1
|
Wang B, Zhang W, Zhong Y, Guo Y, Wang X, Zhang X. Fluorescent cellulose hydrogels based on corn stalk of double sulfhydryl functional group modification for Hg(II) removal and detection. Int J Biol Macromol 2024; 281:136427. [PMID: 39389504 DOI: 10.1016/j.ijbiomac.2024.136427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/23/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
Ions of mercury, one of the most hazardous heavy metals in nature, pose serious risks to the environment and human health. Blue sulfur-doped carbon dots (SCDs) from corn stalks were utilized as material. The SCDs were incorporated into a carboxylated hydrogel modified with sulfur, and a compound gel (SCDs-KTOCS gel) was successfully fabricated for simultaneous fluorescence detection and Hg(II) adsorption. This enabled the effective identification and removal of Hg(II) from contaminated water. The chemical content, fluorescence properties, and adsorption behaviors of the SCDs-KTOCS-gels were analyzed. The results demonstrate that the SCDs-KTOCS-gels exhibited effective Hg(II) adsorption (193 mg/g) and an extensive linear spectrum for Hg(II) fluorescence emission (150-500 mg/L; detection limit = 1.5668 mg/L). The adsorption values fit well with the Temkin models and pseudo-second-order kinetics. Additionally, Hg(II) detection and adsorption in the SCDs-KTOCS-gels were examined. By exchanging the existing probe for a suitable one that fits various relevant applications, this study suggests an environmentally friendly and sustainable method of producing materials for removing and detecting Hg(II) and constructing a fluorescence hydrogel for the detection and adsorption of different metals.
Collapse
Affiliation(s)
- Boyun Wang
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Wanqi Zhang
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yuan Zhong
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yuan Guo
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ximing Wang
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Sandy Shrubs Fibrosis and Energy Development and Utilization, Hohhot 010018, China.
| | - Xiaotao Zhang
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Sandy Shrubs Fibrosis and Energy Development and Utilization, Hohhot 010018, China; Key Laboratory of Agricultural Ecological Security and Green Development at Universities of Inner Mongolia Autonomous, Hohhot 010018, China.
| |
Collapse
|
2
|
Peng C, Long T, Luo S, Ouyang M, Luo H, Xu D, Lin Q. Visualizing and sorbing Hg(II) with a cellulose-based red fluorescence aerogel: Simultaneous detection and removal. Int J Biol Macromol 2024; 264:130563. [PMID: 38431018 DOI: 10.1016/j.ijbiomac.2024.130563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/10/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Both sensing and removal of Hg(II) are important to environment and human health in view of the high toxicity and wide applications of mercury in industry. This study aims to develop a cellulose-based fluorescent aerogel for simultaneous Hg(II) sensing and removal via conveniently cross-linking two nanomaterials cellulose nanocrystals and bovine serum albumin-functionalized gold nanoclusters (BSA-AuNCs) with epichlorohydrin. The aerogel exhibited strong homogeneous red fluorescence at the non-edged regions under UV light due to highly dispersed BSA-AuNCs in it, and its fluorescence could be quenched by Hg(II). Through taking pictures with a smartphone, Hg(II) in the range of 0-1000 μg/L could be quantified with a detection limit of 12.7 μg/L. The sorption isotherm of Hg(II) by the aerogel followed Freundlich model with an equation of Qe = 0.329*Ce1/0.971 and a coefficient of 0.999. The maximum sorption capacity can achieve 483.21 mg/g for Hg(II), much higher than many reported sorbents. The results further confirmed Hg(II) strong sorption and sensitive detection are due to its complexation and redox reaction with the chemical groups in aerogels and its strong fluorescence quenching effect. Due to extensive sources and low cost, cellulose is potential to be developed into aerogels with multiple functions for sophisticated applications.
