In present work, we synthesized a carbon-containing hydroxyapatite (CHAP) through pyrolysis of bovine bone with excellent lead removal efficiency, and further investigated the lead removal mechanism of CHAP under high and low initial lead concentrations by combining XRD Rietveld refinement, FTIR, XPS, HRTEM etc. methods. The results showed that under low initial Pb2+ concentration condition, the main mechanism of lead removal by CHAP was chemical precipitation (94.1 %), with small contributions of lead complexation with carbon functional groups and cation-π interactions on the amorphous carbon in CHAP, and surface adsorption on the precipitates. Under high initial Pb2+ concentration condition, chemical precipitation remained the main mechanism (74.68 %), but the contributions of the other three mechanisms increased, and ion exchange appeared in the later stage of the removal process. This study provides new insights on the lead immobilization mechanism by CHAP at different initial Pb2+ concentrations in water.
Collapse
Affiliation(s)
- Qihui Yu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Hao Liu
- School of Science, China University of Geosciences, Beijing 100083, China
| | - Guocheng Lv
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Xin Liu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Lijuan Wang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Libing Liao
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China.
| |
Collapse
|
8
|
Piccirillo C. Preparation, characterisation and applications of bone char, a food waste-derived sustainable material: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117896. [PMID: 37080100 DOI: 10.1016/j.jenvman.2023.117896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/21/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
The production of increasing quantities of by-products is a key challenge for modern society; their valorisation - turning them into valuable compounds with technological applications - is the way forward, in line with circular economy principles. In this review, the conversion of bones (by-products of the agro-food industry) into bone char is described. Bone char is obtained with a process of pyrolysis, which converts the organic carbon into an inorganic graphitic one. Differently from standard biochar of plant origin, however, bone char also contains calcium phosphates, the main component of bone (often hydroxyapatite). The combination of calcium phosphate and graphitic carbon makes bone char a unique material, with different possible uses. Here bone chars' applications in environmental remediation, sustainable agriculture, catalysis and electrochemistry are discussed; several aspects are considered, including the bones used to prepare bone char, the preparation conditions, how these affect the properties of the materials (i.e. porosity, surface area) and its functional properties. The advantages and limitations of bone chars in comparison to traditional biochar are discussed, highlighting the directions the research should take for bone chars' performances to improve. Moreover, an analysis on the sustainability of bone chars' preparation and use is also included.
Collapse
Affiliation(s)
- Clara Piccirillo
- CNR NANOTEC, Institute of Nanotechnology, Campus Ecoteckne, Via Monteroni, 73100, Lecce, Italy.
| |
Collapse
|
9
|
Huang J, Tan X, Ali I, Duan Z, Naz I, Cao J, Ruan Y, Wang Y. More effective application of biochar-based immobilization technology in the environment: Understanding the role of biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162021. [PMID: 36775150 DOI: 10.1016/j.scitotenv.2023.162021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/12/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
In recent years, biochar-based immobilization technology (BIT) has been widely used to treat different environmental issues because of its cost-effectiveness and high removal performance. However, the complexity of the real environment is always ignored, which hinders the transfer of the BIT from lab-scale to commercial applications. Therefore, in this review, the analysis is performed separately on the internal side of the BIT (microbial fixation and growth) and on the external side of the BIT (function) to achieve effective BIT performance. Importantly, the internal two stages of BIT have been discussed concisely. Further, the usage of BIT in different areas is summarized precisely. Notably, the key impacts were systemically analyzed during BIT applications including environmental conditions and biochar types. Finally, the suggestions and perspectives are elucidated to solve current issues regarding BIT.
