1
|
Asare JA, Alhassan SI, Yan L, Amanze C, Wu B, Gang H, Wei D, Cao Y, Wang H, Huang L. Harnessing the potential of zeolites for effective fluoride removal from wastewater: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-36109-9. [PMID: 40014246 DOI: 10.1007/s11356-025-36109-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/10/2025] [Indexed: 02/28/2025]
Abstract
Fluoride contamination in water poses significant health risks, including dental fluorosis, kidney failure, and reduced cognitive function in children. This comprehensive review examines the potential of zeolites for effective fluoride removal from wastewater. Zeolites, crystalline aluminosilicates with unique structural properties, have garnered attention due to their high adsorption capacity, low cost, and environmental compatibility. We discuss various zeolite types (natural, synthetic, and modified) and explore surface modification techniques, including chemical, composite, physical, and biological methods, to enhance fluoride adsorption capacity. Key factors influencing fluoride adsorption, such as pH, temperature, initial concentration, adsorbent dosage, and competing ions, are analyzed. The review elucidates adsorption mechanisms, including electrostatic interactions, ion exchange, Lewis acid-base interactions, and ligand exchange. Adsorption kinetics and isotherms are examined to understand process dynamics and equilibrium behavior. We compare conventional and novel zeolite synthesis methods, highlighting solvent-free approaches for sustainable production. Regeneration potential is assessed, considering environmental impact, cost, and efficiency. While zeolite-based adsorbents show promising results in laboratory settings, we emphasize the need for pilot-scale and full-scale implementations, particularly in treating real industrial wastewater. Future research directions are proposed to develop efficient, cost-effective, and environmentally friendly zeolite-based technologies for fluoride removal.
Collapse
Affiliation(s)
- Justice Annor Asare
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Sikpaam Issaka Alhassan
- Department of Materials Science & Engineering, University of Florida, Gainesville, FL, 3261, USA
| | - Lvji Yan
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Charles Amanze
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310, USA
| | - Bichao Wu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Haiying Gang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Dun Wei
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Yiyun Cao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Haiying Wang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, China.
| | - Lei Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
2
|
Foroutan R, Tutunchi A, Foroughi A, Ramavandi B. Defluorination of water solutions and glass industry wastewater using a magnetic pineapple hydrochar nanocomposite modified with a covalent organic framework. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124651. [PMID: 39983580 DOI: 10.1016/j.jenvman.2025.124651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/30/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
This study investigates the development and use of a novel magnetic composite, PAH/MnFe2O4/COF, synthesized from pineapple hydrochar (PAH) and modified with a covalent organic framework (COF) for Fluoride (Flu) elimination from water and industrial wastewater. Fluoride contamination poses serious health risks, making its removal essential. The composite was analyzed using scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and other methods, confirming its successful synthesis with a surface area of 102.960 m2/g and a saturation magnetization of 19.548 emu/g. The adsorption efficiency was modeled using a second-order polynomial, with a high R2 value of 0.9958, indicating excellent predictive accuracy. Optimal conditions for 99.54% Flu removal included a pH of 3.5, an adsorber mass of 1 g/L, a temperature of 50 °C, an adsorption time of 60 min, and a Flu concentration of 5 mg/L. The adsorption followed a pseudo-second-order model, indicating rapid chemical adsorption, while thermodynamic analysis revealed a spontaneous, endothermic process, supported by negative Gibbs free energy (ΔG°) values and an enthalpy (ΔH°) of 95.253 kJ/mol. The intraparticle diffusion model indicated multiple mechanisms were involved, including intraparticle diffusion and external surface adsorption. The composite showed a high adsorption capacity of 40.629 mg/g, outperforming the unmodified hydrochar. Additionally, the composite effectively reduced Flu ions, biochemical oxygen demand (BOD5), chemical oxygen demand (COD), and total dissolved solids (TDS) levels in industrial wastewater. These findings demonstrate that the PAH/MnFe2O4/COF composite is an efficient and promising adsorber for addressing the defluorination of water, offering a potential solution to environmental and public health issues.
