1
|
Alvarez-Mora I, Arturi K, Béen F, Buchinger S, El Mais AER, Gallampois C, Hahn M, Hollender J, Houtman C, Johann S, Krauss M, Lamoree M, Margalef M, Massei R, Brack W, Muz M. Progress, applications, and challenges in high-throughput effect-directed analysis for toxicity driver identification - is it time for HT-EDA? Anal Bioanal Chem 2025; 417:451-472. [PMID: 38992177 DOI: 10.1007/s00216-024-05424-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
The rapid increase in the production and global use of chemicals and their mixtures has raised concerns about their potential impact on human and environmental health. With advances in analytical techniques, in particular, high-resolution mass spectrometry (HRMS), thousands of compounds and transformation products with potential adverse effects can now be detected in environmental samples. However, identifying and prioritizing the toxicity drivers among these compounds remain a significant challenge. Effect-directed analysis (EDA) emerged as an important tool to address this challenge, combining biotesting, sample fractionation, and chemical analysis to unravel toxicity drivers in complex mixtures. Traditional EDA workflows are labor-intensive and time-consuming, hindering large-scale applications. The concept of high-throughput (HT) EDA has recently gained traction as a means of accelerating these workflows. Key features of HT-EDA include the combination of microfractionation and downscaled bioassays, automation of sample preparation and biotesting, and efficient data processing workflows supported by novel computational tools. In addition to microplate-based fractionation, high-performance thin-layer chromatography (HPTLC) offers an interesting alternative to HPLC in HT-EDA. This review provides an updated perspective on the state-of-the-art in HT-EDA, and novel methods/tools that can be incorporated into HT-EDA workflows. It also discusses recent studies on HT-EDA, HT bioassays, and computational prioritization tools, along with considerations regarding HPTLC. By identifying current gaps in HT-EDA and proposing new approaches to overcome them, this review aims to bring HT-EDA a step closer to monitoring applications.
Collapse
Affiliation(s)
- Iker Alvarez-Mora
- Department of Exposure Science, Helmholtz Centre for Environmental Research, UFZ, Leipzig, Germany.
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain.
| | - Katarzyna Arturi
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Frederic Béen
- KWR Water Research Institute, Nieuwegein, the Netherlands
- Chemistry for Environment and Health, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Sebastian Buchinger
- Department of Biochemistry and Ecotoxicology, Federal Institute of Hydrology (BfG), Koblenz, Germany
| | | | | | - Meike Hahn
- Department of Biochemistry and Ecotoxicology, Federal Institute of Hydrology (BfG), Koblenz, Germany
| | - Juliane Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zürich, Switzerland
| | - Corine Houtman
- Chemistry for Environment and Health, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- The Water Laboratory, Haarlem, the Netherlands
| | - Sarah Johann
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Frankfurt Am Main, Germany
| | - Martin Krauss
- Department of Exposure Science, Helmholtz Centre for Environmental Research, UFZ, Leipzig, Germany
| | - Marja Lamoree
- Chemistry for Environment and Health, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Maria Margalef
- Chemistry for Environment and Health, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Riccardo Massei
- Department of Monitoring and Exploration Technologies, Research Data Management Team (RDM), Helmholtz Centre for Environmental Research, UFZ, Leipzig, Germany
- Department of Ecotoxicology, Group of Integrative Toxicology (iTox), Helmholtz Centre for Environmental Research, UFZ, Leipzig, Germany
| | - Werner Brack
- Department of Exposure Science, Helmholtz Centre for Environmental Research, UFZ, Leipzig, Germany
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Frankfurt Am Main, Germany
| | - Melis Muz
- Department of Exposure Science, Helmholtz Centre for Environmental Research, UFZ, Leipzig, Germany
| |
Collapse
|
2
|
Boinis N, Konomi A, Gkotsis G, Nika MC, Thomaidis NS. Trends in extraction techniques for the determination of organic micropollutants in liver tissues of vertebrates. Anal Bioanal Chem 2025; 417:535-553. [PMID: 39508914 DOI: 10.1007/s00216-024-05628-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
Determining organic micropollutants in liver samples of apex species is of foremost importance for biomonitoring studies, as it can provide evidence of environmental pollution and exposure of living organisms to chemicals. This review aims to provide a 4-year overview and summarize the trends in the extraction methodologies to determine both polar and non-polar organic micropollutants in liver samples from organisms of higher trophic levels. The dominant extraction techniques including ultrasound-assisted extraction (UAE), pressurized liquid extraction (PLE), Soxhlet, and QuEChERS, as well as additional steps and/or modifications applied in the reviewed studies, are presented and critically discussed. The latest trends in these methods as well as a comparison between them considering elapsed time, robustness, cost, and environmental fingerprint are also provided.