Collapse
Affiliation(s)
- Jiang Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xiao Tan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Imran Ali
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Zhipeng Duan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Iffat Naz
- Department of Biology, Deanship of Educational Services, Qassim University, Buraidah 51452, Kingdom of Saudi Arabia
| | - Jun Cao
- National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098, China
| | - Yinlan Ruan
- Institute for Photonics and Advanced Sensing, The University of Adelaide, SA 5005, Australia
| | - Yimin Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
10
|
Wilson W, Yeboah B, Govender P. Evaluation of the suitability of integrated bone char- and biochar-treated groundwater for drinking using single-factor, Nemerow, and heavy metal pollution indexes. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:647. [PMID: 37154981 DOI: 10.1007/s10661-023-11249-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/13/2023] [Indexed: 05/10/2023]
Abstract
The treatment of contaminated groundwater using integrated bone char and biochar beds has been studied. The bone char and biochar were made in a locally built double-barrel retort utilising cow bones, coconut husks, bamboo, neem trees, and palm kernel shells at 450 °C and were graded into 0.05- and 0.315-mm sizes. Eight groundwater treatment experiments (BF2-BF9) were performed in columns with bed heights of 8.5-16.5 cm to remove nutrients, heavy metals, microorganisms, and interfering ions from groundwater using bone char, biochar, and a combination of bone and biochar. The water samples were analysed for twenty-one water quality parameters including pH, total dissolved solids, conductivity, turbidity, fluoride, chloride, sodium, and potassium. The rest were total coliforms, faecal coliforms, total heterotrophic bacteria, Escherichia coli, manganese, and total iron. The effectiveness of the treatment processes was assessed using the Ghana standard authority and the World Health Organisation's recommended values for drinking water quality. The results were shared using a simplified single-factor index, Nemerow's pollution index, and a heavy metal pollution index with decision-makers as a technology for groundwater treatment in rural communities in Africa. Bone char was more effective in removing total heterotrophic bacteria than any of the other treatment agents tested. This is because of its compact nature and small particle size. The quality of water treated by BF3, BF5, BF6, BF7, BF8, and BF9 was fit for drinking based on the single-factor and heavy-metal pollution evaluation because they have the lowest level of pollution. However, Nemerow pollution analysis found only BF5 to be the most suitable for public use.
Collapse
Affiliation(s)
- William Wilson
- Faculty of Science, Department of Chemical Sciences-DFC, University of Johannesburg, P. O. Box 17011, Johannesburg, South Africa.
- CSIR-Water Research Institute, Environmental Chemistry and Sanitation Engineering Division, P.O. Box AH 38, Achimota-Accra, Ghana.
| | - Boniface Yeboah
- CSIR-Institute of Industrial Research, Materials and Manufacturing Division, P. O. Box LG 576, Legon-Accra, Ghana
| | - Poomani Govender
- Faculty of Science, Department of Chemical Sciences-DFC, University of Johannesburg, P. O. Box 17011, Johannesburg, South Africa
| |
Collapse
|
11
|
Harindintwali JD, He C, Xiang L, Dou Q, Liu Y, Wang M, Wen X, Fu Y, Islam MU, Chang SX, Kueppers S, Shaheen SM, Rinklebe J, Jiang X, Schaeffer A, Wang F. Effects of ball milling on biochar adsorption of contaminants in water: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163643. [PMID: 37086985 DOI: 10.1016/j.scitotenv.2023.163643] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Reckless release of contaminants into the environment causes pollution in various aquatic systems on a global scale. Biochar is potentially an inexpensive and environmentally friendly adsorbent for removing contaminants from water. Ball milling has been used to enhance biochar's functionality; however, global analysis of the effect of ball milling on biochar's capacity to adsorb contaminants in aqueous solutions has not yet been done. Here, we conducted a meta-analysis to investigate the effects of ball milling on the adsorption/removal capacity of biochar for contaminants in aqueous solutions, and to investigate whether ball milling effects are related to biochar production, ball milling, and other experimental variables. Overall, ball milling significantly increased biochar adsorption capacity towards both inorganic and organic contaminants, by 69.9% and 561.9%, respectively. This could be attributed to ball milling increasing biochar surface area by 2.05-fold, pore volume by 2.39-fold, and decreasing biochar pH by 0.83-fold. The positive adsorption effects induced by ball milling varied widely, with the most effective being ball milling for 12 to 24 h at 300 to 400 rpm with a biochar:ball mass ratio of 1:100 on biochars produced at 400-550 °C from wood residues. Based on this meta-analysis, we conclude that ball milling could effectively enhance biochar's ability to remove organic and inorganic contaminants from aquatic systems.