Collapse
Affiliation(s)
- Rauf Foroutan
- Laboratory of Advanced Water and Wastewater, Central Laboratory of University of Tabriz, Tabriz, 51666-16471, Iran
| | - Abolfazl Tutunchi
- Department of Materials Engineering, Institute of Mechanical Engineering, University of Tabriz, Tabriz, Iran
| | - Amir Foroughi
- Department of Computer Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
3
|
Huang X, Chen K, Wang C, Gao P. Characteristics of fluoride adsorption in different soil types: Potential factors and implications for environmental risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125537. [PMID: 39689831 DOI: 10.1016/j.envpol.2024.125537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 12/19/2024]
Abstract
The adsorption of fluoride by soils influences its mobility and bioavailability. Therefore, the fluoride adsorption process in soils has garnered widespread attention. Yet research on assessing environmental risk based on the characteristics of fluoride adsorption in soil is still limited. Here, a suite of batch experiments were conducted using three soil types with distinct properties. The results demonstrate that soil organic matter (SOM) and pH are critical factors determining fluoride adsorption in soils. Paddy soil (PS) with its higher SOM content has a higher adsorption capacity compared with loessal soil (LS) and brown soil (BS). Under acidic conditions, BS and LS whose Ca2+ content is higher exhibited a higher adsorption capacity. The fluoride adsorption process in soils may involve electrostatic adsorption, complexation, and precipitation. The desorption results showed stronger fluoride binding to PS and LS than BS, while the fluoride adsorbed onto BS was almost completely desorbed. This research demonstrates that a deeper understanding of regional differences in soil properties is crucial for better studying the migration and accumulation characteristics of fluoride and its bioavailability in various soils. This study provides a theoretical basis for evaluating the bioavailability, exposure risk, and groundwater pollution risk of fluoride in different soils.
Collapse
Affiliation(s)
- Xunrong Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Kun Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chenxi Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Qinghai University, Qinghai, 810016, China
| | - Pengcheng Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
4
|
Zeng Z, Huang Q, Li Q, Yan J, Zhao X, Huang L, Zhao S, Zhang H. Experimental and DFT calculation study on the efficient removal of high fluoride wastewater from metallurgical wastewater by kaolinite. ENVIRONMENTAL RESEARCH 2024; 260:119604. [PMID: 39002636 DOI: 10.1016/j.envres.2024.119604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/21/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Fluoride pollution and water scarcity are urgent issues. Reducing fluoride concentration in water is crucial. Kaolinite has been used to study adsorption and fluoride removal in water and to characterize material properties. The experimental results showed that the adsorption capacity of kaolinite decreased with increasing pH. The highest adsorption of fluoride occurred at pH 2, with a capacity of 11.1 mg/g. The fluoride removal efficiency remained high after four regeneration cycles. The fitting results with the Freundlich isotherm model and the external diffusion model showed that the non-homogeneous adsorption of kaolinite fit the adsorption behavior better. Finally, the adsorption mechanism was analyzed by FT-IR and XPS. The binding energies of various adsorption sites and the chemical adsorption properties of atomic states were discussed in relation to DFT calculations. The results showed that Al and H sites were the main binding sites, and the bonding stability for different forms of fluoride varies, with the size of Al-F (-7.498 eV) > H-F (-6.04 eV) > H-HF (-3.439 eV) > Al-HF (-3.283 eV). Furthermore, the density of states and Mulliken charge distribution revealed that the 2p orbital of F was found to be active in the adsorption process and was the main orbital for charge transfer.