Collapse
Affiliation(s)
- N Boinis
- National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - A Konomi
- National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - G Gkotsis
- National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - M-C Nika
- National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - N S Thomaidis
- National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece.
| |
Collapse
|
3
|
Gwak J, Lee J, Cha J, Moon HB, Khim JS, Hong S. Effect-directed analysis and nontarget screening for identifying AhR-active substances in sediments of Gamcheon Harbor, South Korea. MARINE POLLUTION BULLETIN 2024; 209:117081. [PMID: 39393239 DOI: 10.1016/j.marpolbul.2024.117081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024]
Abstract
Gamcheon Harbor in Busan, the largest port city in South Korea, is contaminated with persistent toxic substances, including polycyclic aromatic hydrocarbons (92 to 1700 ng g-1 dry mass (dm)) and styrene oligomers (17 to 520 ng g-1 dm). This study applied effect-directed analysis and nontarget screening (NTS) to identify aryl hydrocarbon receptor (AhR)-active substances in Gamcheon harbor sediments. Relatively great AhR-mediated potencies were found in RP-HPLC fractions, F2.7-F2.8 (mid-polar, log KOW 6-8) and F3.6-F3.7 (polar, log KOW 5-7). Target AhR agonists comprised up to 43% of total AhR-mediated potencies. NTS using GC-QTOFMS and LC-QTOFMS identified daphnoretin and isorhamnetin as significant AhR agonists, with relative potency values of 0.4 × 10-3 and 6.5 × 10-5, respectively, compared to benzo[a]pyrene. The major AhR agonists in the coastal sediments of Korea appeared to be region-specific. This approach is useful for identifying and managing key toxic substances in coastal ecosystems.
Collapse
Affiliation(s)
- Jiyun Gwak
- Department of Earth, Environmental & Space Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Junghyun Lee
- Department of Environmental Education, Kongju National University, Gongju 32588, Republic of Korea
| | - Jihyun Cha
- Department of Earth, Environmental & Space Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| | - Seongjin Hong
- Department of Earth, Environmental & Space Sciences, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
4
|
Kim D, Lee SY, Lee J, Cho HE, Kim MS, Won EJ, Shin KH. Innovative approach for environmental pollution assessment using seabird eggs: mercury in black-tailed gull (Larus crassirostris) eggs from the Korean islands (2012-2021). MARINE POLLUTION BULLETIN 2024; 209:117167. [PMID: 39442352 DOI: 10.1016/j.marpolbul.2024.117167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/26/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Since black-tailed gulls derive energy for egg production around their habitat, analyzing concentration of chemicals in the eggs reveals the local environmental pollution. This is, however, complex due to the diversity of seabird diets across multiple ecosystems. This study determined the influence of food source and trophic position (TP) on the mercury concentration ([Hg]) in eggs and subsequently mitigated these influences by adjusting through [Hg]-TP relationship, thereby enabling spatial and temporal comparisons among individuals. Following TP adjustment, the [Hg] that previously exhibited significant regional differences no longer displayed such a variation. Moreover, by normalizing to trophic level 4, as suggested by the European Union (EU), the total [Hg] was standardized from 1001 ± 415 ng g-1 to 1347 ± 516 ng g-1 in all the egg samples, far exceeding the EU criteria. These two approaches provide valuable insights for the effective monitoring of marine pollution and past environmental reconstruction by adjusting/normalizing [Hg] in seabird eggs.
Collapse
Affiliation(s)
- Dokyun Kim
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea; Marine Environment Research Department, Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea
| | - Soo Yong Lee
- Natural Environment Research Division, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Jangho Lee
- Natural Environment Research Division, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Ha-Eun Cho
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Min-Seob Kim
- Environmental Measurement and Analysis Center, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Eun-Ji Won
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea.