Collapse
Affiliation(s)
- Jean Damascene Harindintwali
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao He
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Leilei Xiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingyuan Dou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingyi Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Geographical Sciences, Nantong University, Nantong 226001, China
| | - Xin Wen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mahbub Ul Islam
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Scott X Chang
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Stephan Kueppers
- Central Institute for Engineering, Electronics and Analytics, Forschungszentrum Jülich, Jülich 52428, Germany
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Andreas Schaeffer
- RWTH Aachen University, Institute for Environmental Research, 52074 Aachen, Germany
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; RWTH Aachen University, Institute for Environmental Research, 52074 Aachen, Germany; Central Institute for Engineering, Electronics and Analytics, Forschungszentrum Jülich, Jülich 52428, Germany.
| |
Collapse
|
12
|
Li J, Bai R, Chen W, Ren C, Yang F, Tian X, Xiao X, Zhao F. Efficient lead immobilization by bio-beads containing Pseudomonas rhodesiae and bone char. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130772. [PMID: 36680905 DOI: 10.1016/j.jhazmat.2023.130772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/23/2022] [Accepted: 01/09/2023] [Indexed: 05/16/2023]
Abstract
Mineralization of lead ions (Pb2+) to pyromorphite using phosphorus-containing materials is an effective way to remediate lead (Pb) contamination. Bone char is rich in phosphorus, but its immobilization of Pb2+ is limited by poor phosphate release. To utilize the phosphorus in bone char and provide a suitable growth environment for phosphate-solubilizing bacteria, bone char and Pseudomonas rhodesiae HP-7 were encapsulated into bio-beads, and the immobilization performance and mechanism of Pb in solution and soil by bio-beads were investigated. The results showed that 137 mg/g of phosphorus was released from bone char in the presence of the HP-7 strain. Pb2+ removal efficiency reached 100 % with an initial Pb2+ concentration of 1 mM, bone char content of 6 g/L, and bio-bead dosage of 1 %. Most Pb2+ was immobilized on the surface of the bio-beads as Pb5(PO4)3Cl. The soil remediation experiments showed a 34 % reduction in the acid-soluble fraction of Pb. The bio-beads showed good stability in long-term (30 d) soil remediation. The present study shows that bone char can be turned into an efficient Pb immobilization material in the presence of phosphate-solubilizing bacteria. Thus, bio-beads are expected to be used in the remediation of Pb-contaminated environments.
Collapse
Affiliation(s)
- Junpeng Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Bai
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chongyuan Ren
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Yang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaochun Tian
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiaofeng Xiao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
13
|
Azeem M, Arockiam Jeyasundar PGS, Ali A, Riaz L, Khan KS, Hussain Q, Kareem HA, Abbas F, Latif A, Majrashi A, Ali EF, Li R, Shaheen SM, Li G, Zhang Z, Zhu YG. Cow bone-derived biochar enhances microbial biomass and alters bacterial community composition and diversity in a smelter contaminated soil. ENVIRONMENTAL RESEARCH 2023; 216:114278. [PMID: 36115420 DOI: 10.1016/j.envres.2022.114278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/24/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Bone waste could be utilized as a potential amendment for remediation of smelter-contaminated soils. Nevertheless, the influences of cow bone-derived biochar (CB) on soil microbial biomass and microbial community composition in multi-metal contaminated mining soils are still not clearly documented. Hence, the cow bone was used as feedstock material for biochar preparation and pyrolyzed at two temperatures such as 500 °C (CB500) and 800 °C (CB800), and added to a smelter soil at the dosage of 0 (unamended control), 2.5, 5, and 10% (w/w); then, the soil treatments were cultivated by maize. The CB effect on soil biochemical attributes and response of soil microbial biomass, bacterial communities, and diversity indices were examined after harvesting maize. Addition of CB enhanced total nutrient contents (i.e., total nitrogen up to 26% and total phosphorus P up to 27%) and the nutrients availability (i.e., NH4 up to 50%; NO3 up to 31%; Olsen P up to 48%; extractable K up to 18%; dissolved organic carbon up to 74%) in the treated soil, as compared to the control. The CB500 application revealed higher microbial biomass C (up to 66%), P (up to 41%), and bacterial gene abundance (up to 76%) than the control. However, comparatively a lower microbial biomass nitrogen and diversity indices were observed in the biochar (both with CB500 and CB800) treated soils than in the unamended soils. At the phylum level, the highest dose (10% of CB500 and CB800 resulted in contrasting effects on the Proteobacteria diversity. The CB50010 favored the Pseudomonas abundance (up to 793%), Saccharibacteria (583%), Parcubacteria (138%), Actinobacteria (65%), and Firmicutes (48%) microbial communities, while CB80010 favored the Saccharibacteria (386%), Proteobacteria (12%) and Acidobacteria (11%), as compared to the control. These results imply that CB500 and CB800 have a remarkable impact on microbial biomass and bacterial diversity in smelter contaminated soils. Particularly, CB500 was found to be suitable for enhancing microbial biomass, bacterial growth of specific phylum, and diversity, which can be useful for bioremediation of mining soils.