Collapse
Affiliation(s)
- Zhen Zeng
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Qisheng Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Qian Li
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jia Yan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xiaoyu Zhao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Lei Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Sijie Zhao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Foroutan R, Mohammadi R, Razeghi J, Ahmadi M, Ramavandi B. Amendment of Sargassum oligocystum bio-char with MnFe 2O 4 and lanthanum MOF obtained from PET waste for fluoride removal: A comparative study. ENVIRONMENTAL RESEARCH 2024; 251:118641. [PMID: 38458588 DOI: 10.1016/j.envres.2024.118641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
The use of biomass and waste to produce adsorbent reduces the cost of water treatment. The bio-char of Sargassum oligocystum (BCSO) was modified with MnFe2O4 magnetic particles and La-metal organic framework (MOF) to generate an efficient adsorbent (BCSO/MnFe2O4@La-MOF) for fluoride ions (F-) removal from aqueous solutions. The performance of BCSO/MnFe2O4@La-MOF was compared with BCSO/MnFe2O4 and BCSO. The characteristics of the adsorbents were investigated using various techniques, which revealed that the magnetic composites were well-synthesized and exhibited superparamagnetic properties. The maximum adsorption efficiencies (BCSO: 97.84%, BCSO/MnFe2O4: 97.85%, and BCSO/MnFe2O4@La-MOF: 99.36%) were achieved under specific conditions of pH 4, F- concentration of 10 mg/L, and adsorbent dosage of 3, 1.5, and 1 g/L for BCSO, BCSO/MnFe2O4, and BCSO/MnFe2O4@La-MOF, respectively. The results demonstrated that the experimental data adheres to a pseudo-second-order kinetic model. The enthalpy, entropy, and Gibbs free energy were determined to be negative; thus, the F- adsorption was exothermic and spontaneous in the range of 25-50 °C. The equilibrium data of the process exhibited conformity with the Langmuir model. The maximum adsorption capacities of F- ions were determined as 10.267 mg/g for BCSO, 14.903 mg/g for the BCSO/MnFe2O4, and 31.948 mg/g for BCSO/MnFe2O4@La-MOF. The KF and AT values for the F- adsorption were obtained at 21.03 mg/g (L/mg)1/n and 100 × 10+9 L/g, indicating the pronounced affinity of the BCSO/MnFe2O4@La-MOF towards F- than other samples. The significant potential of the BCSO/MnFe2O4@La-MOF magnetic composite for F- removal from industrial wastewater, makes it suitable for repeated utilization in the adsorption process.
Collapse
Affiliation(s)
- Rauf Foroutan
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Reza Mohammadi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Jafar Razeghi
- Department of Plant Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Mehrshad Ahmadi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Bahman Ramavandi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
6
|
Meng X, Li J, Qu W, Wang W, Feng X, Wang J. Degradation of fluoride in groundwater by electrochemical fixed bed system with bauxite: performance and synergistic catalytic mechanism. RSC Adv 2024; 14:13711-13718. [PMID: 38681833 PMCID: PMC11044906 DOI: 10.1039/d4ra01359j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
Fluoride pollution in water has garnered significant attention worldwide. The issue of fluoride removal remains challenging in areas not covered by municipal water systems. The industrial aluminum electrode and natural bauxite coordinated defluorination system (IE-BA) have been employed for fluoride removal. The experiment investigated the effects of pH, current density, and inter-electrode mineral layer thickness on the defluorination process of IE-BA. Additionally, the study examined the treatment efficiency of IE-BA for simulated water with varying F- concentrations and assessed its long-term performance. The results demonstrate that the defluorination efficiency can reach 98.4% after optimization. Moreover, irrespective of different fluoride concentrations, the defluorination rate exceeds 95.2%. After 72 hours of continuous operation, the defluorination rate reached 91.9%. The effluent exhibited weak alkalinity with a pH of around 8.0, and the voltage increased by 2.0 V compared to the initial moment. By analyzing the characterization properties of minerals and flocs, this study puts forward the possible defluorination mechanism of the IE-BA system. The efficacy of the IE-BA system in fluoride removal from water was ultimately confirmed, demonstrating its advantages in terms of defluorination ability under different initial conditions and resistance to complex interference. This study demonstrates that the IE-BA technology is a promising approach for defluorination.