| | - Kyung-Hoon Shin
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
5
|
Barrett H, Sun J, Chen Y, Yang D, Verreault J, Houde M, Wania F, Peng H. Emerging investigator series: nontargeted screening of aryl hydrocarbon receptor agonists in endangered beluga whales from the St. Lawrence Estuary: beyond legacy contaminants. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1451-1464. [PMID: 38904418 DOI: 10.1039/d4em00243a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The elevated concentrations of organohalogen contaminants in the endangered St. Lawrence Estuary (SLE) belugas have prompted the hypothesis that aryl hydrocarbon receptor (AhR) activity may be a contributor towards their potential adverse effects. While indirect associations between AhR and contaminant levels have been reported in SLE beluga tissues, AhR activity was never directly measured. Using bioassays and nontargeted analysis, this study contrasted AhR activity and agonist profiles between pooled tissue extracts of endangered SLE and non-threatened Arctic belugas. Tissue extracts of SLE belugas exhibited significantly higher overall AhR activity than that of Arctic belugas, with a 2000s SLE beluga liver extract exerting significantly higher activity than blubber extracts of SLE and Arctic belugas from the same time period. Contrary to our expectations, well-known AhR agonists detected by nontargeted analysis, including polychlorinated biphenyls (PCBs), were only minor contributors to the observed AhR activity. Instead, Tox21 suspect screening identified more polar chemicals, such as dyes and natural indoles, as potential contributors. Notably, the natural product bromoindole was selectively detected in SLE beluga liver at high abundance and was further confirmed as an AhR agonist. These findings highlighted the significance of the AhR-mediated toxicity pathway in belugas and underscored the importance of novel AhR agonists, particularly polar compounds, in its induction.
Collapse
Affiliation(s)
- Holly Barrett
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.
| | - Jianxian Sun
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.
| | - Yuhao Chen
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Diwen Yang
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.
| | - Jonathan Verreault
- Centre de Recherche en Toxicologie de L'environnement (TOXEN), Département des Sciences Biologiques, Université du Québec à Montréal, Succursale Centre-ville, P.O. Box 8888, Montreal, QC H3C 3P8, Canada
| | - Magali Houde
- Environment and Climate Change Canada, 105 McGill Street, Montreal, QC H2Y 2E7, Canada
| | - Frank Wania
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.
- School of the Environment, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Liu J, Xiang T, Song XC, Zhang S, Wu Q, Gao J, Lv M, Shi C, Yang X, Liu Y, Fu J, Shi W, Fang M, Qu G, Yu H, Jiang G. High-Efficiency Effect-Directed Analysis Leveraging Five High Level Advancements: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9925-9944. [PMID: 38820315 DOI: 10.1021/acs.est.3c10996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Organic contaminants are ubiquitous in the environment, with mounting evidence unequivocally connecting them to aquatic toxicity, illness, and increased mortality, underscoring their substantial impacts on ecological security and environmental health. The intricate composition of sample mixtures and uncertain physicochemical features of potential toxic substances pose challenges to identify key toxicants in environmental samples. Effect-directed analysis (EDA), establishing a connection between key toxicants found in environmental samples and associated hazards, enables the identification of toxicants that can streamline research efforts and inform management action. Nevertheless, the advancement of EDA is constrained by the following factors: inadequate extraction and fractionation of environmental samples, limited bioassay endpoints and unknown linkage to higher order impacts, limited coverage of chemical analysis (i.e., high-resolution mass spectrometry, HRMS), and lacking effective linkage between bioassays and chemical analysis. This review proposes five key advancements to enhance the efficiency of EDA in addressing these challenges: (1) multiple adsorbents for comprehensive coverage of chemical extraction, (2) high-resolution microfractionation and multidimensional fractionation for refined fractionation, (3) robust in vivo/vitro bioassays and omics, (4) high-performance configurations for HRMS analysis, and (5) chemical-, data-, and knowledge-driven approaches for streamlined toxicant identification and validation. We envision that future EDA will integrate big data and artificial intelligence based on the development of quantitative omics, cutting-edge multidimensional microfractionation, and ultraperformance MS to identify environmental hazard factors, serving for broader environmental governance.