Collapse
Affiliation(s)
- Muhammad Azeem
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Zhejiang Key Lab of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Institute of Soil and Environmental Sciences, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Punjab, 46300, Pakistan
| | | | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Luqman Riaz
- Department of Environmental Sciences, University of Narowal, 51750, Punjab, Pakistan
| | - Khalid S Khan
- Institute of Soil and Environmental Sciences, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Punjab, 46300, Pakistan
| | - Qaiser Hussain
- Institute of Soil and Environmental Sciences, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Punjab, 46300, Pakistan
| | - Hafiz A Kareem
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fakhar Abbas
- College of Environmental Science and Engineering, Zhongkai Agriculture and Engineering University, Guangzhou, China
| | - Abdul Latif
- Barani Agricultural Research Institute, Chakwal, Punjab, 48800, Pakistan
| | - Ali Majrashi
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589, Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516, Kafr El-Sheikh, Egypt.
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Zhejiang Key Lab of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China
| | - Zenqqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Zhejiang Key Lab of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China.
| |
Collapse
|
14
|
Cellulose Acetate Film Containing Bonechar for Removal of Metribuzin from Contaminated Drinking Water. Processes (Basel) 2022. [DOI: 10.3390/pr11010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bonechar presents high sorption capacity for mobile herbicides retained in soil and water. However, its use in a granulated and/or powder form makes it difficult to remove water. The objective of this study was to produce a cellulose acetate film with bonechar as a viable alternative to remove metribuzin from water. The treatments were composed of 2 and 3 g of bonechar fixed on a cellulose acetate film, pure bonechar, and a control (no bonechar). The sorption and desorption study was carried out in the equilibrium batch mode with five concentrations of metribuzin (0.25, 0.33, 0.5, 1, and 2 mg L−1). The water used in the experiment was potable water. Herbicide analysis was performed by High-Performance Liquid Chromatography (HPLC). The addition of 2 and 3 g of the bonechar fixed on the acetate film sorbed 40% and 60%, respectively, of the metribuzin at the lowest concentrations (0.25, 0.33, and 0.5 mg L−1). For both additions, desorption was low, being 7% and 2.5% at 24 and 120 h, respectively. There are still no reports of the production of cellulose acetate film with bonechar for herbicide removal in water, considered an alternative of easy handling and indicated for water treatment plants.
Collapse
|
15
|
Wu W, Liu Z, Azeem M, Guo Z, Li R, Li Y, Peng Y, Ali EF, Wang H, Wang S, Rinklebe J, Shaheen SM, Zhang Z. Hydroxyapatite tailored hierarchical porous biochar composite immobilized Cd(II) and Pb(II) and mitigated their hazardous effects in contaminated water and soil. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129330. [PMID: 35716571 DOI: 10.1016/j.jhazmat.2022.129330] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/11/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
A novel composite of hydroxyapatite tailored hierarchical porous biochar (HA-HPB) was synthesized and used for the adsorptive immobilization of Cd(II) and Pb(II) in water and soil. The hierarchical porous biochar (HPB) was prepared from rice husk through a molten-salt-assisted pyrolysis approach; then, a series of HA-HPB (with 0.5, 1, 2, 3, and 4 g of HPB) was prepared with co-precipitation procedure. All HA-HPBs, particularly HA-3HPB, revealed significantly higher removal efficiency of Cd(II) and Pb(II) (≥99.5%) in water than pristine biochar (5.79 - 24.12%). The immobilization efficiency of HA-3HPB for Cd(II) and Pb(II) was slightly inhibited by the ionic strength and co-existing cations. The Langmuir adsorption capacities of Cd(II) and Pb(II) were 88.1 and 110.2 mg/g, respectively. Ion exchange, complexation, cation-π interaction, and precipitation were the key mechanisms involved in the immobilization of Cd(II) and Pb(II) using HA-3HPB. The HA-3HPB reduced the availability of soil Cd (63.5 - 87.8%) and Pb (64.6 - 92.9%) compared to the unamended soil, and thus reduced their content in the Chinese cabbage shoots by 69.3 -95.4% for Cd and 66.5 -97.2% for Pb. These findings demonstrate the effectiveness of HA-HPB for remediation of Cd(II) and Pb(II) contaminated water and soil and mitigating the potential risks.
