1
|
Wen Q, Yang L, Dai W, Yu J, Wei B, Yin S. The geochemical stability of typical arsenic-bearing sinter in the Tibetan plateau: Implications from quantitative mineralogy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166862. [PMID: 37689193 DOI: 10.1016/j.scitotenv.2023.166862] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/19/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
High‑arsenic (As) sinter deposited from geothermal water is a potentially overlooked hazardous matrix and there remain substantial gaps in our comprehension of the stability of As sequestered within it. In this study, qualitative and quantitative analysis of the mineralogy of As-bearing sinter was conducted by Mineral Liberation Analyzer (MLA) in geothermal areas of the Tibetan Plateau to reveal the geochemical stability of As. Our results indicated that the contents of As in sinter were 3 orders of magnitude higher than the local soil. The dominant host minerals of As were calcite (40.9 %), thenardite (22.5 %), calcium silicate (13.0 %), and halite (8.1 %). Additionally, it was found that a relatively higher As bioavailability was extracted by ethylene diamine tetraacetic acid (EDTA), with a leaching rate of 41.2 %. Notably, the X-ray diffraction (XRD) showed that the thenardite and halite were decomposed after the leaching. The combination of mineralogy and geochemistry data suggested that calcite and calcium silicate were a crucial mechanism for As retention in sinter, while the dissolution of saline minerals (e.g., thenardite, halite, and calcium chloride) served as the primary sources for As release. This finding unveils the potential risks and mechanisms associated with high-As sinter, providing scientific guidance for risk management of sinter.
Collapse
Affiliation(s)
- Qiqian Wen
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Linsheng Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Weijie Dai
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jiangping Yu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Binggan Wei
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Shuhui Yin
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
2
|
Li M, Zhou H, Wangjin Y, Ye M, Xu X, Li X. Remediation of Cd-contaminated soil by electrokinetics coupled with the permeable reactive barrier from immobilized yeast. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163451. [PMID: 37061052 DOI: 10.1016/j.scitotenv.2023.163451] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/17/2023] [Accepted: 04/07/2023] [Indexed: 06/01/2023]
Abstract
Yeast was used to prepare permeable reactive barrier (PRB) with immobilized microbial technology, and the electrokinetics coupled with the immobilized yeast PRB (IMEK-PRB) was established to remediate Cd-contaminated soil. The effect of the different PRBs prepared by immobilized microbial technology on Cd removal was explored. The voltage gradient had influence on the removal of Cd, and the removal reached as high as 53.70 % at a voltage gradient of 2.5 V/cm. The lowest removal about 34.12 % was obtained with yeast pellets prepared by the embedding method used as PRB. The yeast in PRB was partially broken and adhered, and the intensity of the absorption peak of the group analyzed with infrared spectra and the crystal diffraction peak from X-ray diffraction changed, leading to a decrease in its activity. The average removal of Cd increased by >10 % when fly ash-based yeast pellets prepared with the adsorption-embedding method, and fly ash-adsorbed yeast prepared by the adsorption method were used as PRB. IMEK-PRB remediation would greatly reduce the toxicity of Cd-contaminated soil, weaken harmful effects on the soil environment and reduce environmental risks. The fly ash-based yeast pellets used in IMEK-PRB have great application prospects for the remediation of Cd-contaminated soil.
Collapse
Affiliation(s)
- Mengwei Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Haidong Zhou
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yadan Wangjin
- School of Communication and Information Engineering, Shanghai Technical Institute of Electronics Information, Shanghai, China
| | - Mixuan Ye
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xinxuan Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xin Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
3
|
Liu W, Xing X, Li M, Yu Y, Hu T, Mao Y, Liang L, Zhang Y, Zhang J, Qi S. New insight into the geochemical mechanism and behavior of heavy metals in soil and dust fall of a typical copper smelter. ENVIRONMENTAL RESEARCH 2023; 225:115638. [PMID: 36889563 DOI: 10.1016/j.envres.2023.115638] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
The desorption mechanism of heavy metals (HMs) in soil around the mining region are complex and affected by multiple pollution sources, including sewage discharge and atmospheric deposition. Meanwhile, pollution sources would change soil physical and chemical properties (mineralogy and organic matter), thus affecting the bioavailability of HMs. This study aimed to investigate the pollution source of HMs (Cd, Co, Cu, Cr, Mn, Ni, Pb, and Zn) in soil near mining, and further evaluate influence mechanism of dust fall on HMs pollution in soil by desorption dynamics processes and pH-dependence leaching test. Result presented that dust fall is the primary pollution source to HMs accumulation in soil. Additionally, the result of mineralogical analysis in dust fall revealed that quartz, kaolinite, calcite, chalcopyrite, and magnetite are the major mineralogical phases by XRD and SEM-EDS. Meanwhile, the abundance of kaolinite and calcite in dust fall is higher than in soil, which is the primary reason of higher acid-base buffer capacity of dust fall. Correspondingly, the weakened or disappeared of hydroxyl after the adding acid extraction (0-0.4 mmol· g-1) demonstrated that hydroxyl is the main participants of HMs absorption in soil and dust fall. These combined findings suggested that atmospheric deposition not only increases the pollution loading of HMs in soil, but also changes the mineral phase composition of soil, which would increase the adsorption capacity and bioavailability of HMs in soil. This is very remarkable that heavy metals in soil influenced by dust fall pollution could be released preferentially when soil pH is changed. The present results of this study would provide efficient and scientific targeted strategies for pollution control of HMs in soil near mining areas.