Collapse
Affiliation(s)
- Chenzhan Peng
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha, 410004, China; Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Tiantian Long
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha, 410004, China; Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Shan Luo
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha, 410004, China; Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Min Ouyang
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha, 410004, China; Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Hongmei Luo
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha, 410004, China; Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Dong Xu
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha, 410004, China; Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Qinlu Lin
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha, 410004, China
| |
Collapse
|
3
|
Jiao H, Bi R, Li F, Chao J, Zhang G, Zhai L, Hu L, Wang Z, Dai C, Li B. Rapid, easy and catalyst-free preparation of magnetic thiourea-based covalent organic frameworks at room temperature for enrichment and speciation of mercury with HPLC-ICP-MS. J Chromatogr A 2024; 1717:464683. [PMID: 38295741 DOI: 10.1016/j.chroma.2024.464683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/14/2024] [Accepted: 01/25/2024] [Indexed: 02/23/2024]
Abstract
The complex and cumbersome preparation of magnetic covalent organic frameworks (COFs) nanocomposites on a small scale limits their application. Herein, a rapid and easy route was employed for the preparation of magnetic thiourea-based COFs nanocomposites. COFs were coated on Fe3O4 nanoparticles at room temperature without a catalyst within approximately 30 min. This method is suitable for the large-scale preparation of magnetic adsorbent. Using the as-prepared magnetic adsorbent (Fe3O4@COF-TpTU), we developed a simple, efficient, and sensitive magnetic solid-phase extraction-high performance liquid chromatography-inductively coupled plasma-mass spectrometry (MSPE-HPLC-ICP-MS) for the enrichment and determination of mercury species, including Hg2+, methylmercury (MeHg), and ethylmercury (EtHg). The effects of the experimental parameters on the extraction efficiency, including solution pH, adsorption and desorption time, composition and volume of the elution solvent, salinity, coexisting ions, and dissolved organic matter, were comprehensively investigated. Under optimised conditions, the limits of detection in the developed method were 0.56, 0.34, and 0.47 ng L-1 with enrichment factors of 190, 195, and 180-fold for Hg2+, MeHg, and EtHg, respectively. The satisfactory spiked recoveries (97.0-103%) in real water samples and high consistency between the certified and determined values in a certified reference material demonstrate the high accuracy and reproducibility of the developed method. The as-proposed method with simple operation, high sensitivity, and excellent anti-matrix interference performance was successfully applied to the enrichment and determination of trace levels of mercury species in the natural samples with complicated matrices, such as underground water, surface water, seawater and biological samples.
Collapse
Affiliation(s)
- Heping Jiao
- Shandong Analysis and Tester Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Ruixiang Bi
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Fangli Li
- Shandong Public Health Clinic Center, Jinan 266075, China
| | - Jingbo Chao
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China
| | - Guimin Zhang
- National Engineering and Technology Research Centre of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi 276005, China
| | - Lihai Zhai
- National Engineering and Technology Research Centre of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi 276005, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhenhua Wang
- Shandong Analysis and Tester Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Caifeng Dai
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China.
| | - Bing Li
- Shandong Analysis and Tester Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Shandong Key Laboratory for Adhesive Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| |
Collapse
|
4
|
Wang Y, Nakano T, Chen X, Xu YL, He YJ, Wu YX, Zhang JQ, Tian W, Zhou MH, Wang SX. Studies on adsorption properties of magnetic composite prepared by one-pot method for Cd(II), Pb(II), Hg(II), and As(III): Mechanism and practical application in food. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133437. [PMID: 38246063 DOI: 10.1016/j.jhazmat.2024.133437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/24/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
A one-pot synthesis afforded a magnetic, crosslinked polymer adsorbent (m-P6) with a variety of functional groups to realize simultaneous adsorption of Cd2+, Pb2+, Hg2+, and As3+. The material was characterized by TEM-EDS, XRD, FT-IR, VSM, and XPS. Kinetic and isothermal analyses suggested mainly chemisorption processes of heavy metal ions that form multiple layers on heterogeneous surfaces. Theoretical adsorption capacities calculated by a pseudo-2nd-order kinetic model and the Sips isothermal model were 282.88 mg/g for Cd2+, 326.18 mg/g for Pb2+, 117.85 mg/g for Hg2+, and 320.29 mg/g for As3+. m-P6 not only can efficiently adsorb divalent heavy metals (Cd2+, Pb2+, Hg2+), but also demonstrate a process of adsorption-driven catalytic oxidation by single-electron transfer (SET) from As3+ to As5+. In application, in addition to adsorption in water, m-P6 is capable of minimizing matrix interference, and extracting trace heavy metals in a complex environment (cereal) through easy operations for improving the detection accuracy, as well as it is potential for application in detection of trace heavy metals in foodstuffs. m-P6 can be readily regenerated and efficiently recycled for 5 cycles using eluent E12 and dilute acid.