Collapse
Affiliation(s)
- Weilong Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Zihan Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Muhammad Azeem
- Key Lab of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observatory and Monitoring Station, Chinese Academy of Sciences, Ningbo 315830, China; Institute of Soil and Environmental Sciences, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Punjab 46300, Pakistan
| | - Zhiqiang Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Yage Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yaru Peng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Laboratory of Soil and Groundwater Management, Institute of Foundation Engineering, Water, and Waste-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Laboratory of Soil and Groundwater Management, Institute of Foundation Engineering, Water, and Waste-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212 Himachal Pradesh, India.
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
16
|
Li Y, Shaheen SM, Azeem M, Zhang L, Feng C, Peng J, Qi W, Liu J, Luo Y, Peng Y, Ali EF, Smith K, Rinklebe J, Zhang Z, Li R. Removal of lead (Pb +2) from contaminated water using a novel MoO 3-biochar composite: Performance and mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119693. [PMID: 35777593 DOI: 10.1016/j.envpol.2022.119693] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/16/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Removal of toxic chemicals from the environment using novel adsorbents is of great concern. In this study, a novel composite of molybdenum trioxide (MoO3)-engineered biochar (MoO3-BC) was derived from corn straw and synthesized for the removal of Pb(II) from water. The pyrolysis temperature of 600 °C was suitable for the thermal self-assembly of MoO3-BC. Although MoO3-BC had lower SBET (59.3 m2/g) than the pristine BC (157.8 m2/g), it had a stronger adsorption affinity to Pb(II). The Pb(II) removal capacity of MoO3-BC was 229.87 mg/g at pH 4.0, and the adsorptive removal of Pb(II) was fit using a pseudo-second-order model and the Langmuir model. High temperature favored the removal of Pb(II) by MoO3-BC; However, the removal of Pb(II) was inhibited with increasing the ion strength. The MoO3-BC revealed an acceptable stability and reusability, since the removal efficiency of Pb(II) remained above 80.7%, even after 8 cycles. The MoO3-BC effectively reduced ≥99.9% of Pb(II) in the polluted irrigation water. The Pb(II) removal mechanisms involved surface electrostatic attraction, ion exchange and surface complexation. These findings conclude that the MoO3-BC is a novel composite that can be used for the removal of Pb from contaminated water. More studies are needed to investigate the potentiality of MoO3-biochar composite for the removal of other metals from water in a mono and competitive sorption system.
Collapse
Affiliation(s)
- Yage Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Laboratory of Soil and Groundwater Management, Institute of Foundation Engineering, Water- and Waste-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212 Himachal Pradesh, India.
| | - Muhammad Azeem
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Institute of Soil and Environmental Sciences, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Punjab, 46300, Pakistan
| | - Lan Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Chuchu Feng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jin Peng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Weidong Qi
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Junxi Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yuan Luo
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yaru Peng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ken Smith
- The University of Arizona, The Department of Environmental Science, Shantz Building Rm 4291177 E 4th St.Tucson, AZ 85721, USA
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Laboratory of Soil and Groundwater Management, Institute of Foundation Engineering, Water- and Waste-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Lab of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observatory and Monitoring Station, Chinese Academy of Sciences, Ningbo 315830, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Lab of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observatory and Monitoring Station, Chinese Academy of Sciences, Ningbo 315830, China.
| |
Collapse
|
17
|
Hart A, Ebiundu K, Peretomode E, Onyeaka H, Nwabor OF, Obileke K. Value-added materials recovered from waste bone biomass: technologies and applications. RSC Adv 2022; 12:22302-22330. [PMID: 36043087 PMCID: PMC9364440 DOI: 10.1039/d2ra03557j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/20/2022] [Indexed: 12/22/2022] Open
Abstract
As the world population increases, the generation of waste bones will multiply exponentially, increasing landfill usage and posing health risks. This review aims to shed light on technologies for recovering valuable materials (e.g., alkaline earth material oxide such as CaO, hydroxyapatite, beta tri-calcium phosphate, phosphate and bone char) from waste bones, and discuss their potential applications as an adsorbent, catalyst and catalyst support, hydroxyapatite for tissue engineering, electrodes for energy storage, and phosphate source for soil remediation. Waste bone derived hydroxyapatite and bone char have found applications as a catalyst or catalyst support in organic synthesis, selective oxidation, biodiesel production, hydrocracking of heavy oil, selective hydrogenation and synthesis of bioactive compounds. With the help of this study, researchers can gather comprehensive data on studies regarding the recycling of waste bones, which will help them identify material recovery technologies and their applications in a single document. Furthermore, this work identifies areas for further research and development as well as areas for scaling-up, which will lead to reduced manufacturing costs and environmental impact. The idea behind this is to promote a sustainable environment and a circular economy concept in which waste bones are used as raw materials to produce new materials or for energy recovery.