Collapse
Affiliation(s)
- Weijie Liu
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Xinli Xing
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China.
| | - Miao Li
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Yue Yu
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Tianpeng Hu
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Yao Mao
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Lili Liang
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Yuan Zhang
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Jiaquan Zhang
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Shihua Qi
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
4
|
Wang P, Cao Y, Yang B, Luo H, Liang T, Yu J, Ding A, Wang L, Li H, Cao H, Ma F, Gu Q, Li F. Leaching Characteristics of Heavy Metals in the Baghouse Filter Dust from Direct-Fired Thermal Desorption of Contaminated Soil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16504. [PMID: 36554385 PMCID: PMC9778458 DOI: 10.3390/ijerph192416504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
After thermal desorption, the total amount of heavy metals (HMs) is enriched in baghouse filter dust. To further understand the related environmental impact, the leaching characteristics under various conditions must be explored. Therefore, this study aimed to examine the leaching characteristics of seven HMs in the dust generated in the direct-fired thermal desorption process and to compare the differences in heavy metal leaching characteristics in the soil before and after thermal desorption. The leaching characteristics and bioaccessibility of seven HMs-arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), and zinc (Zn)-were analyzed in dust and in soil before and after thermal desorption. The activity of HMs in dust was strong. Therefore, environmental effects and effects on human health should be considered in the treatment of soil and dust after thermal desorption.
Collapse
Affiliation(s)
- Panpan Wang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Yunzhe Cao
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Bin Yang
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Huilong Luo
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Tian Liang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jingjing Yu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Aizhong Ding
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Lina Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Huiying Li
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Hanlin Cao
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Fujun Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qingbao Gu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fasheng Li
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
5
|
Zhang Y, Ren M, Tang Y, Cui X, Cui J, Xu C, Qie H, Tan X, Liu D, Zhao J, Wang S, Lin A. Immobilization on anionic metal(loid)s in soil by biochar: A meta-analysis assisted by machine learning. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129442. [PMID: 35792428 DOI: 10.1016/j.jhazmat.2022.129442] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Metal pollution in soil has become one of the most serious environmental problems in China. Biochar is one of the most widely used remediation agents for soil metal pollution. However, the literature does not provide a consistent picture of the performance of biochar on the immobilization of anionic metal(loid)s, especially arsenic, in soil. To obtain a baseline understanding on the interactions of metals and biochar, 597 data records on four metal(loid)s (As, Cr, Sb and V) were collected from 70 publications for this meta-analysis, and the results are highlighted below. Biochar has a significant immobilization effect on anionic metal(loid)s in soil and reduces the bioavailability of these metals to plants. Subgroup analysis found that biochar could decrease the potential mobility of Cr, Sb and V, but the immobilization effect on As was not always consistent. Meanwhile, biochar pH and soil pH are the most key factors affecting the immobilization effect. To summarize, biochar can effectively immobilize Cr, Sb and V in soil, but more attention should be given to As immobilization in future applications. By regulating the properties of biochar and appropriate modification, anionic metal(loid)s in soil can be immobilized more effectively. Hence, both of the soil quality and crop quality can be improved.
Collapse
Affiliation(s)
- Yinjie Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Meng Ren
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yiming Tang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xuedan Cui
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jun Cui
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Congbin Xu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hantong Qie
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiao Tan
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dongpo Liu
- College of Ecological Environment, Institute of Disaster Prevention, Hebei 065201, China
| | - Jiashun Zhao
- College of Chemical and Environmental Engineering, North China Institute of Science and Technology, Hebei 065201, China
| | - Shuguang Wang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|