Collapse
Affiliation(s)
- Jifu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongtong Xiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Xue-Chao Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaoqing Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Qi Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meilin Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Chunzhen Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Mingliang Fang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- College of Sciences, Northeastern University, Shenyang 110004, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Kim D, Lee J, Won EJ, Lee SY, Cho HE, Choi H, Shin KH. Integrated approach for the isotope trophic position of black-tailed gull (Larus crassirostris) eggs over a decade: Combining stable isotopes of amino acids and fatty acids composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169732. [PMID: 38160818 DOI: 10.1016/j.scitotenv.2023.169732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Recently, compound-specific isotope analysis (CSIA) using the amino acid nitrogen stable isotope ratio (δ15NAAs) has been widely used for accurate estimation of trophic position (TP). In addition, a quantitative fatty acid signature analysis (QFASA) offers insights into diet sources. In this study, we used these techniques to estimate the TP for seabirds that rely on diverse food sources across multiple ecosystems. This allows for the proper combination of factors used in TP calculation which are different for each ecosystem. The approach involved the application of a multi-mixing trophic discrimination factor (TDF) and mixing β which is a Δδ15N between trophic and source amino acid of primary producer. Since the black-tailed gulls (BTGs) are income-breeding seabirds, which rely on energy sources obtained around their breeding sites, they and their eggs could be useful bioindicators for environmental monitoring. However, the ecological properties of BTGs such as habitats, diets, and TP are not well known due to their large migration range for wintering or breeding and their feeding habits on both aquatic and terrestrial prey. In this study, the eggs were used for estimating TP and for predicting TP of mother birds to overcome difficulties such as capturing birds and collecting non-invasive tissue samples. Eggs, sampled over a decade from three Korean islands, showed spatial differences in diet origin. Considering both the food chain and physiology of BTG, the TP of eggs was estimated to be 3.3-4.0. Notably, the TP was significantly higher at site H (3.8 ± 0.1) than at site B (3.5 ± 0.2), which indicated a higher contribution of marine diet as confirmed by QFASA. Using a reproductive shift of δ15NAAs, the TP of the mother birds was predicted to be 3.6-4.3, positioning them as the top predator in the food web. The advanced integration of multiple approaches provides valuable insights into bird ecology.
Collapse
Affiliation(s)
- Dokyun Kim
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Jangho Lee
- Natural Environment Research Division, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Eun-Ji Won
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea; Institute of Ocean and Atmospheric Sciences, Hanyang University, Ansan 15588, Republic of Korea
| | - Soo Yong Lee
- Natural Environment Research Division, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Ha-Eun Cho
- Institute of Ocean and Atmospheric Sciences, Hanyang University, Ansan 15588, Republic of Korea
| | - Hyuntae Choi
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Kyung-Hoon Shin
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
8
|
Hong S, Lee J, Cha J, Gwak J, Khim JS. Effect-Directed Analysis Combined with Nontarget Screening to Identify Unmonitored Toxic Substances in the Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19148-19155. [PMID: 37972298 DOI: 10.1021/acs.est.3c05035] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Effect-directed analysis (EDA) combined with nontarget screening (NTS) has established a valuable tool for the identification of unmonitored toxic substances in environmental samples. It consists of three main steps: (1) highly potent fraction identification, (2) toxicant candidate selection, and (3) major toxicant identification. Here, we discuss the methodology, current status, limitations, and future challenges of EDA combined with NTS. This method has been applied successfully to various environmental samples, such as sediments, wastewater treatment plant effluents, and biota. We present several case studies and highlight key results. EDA has undergone significant technological advancements in the past 20 years, with the establishment of its key components: target chemical analysis, bioassays, fractionation, NTS, and data processing. However, it has not been incorporated widely into environmental monitoring programs. We provide suggestions for the application of EDA combined with NTS in environmental monitoring programs and management, with the identification of further research needs.
Collapse
Affiliation(s)
- Seongjin Hong
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Junghyun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
- Department of Environmental Education, Kongju National University, Gongju 32588, Republic of Korea
| | - Jihyun Cha
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jiyun Gwak
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
9
|
Kim Y, Hong S, Jun L, Lee Y, Kim M, Yim UH, Khim JS, Shin KH. Use of molecular composition and compound-specific isotope analysis for source appointment of PAHs in sediments of a highly industrialized area. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122546. [PMID: 37709122 DOI: 10.1016/j.envpol.2023.122546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
This study utilized both conventional molecular analysis and compound-specific isotopic techniques to identify the sources of polycyclic aromatic hydrocarbons (PAHs) in sediments of Ulsan Bay, South Korea. The concentrations of 15 traditional and 11 emerging PAHs were determined in sediments from 21 source sites and 26 bay sites. The concentrations and compositions of traditional and emerging PAHs varied significantly, even at sites close to the source areas. The results obtained from diagnostic ratios and the positive matrix factorization model for source identification were inconsistent in adjacent source areas. The δ13C profiles of PAHs, such as phenanthrene (Phe), fluoranthene (Fl), pyrene (Py), and benz[a]anthracene (BaA) in the sediments showed distinct features depending on the surrounding sources. In urban sediments, lighter δ13CPhe values were observed (mean: -25.1‰), whereas relatively heavier values of δ13CPy were found in petroleum industry areas (mean: -23.4‰). The Bayesian isotope mixing model indicates that the predominant source of PAHs in Ulsan Bay sediments was the petroleum industry (45%), followed by the non-ferrous metals industry (30%), automobile industry (18%), and urban areas (6.3%). These results demonstrated the utility of stable isotopes in assessing the sources and contributions of PAHs in small-scale regions. However, there are still limitations in compound-specific isotope analysis of PAHs, including insufficient end-members for each source, difficulty in analysis, and the influence of non-point sources; thus, further study is needed to expand its application.