Collapse
Affiliation(s)
- Yue Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Tamaki Nakano
- l̥Institute for Catalysis (ICAT), Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan
| | - Xi Chen
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Yu-Long Xu
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ying-Jie He
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yan-Xiang Wu
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Jie-Qiong Zhang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Wei Tian
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Ming-Hui Zhou
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| | - Song-Xue Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| |
Collapse
|
5
|
Hou S, Liu Y, Chen T, Zhou D, Zhang M, Li Y, Bai Y, Zheng S, Yang S, Zhang G, Xu H. Tunable Fluorine-Functionalized Scholl-Coupled Microporous Polymer for the Selective Adsorption and Ultrasensitive Analysis of Environmental Liquid-Crystal Monomers. Anal Chem 2023. [PMID: 37433191 DOI: 10.1021/acs.analchem.3c00182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Liquid-crystal monomers (LCMs), especially fluorinated biphenyls and analogues (FBAs), are identified to be an emerging generation of persistent organic pollutants. However, there is a dearth of information about their occurrence and distribution in environmental water and lacustrine soil samples. Herein, a series of fluorine-functionalized Scholl-coupled microporous polymers (FSMP-X, X = 1-3) were designed and synthesized for the highly efficient and selective enrichment of FABs. Their hydrophobicity, porosity, chemical stability, and adsorption performance (capacity, rate, and selectivity) were regulated preciously. The best-performing material (FSMP-2) was employed as the on-line fluorous solid-phase extraction (on-line FSPE) adsorbent owing to its high adsorption capacity (313.68 mg g-1), fast adsorption rate (1.05 g h-1), and specific selectivity for FBAs. Notably, an enrichment factor of up to 590.2 was obtained for FSMP-2, outperforming commercial C18 (12.6-fold). Also, the underlying adsorption mechanism was uncovered by density functional theory calculations and experiments. Based on this, a novel and automated on-line FSPE-high-performance liquid chromatography method was developed for ultrasensitive (detection limits: 0.0004-0.0150 ng mL-1) and low matrix effect (73.79-113.3%) determination of LCMs in lake water and lacustrine soils. This study offers new insight into the highly selective quantification of LCMs and the first evidence for their occurrence and distribution in these environmental samples.
Collapse
Affiliation(s)
- Shenghuai Hou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Ying Liu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Tiantian Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Dandan Zhou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Manlin Zhang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yan Li
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yuxuan Bai
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Shuang Zheng
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Shu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Ganbing Zhang
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Hui Xu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
6
|
Khojastehnezhad A, Moeinpour F, Jafari M, Shehab MK, Samih ElDouhaibi A, El-Kaderi HM, Siaj M. Postsynthetic Modification of Core-Shell Magnetic Covalent Organic Frameworks for the Selective Removal of Mercury. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37276585 DOI: 10.1021/acsami.3c02914] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Core-shell magnetic covalent organic framework (COF) materials were prepared, followed by shell material functionalization with different organic ligands, including thiosemicarbazide, through a postsynthetic modification approach. The structures of the prepared samples were characterized with various techniques, including powder X-ray diffraction (PXRD), Brunauer-Emmett-Teller (BET) method, thermogravimetric analysis (TGA), photoinduced force microscopy (PiFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and solid 13C NMR. PXRD and BET studies revealed that the crystalline and porous nature of the functionalized COFs was well maintained after three steps of postsynthetic modification. On the other hand, solid 13C NMR, TGA, and PiFM analyses confirmed the successful functionalization of COF materials with good covalent linkage connectivity. The use of the resulting functionalized magnetic COF for selective and ultrafast adsorption of Hg(II) has been investigated. The observations displayed rapid kinetics with adsorption dynamics conforming to the quasi-second-order kinetic model and the Langmuir adsorption model. Furthermore, this prepared crystalline magnetic material demonstrated a high Langmuir Hg(II) uptake capacity, reaching equilibrium in only 5 min. Thermodynamic calculations proved that the adsorption process is endothermic and spontaneous.