Collapse
Affiliation(s)
- Abarasi Hart
- Department of Chemical and Biological Engineering, The University of Sheffield Sheffield S1 3JD UK
| | - Komonibo Ebiundu
- Department of Chemical Engineering, Niger Delta University Wilberforce Island Nigeria
| | | | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham Edgbaston Birmingham B15 2TT UK +44 (0)1214145292
| | - Ozioma Forstinus Nwabor
- Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - KeChrist Obileke
- Department of Physics, University of Fort Hare PMB X1314 Alice 5700 South Africa
| |
Collapse
|
18
|
Sun Y, Shaheen SM, Ali EF, Abdelrahman H, Sarkar B, Song H, Rinklebe J, Ren X, Zhang Z, Wang Q. Enhancing microplastics biodegradation during composting using livestock manure biochar. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119339. [PMID: 35461884 DOI: 10.1016/j.envpol.2022.119339] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/01/2022] [Accepted: 04/18/2022] [Indexed: 05/06/2023]
Abstract
Biodegradation of microplastics (MPs) in contaminated biowastes has received big scientific attention during the past few years. The aim here is to study the impacts of livestock manure biochar (LMBC) on the biodegradation of polyhydroxyalkanoate microplastics (PHA-MPs) during composting, which have not yet been verified. LMBC (10% wt/wt) and PHA-MPs (0.5% wt/wt) were added to a mixture of pristine cow manure and sawdust for composting, whereas a mixture without LMBC served as the control (CK). The maximum degradation rate of PHA-MPs (22-31%) was observed in the thermophilic composting stage in both mixtures. LMBC addition significantly (P < 0.05) promoted PHA-MPs degradation and increased the carbon loss and oxygen loading of PHA-MPs compared to CK. Adding LMBC accelerated the cleavage of C-H bonds and oxidation of PHA-MPs, and increased the O-H, CO and C-O functional groups on MPs. Also, LMBC addition increased the relative abundance of dominant microorganisms (Firmicutes, Proteobacteria, Deinococcus-Thermus, Bacteroidetes, Ascomycota and Basidiomycota) and promoted the enrichment of MP-degrading microbial biomarkers (e.g., Bacillus, Thermobacillus, Luteimonas, Chryseolinea, Aspergillus and Mycothermus). LMBC addition further increased the complexity and connectivity between dominant microbial biomarkers and PHA-MPs degradation characteristics, strengthened their positive relationship, thereby accelerated PHA-MPs biodegradation, and mitigated the potential environmental and human health risk. These findings provide a reference point for reducing PHA-MPs in compost and safe recycling of MPs contaminated organic wastes. However, these results should be validated with other composting matrices and conditions.
Collapse
Affiliation(s)
- Yue Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589, Jeddah, Saudi Arabia
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Hamada Abdelrahman
- Cairo University, Faculty of Agriculture, Soil Science Department, Giza, 12613, Egypt
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom; Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Hocheol Song
- Department of Environment, Energy, and Geoinformatics, Sejong University, Guangjin-Gu, Seoul, 05006, Republic of Korea
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; Department of Environment, Energy, and Geoinformatics, Sejong University, Guangjin-Gu, Seoul, 05006, Republic of Korea
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China.