Collapse
Affiliation(s)
- Youngnam Kim
- Department of Marine Environmental Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seongjin Hong
- Department of Marine Environmental Science, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Lincheon Jun
- Department of Marine Sciences & Convergence Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Yeonjung Lee
- Ocean Climate Response & Ecosystem Research Department, Korea Institute of Ocean Science and Technology, Busan, 49111, Republic of Korea
| | - Mungi Kim
- Department of Marine Environmental Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Un Hyuk Yim
- Ecological Risk Research Department, Korea Institute of Ocean Science and Technology, Geoje, 53201, Republic of Korea
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyung-Hoon Shin
- Department of Marine Sciences & Convergence Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| |
Collapse
|
10
|
Cha J, Hong S, Lee J, Gwak J, Kim M, Mok S, Moon HB, Jones PD, Giesy JP, Khim JS. Identification of Mid-Polar and Polar AhR Agonists in Cetaceans from Korean Coastal Waters: Application of Effect-Directed Analysis with Full-Scan Screening. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15644-15655. [PMID: 37787753 PMCID: PMC10586376 DOI: 10.1021/acs.est.3c04311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 10/04/2023]
Abstract
Major aryl hydrocarbon receptor (AhR) agonists were identified in extracts of blubber, liver, and muscle from six long-beaked common dolphins (Delphinus capensis) and one fin whale (Balaenoptera physalus) collected from Korean coastal waters using effect-directed analysis. Results of the H4IIE-luc bioassay indicated that the polar fractions of blubber and liver extracts from the fin whale exhibited relatively high AhR-mediated potencies. Based on full-scan screening with high-resolution mass spectrometry, 37 AhR agonist candidates, spanning four use categories: pharmaceuticals, pesticides, cosmetics, and natural products, were selected. Among these, five polar AhR agonists were newly identified through toxicological confirmation. Concentrations of polar AhR agonists in cetaceans were tissue-specific, with extracts of blubber and liver containing greater concentrations than muscle extracts. Polar AhR agonists with great log KOA values (>5) were found to biomagnify in the marine food chain potentially. Polar AhR agonists contributed 8.9% of the observed AhR-mediated potencies in blubber and 49% in liver. Rutaecarpine and alantolactone contributed significantly to the total AhR-mediated potencies of blubber, whereas hydrocortisone was a major AhR contributor in the liver of the fin whale. This study is the first to identify the tissue-specific accumulation of polar AhR agonists in blubber and liver extracts of cetaceans.
Collapse
Affiliation(s)
- Jihyun Cha
- Department
of Marine Environmental Science, Chungnam
National University, Daejeon 34134, Republic
of Korea
| | - Seongjin Hong
- Department
of Marine Environmental Science, Chungnam
National University, Daejeon 34134, Republic
of Korea
| | - Junghyun Lee
- School
of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
- Department
of Environmental Education, Kongju National
University, Gongju 32588, Republic of Korea
| | - Jiyun Gwak
- Department
of Marine Environmental Science, Chungnam
National University, Daejeon 34134, Republic
of Korea
| | - Mungi Kim
- Department
of Marine Environmental Science, Chungnam
National University, Daejeon 34134, Republic
of Korea
| | - Sori Mok
- Department
of Marine Science and Convergence Engineering, Hanyang University, Ansan 15588, Republic
of Korea
| | - Hyo-Bang Moon
- Department
of Marine Science and Convergence Engineering, Hanyang University, Ansan 15588, Republic
of Korea
| | - Paul D. Jones
- Department
of Veterinary Biomedical Sciences & Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N5B3, Canada
| | - John P. Giesy
- Department
of Veterinary Biomedical Sciences & Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N5B3, Canada
- Department
of Integrative Biology and Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Environmental Science, Baylor University, Waco, Texas 76798-7266, United States
| | - Jong Seong Khim
- School
of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
11
|
Jia W, Wang X, Shi L. Endogenous hydrocortisone caused metabolic perturbation and nutritional deterioration of animal-derived food in a dose-dependent manner. Food Chem 2023; 401:134145. [DOI: 10.1016/j.foodchem.2022.134145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/29/2022] [Accepted: 09/04/2022] [Indexed: 12/24/2022]
|