Collapse
Affiliation(s)
- Amir Khojastehnezhad
- Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C3P8, Canada
| | - Farid Moeinpour
- Department of Chemistry, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas 7915893144, Iran
| | - Maziar Jafari
- Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C3P8, Canada
| | - Mohammad K Shehab
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Ahmad Samih ElDouhaibi
- Department of Chemistry, Lebanese University, College of Science III, Campus Mont Michel, Tripoli 1352, Lebanon
| | - Hani M El-Kaderi
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Mohamed Siaj
- Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C3P8, Canada
| |
Collapse
|
7
|
Cui WR, Xu W, Chen YR, Liu K, Qiu WB, Li Y, Qiu JD. Olefin-linked cationic covalent organic frameworks for efficient extraction of ReO 4-/ 99TcO 4. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130603. [PMID: 36580784 DOI: 10.1016/j.jhazmat.2022.130603] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/01/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Efficient extraction of radioactive 99TcO4- from strong acid/base solutions by porous adsorbents is extremely desirable but remains a great challenge. To overcome the challenge, here we report the first example of an olefin-linked cationic covalent organic framework (COF) named BDBI-TMT with excellent acid, base and radiation stability is synthesized by integrating robust imidazolium salt-based linkers with triazine building blocks. BDBI-TMT shows an ultra-fast adsorption kinetics (equilibrium is reached within 1 min) and an excellent ReO4- (a non-radioactive surrogate of 99TcO4-) capture capacity of 726 mg g-1, which can be attributed to the abundance of precisely tailored imidazolium salt-based units on the highly accessible pore walls of the ordered pore channels. Furthermore, the formation of the highly conjugated bulky alkyl skeleton enhances the hydrophobicity of BDBI-TMT, which significantly improves not only the affinity toward ReO4-/99TcO4- but also the chemical stability, allowing selective and reversible extraction of ReO4-/99TcO4- even under extreme conditions. This work demonstrates the great potential of olefin-linked cationic COFs for ReO4-/99TcO4- extraction, providing a new avenue to construct high-performance porous adsorbents for radionuclide remediation.
Collapse
Affiliation(s)
- Wei-Rong Cui
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou 341000, PR China.
| | - Wei Xu
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou 341000, PR China
| | - Yi-Ru Chen
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou 341000, PR China
| | - Kai Liu
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou 341000, PR China
| | - Wei-Bin Qiu
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou 341000, PR China
| | - Yibao Li
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou 341000, PR China.
| | - Jian-Ding Qiu
- College of Chemistry, Nanchang University, Nanchang 330031, PR China.
| |
Collapse
|
8
|
Ning T, Di S, Li Z, Zhang H, Peng Z, Yang H, Chen P, Bao Y, Zhai Y, Zhu S. Fabrication of a core-shell porphyrin-based magnetic covalent organic framework for effective extraction of PCPs in a wide polarity range. Anal Chim Acta 2023; 1239:340615. [PMID: 36628698 DOI: 10.1016/j.aca.2022.340615] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/20/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022]
Abstract
A novel porphyrin-based magnetic covalent organic framework (PCOF) was first reported by using a facile synthetic procedure. The Fe3O4@NH2@PCOF nanospheres were utilized to effectively extract personal care products in a wide polarity range (log Kow values from 1.96 to 7.60). The successful magnetic solid-phase extraction (MSPE) of target analytes could be ascribed to the sufficient oxygen-, nitrogen- and phenyl-containing functional groups of the COF layer, which are demonstrated to be of good compatibility with pollutants exhibiting different polarities by using molecular dynamics simulations, independent gradient model analysis and various characterizations. The MSPE extraction efficiency was enhanced by optimizing key parameters. The findings indicated that the method had a wide linearity range (1-500 ng mL-1 for parabens and UV filters) and low detection limits (0.4-0.9 ng mL-1 for parabens and 0.2-0.6 ng mL-1 for UV filters). The accuracy was reflected by recoveries ranging from 74% to 114%. Satisfactory intra- and inter-day precisions from 3.0% to 9.8% and 0.5%-9.1% were obtained. Overall, the proposed MSPE-HPLC method is accurate and reliable for identifying parabens as well as UV filters in wastewater and swimming pool water. The potential of the method for evaluating human exposure risk was unfolded.