| |
Collapse
|
19
|
Qu J, Shi J, Wang Y, Tong H, Zhu Y, Xu L, Wang Y, Zhang B, Tao Y, Dai X, Zhang H, Zhang Y. Applications of functionalized magnetic biochar in environmental remediation: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128841. [PMID: 35427975 DOI: 10.1016/j.jhazmat.2022.128841] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/14/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Magnetic biochar (MBC) is extensively applied on contaminants removal from environmental medium for achieving environmental-friendly remediation with reduction of secondary pollution owing to its easy recovery and separation. However, the summary of MBC synthesis methods is still lack of relevant information. Moreover, the adsorption performance for pollutants by MBC is limited, and thus it is imperative to adopt modification techniques to enhance the removal ability of MBC. Unfortunately, there are few reviews to present modification methods of MBC with applications for removing hazardous contaminants. Herein, we critically reviewed (i) MBC synthetic methods with corresponding advantages and limitations; (ii) adsorption mechanisms of MBC for heavy metals and organic pollutants; (iii) various modification methods for MBC such as functional groups grafting, nanoparticles loading and element doping; (iv) applications of modified MBC for hazardous contaminants adsorption with deep insight to relevant removal mechanisms; and (v) key influencing conditions like solution pH, temperature and interfering ions toward contaminants removal. Finally, some constructive suggestions were put forward for the practical applications of MBC in the near future. This review provided a comprehensive understanding of using functionalized MBC as effective adsorbent with low-cost and high-performance characteristics for contaminated environment remediation.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jiajia Shi
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yihui Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Hua Tong
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yujiao Zhu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Lishu Xu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Bo Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiao Dai
- Harbin ZENENG Environmental Technology Co. Ltd., China
| | - Hui Zhang
- Harbin ZENENG Environmental Technology Co. Ltd., China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun 130102, China.
| |
Collapse
|
20
|
Mehmood S, Ahmed W, Alatalo JM, Mahmood M, Imtiaz M, Ditta A, Ali EF, Abdelrahman H, Slaný M, Antoniadis V, Rinklebe J, Shaheen SM, Li W. Herbal plants- and rice straw-derived biochars reduced metal mobilization in fishpond sediments and improved their potential as fertilizers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154043. [PMID: 35202685 DOI: 10.1016/j.scitotenv.2022.154043] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Fishpond sediments are rich in organic carbon and nutrients; thus, they can be used as potential fertilizers and soil conditioners. However, sediments can be contaminated with toxic elements (TEs), which have to be immobilized to allow sediment reutilization. Addition of biochars (BCs) to contaminated sediments may enhance their nutrient content and stabilize TEs, which valorize its reutilization. Consequently, this study evaluated the performance of BCs derived from Taraxacum mongolicum Hand-Mazz (TMBC), Tribulus terrestris (TTBC), and rice straw (RSBC) for Cu, Cr, and Zn stabilization and for the enhancement of nutrient content in the fishpond sediments from San Jiang (SJ) and Tan Niu (TN), China. All BCs, particularly TMBC, reduced significantly the average concentrations of Cr, Cu, and Zn in the overlying water (up to 51% for Cr, 71% for Cu, and 68% for Zn) and in the sediments pore water (up to 77% for Cr, 76% for Cu, and 50% for Zn), and also reduced metal leachability (up to 47% for Cr, 60% for Cu, and 62% for Zn), as compared to the control. The acid soluble fraction accounted for the highest portion of the total content of Cr (43-44%), Cu (38-43%), and Zn (42-45%), followed by the reducible, oxidizable, and the residual fraction; this indicates the high potential risk. As compared with the control, TMBC was more effective in reducing the average concentrations of the acid soluble Cr (15-22%), Cu (35-53%), and Zn (21-39%). Added BCs altered the metals acid soluble fraction by shifting it to the oxidizable and residual fractions. Moreover, TMBC improved the macronutrient status in both sediments. This work provides a pathway for TEs remediation of sediments and gives novel insights into the utilization of BC-treated fishpond sediments as fertilizers for crop production.
Collapse
Affiliation(s)
- Sajid Mehmood
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou City 570100, China
| | - Waqas Ahmed
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou City 570100, China
| | - Juha M Alatalo
- Environmental Science Center, Qatar University, Doha, Qatar
| | - Mohsin Mahmood
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou City 570100, China
| | - Muhammad Imtiaz
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Allah Ditta
- Department of Environmental Sciences, Shaheed Benazir Bhutto University Sheringal, Dir (U), Khyber Pakhtunkhwa 18000, Pakistan
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Hamada Abdelrahman
- Cairo University, Faculty of Agriculture, Soil Science Department, Giza 12613, Egypt
| | - Michal Slaný
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 36 Bratislava, Slovakia; Institute of Construction and Architecture, Slovak Academy of Sciences, Dúbravská cesta 9, 845 03 Bratislava, Slovakia
| | - Vasileios Antoniadis
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Greece
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; University of Sejong, Department of Environment, Energy and Geoinformatics, Guangjin-Gu, Seoul 05006, Republic of Korea
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah 21589, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt.
| | - Weidong Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou City 570100, China.
| |
Collapse
|