Collapse
Affiliation(s)
- Tao Ning
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Siyuan Di
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Zihan Li
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Haokun Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Zhangdi Peng
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Hucheng Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Pin Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Yue Bao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Yixin Zhai
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Shukui Zhu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China.
| |
Collapse
|
9
|
Li HZ, Yang C, Qian HL, Yan XP. Room-temperature synthesis of ionic covalent organic frameworks for efficient removal of diclofenac sodium from aqueous solution. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Liang X, Li F, Zhong S, Yin Y, Zhang Y, Huang Z. Resource utilization of pig hair to prepare low-cost adsorbents with high density of sulfhydryl for enhanced and trace level removal of aqueous Hg(II). Int J Biol Macromol 2022; 220:79-89. [PMID: 35973482 DOI: 10.1016/j.ijbiomac.2022.08.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/29/2022] [Accepted: 08/10/2022] [Indexed: 11/26/2022]
Abstract
Pig hair (PH), a keratinous waste, was modified by ammonium thioglycolate in a ball milling to promote its performance of Hg(II) sequestration. The ball milling broke the hydrophobic cuticle sheath and enhanced the reduction of disulfide bond, which increased the sulfydryl content of the modified PH (BTPH) from 0.07 to 11.05 μmol/g. BTPH exhibited a significantly higher capture capacity of Hg(II) (415.4 mg/g) than PH (3.1 mg/g), as well as the commercial activated carbon (219.7 mg/g), and persisted its performance over a wide range of solution pH. Meanwhile, BTPH with a distribution coefficient of 5.703 × 105 mL/g could selectively capture Hg(II) from the water with the coexisting metal ions such as Mg(II), Cd(II) and Pb(II). Moreover, the low-cost BTPH could reduce the Hg(II) from 1.0 mg/L to well below the limit of drinkable water (2 μg/L) in real-world samples. Density functional theory (DFT) calculations and state-of-the-art characterizations illustrated that the binding of Hg(II) to sulfydryl groups was the main adsorption mechanism. Notably, BTPH decreased the mercury content of water spinaches from 24.1 to 0.50 mg/kg and thereby significantly reduced the phytotoxicity of Hg(II). This work therefore provides a sustainable way to utilize keratinous wastes for the remediation of aqueous Hg(II).
Collapse
Affiliation(s)
- Xingtang Liang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, School of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China
| | - Fengzhi Li
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, School of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China
| | - Shuming Zhong
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, School of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China
| | - Yanzhen Yin
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, School of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China.
| | - Yanjuan Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Zuqiang Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
11
|
Ran XQ, Qian HL, Yan XP. Integrating Ordered Two-Dimensional Covalent Organic Frameworks to Solid-State Nanofluidic Channels for Ultrafast and Sensitive Detection of Mercury. Anal Chem 2022; 94:8533-8538. [PMID: 35653553 DOI: 10.1021/acs.analchem.2c01595] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Grafting specific recognition moieties onto solid-state nanofluidic channels is a promising way for selective and sensitive sensing of analytes. However, the time-consuming interaction between recognition moieties and analytes is the main hindrance to the application of nanofluidic channel-based sensors in rapid detection. Here, we show the integration of ordered two-dimensional covalent organic frameworks (2D COFs) to solid-state nanofluidic channels to achieve rapid, selective, and sensitive detection of contaminants. As a proof of concept, a thiourea-linked 2D COF (JNU-3) as the recognition unit is covalently bonded on the stable artificial anodic aluminum oxide nanochannels (AAO) to fabricate a JNU-3@AAO-based nanofluidic sensor. The rapid and selective interaction of Hg(II) with the highly ordered channels of JNU-3 allows the JNU-3@AAO-based nanofluidic sensor to realize ultrafast and precise determination of Hg(II) (90 s) with a low limit of detection (3.28 fg mL-1), wide linear range (0.01-100 pg mL-1), and good precision (relative standard deviation of 3.8% for 11 replicate determination of 10 pg mL-1). The developed method was successfully applied to the determination of mercury in a certified reference material A072301c (rice powder), real water, and rice samples with recoveries of 90.4-99.8%. This work reveals the great potential of 2D COFs-modified solid-state nanofluidic channels as a sensor for the rapid and precise detection of contaminants in complicated samples.
Collapse
Affiliation(s)
- Xu-Qin Ran
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hai-Long Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|