Collapse
Affiliation(s)
- Xiangxu Meng
- College of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 832000 Xinjiang PR China
| | - Junfeng Li
- College of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 832000 Xinjiang PR China
- Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps Shihezi 832000 Xinjiang PR China
| | - Wenying Qu
- College of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 832000 Xinjiang PR China
- Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps Shihezi 832000 Xinjiang PR China
| | - Wenhuai Wang
- College of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 832000 Xinjiang PR China
- Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps Shihezi 832000 Xinjiang PR China
| | - Xueting Feng
- College of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 832000 Xinjiang PR China
| | - Jiankang Wang
- College of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 832000 Xinjiang PR China
- Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps Shihezi 832000 Xinjiang PR China
| |
Collapse
|
7
|
Zhou Z, Ali A, Su J, Wang Z, Huang T, Li T. In-situ modified biosynthetic crystals with lanthanum for fluoride removal based on microbially induced calcium precipitation: Characterization, kinetics, and mechanism. CHEMOSPHERE 2023; 327:138472. [PMID: 36963578 DOI: 10.1016/j.chemosphere.2023.138472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
In this research, in-situ modified biosynthetic crystals with lanthanum (BC-La) were synthesized based on anaerobic microbially induced calcium precipitation (MICP) and investigated its capacity for groundwater defluoridation under various operational conditions. The kinetic and thermodynamic models were simulated to explore the effect of the material on the removal of fluoride ion (F-) under various parameters (pH, initial concentration of F-, and temperature). BC-La had the maximum F- adsorption capacity of 10.92 mg g-1 and 96.66% removal efficiency. The pseudo-second-order kinetic model and Langmuir isotherm model were the best kinetic and isotherm models for F- removal from BC-La, which indicated that F- were mainly spontaneously removed through chemisorption and adsorption processes. The specific surface area was 54.26 m2 g-1 and the average pore size was 9.0670 nm. BC-La mainly contained LaCO3OH, LaPO4, CaCO3, Ca5 (PO4)3OH, and F- was mainly removed through ion exchange with the material surface. Moreover, OH-, PO43-, and CO32- significantly influenced the F- removal. This work suggested a novel method for in-situ modification of anaerobic biosynthetic crystals, which improved the defluoridation effect of traditional biosynthetic crystals, increased the stability of the BC-La and allowed to remove F- from groundwater consistently.
Collapse
Affiliation(s)
- Zhennan Zhou
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Tianmeng Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
8
|
Hu J, Song J, Han X, Wen Q, Yang W, Pan W, Jian S, Jiang S. Fabrication of Ce-La-MOFs for defluoridation in aquatic systems: A kinetics, thermodynamics and mechanisms study. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
9
|
Ren Y, He M, Qu G, Ren N, Ning P, Yang Y, Chen X, Wang Z, Hu Y. Study on the Mechanism of Removing Fluoride from Wastewater by Oxalic Acid Modified Aluminum Ash-Carbon Slag-Carbon Black Doped Composite. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
10
|
Wei H, Yi M, Li X, Shao L, Gao F, Cui X, Wang K. Preparation of Metakaolin-Based Geopolymer Microspheres (MK@GMs) and Efficient Adsorption of F- from Acidic Wastewater. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
11
|
Jian S, Chen Y, Shi F, Liu Y, Jiang W, Hu J, Han X, Jiang S, Yang W. Template-Free Synthesis of Magnetic La-Mn-Fe Tri-Metal Oxide Nanofibers for Efficient Fluoride Remediation: Kinetics, Isotherms, Thermodynamics and Reusability. Polymers (Basel) 2022; 14:polym14245417. [PMID: 36559784 PMCID: PMC9784745 DOI: 10.3390/polym14245417] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
The occurrence of fluoride contamination in drinking water has gained substantial concern owing to its serious threat to human health. Traditional adsorbents have shortcomings such as low adsorption capacity and poor selectivity, so it is urgent to develop new adsorbents with high adsorption capacity, renewable and no secondary pollution. In this work, magnetic electrospun La-Mn-Fe tri-metal oxide nanofibers (LMF NFs) for fluoride recovery were developed via electrospinning and heat treatment, and its defluoridation property was evaluated in batch trials. Modern analytical tools (SEM, BET, XRD, FTIR) were adopted to characterize the properties of the optimized adsorbent, i.e., LMF11 NFs with a La:Mn molar ratio of 1:1. The surface area calculated via BET method and pHpzc assessed using pH drift method of LMF11 NFs were 55.81 m2 g-1 and 6.47, respectively. The results indicated that the adsorption amount was highly dependent on the pH of the solution, and reached the highest value at pH = 3. The kinetic behavior of defluoridation on LMF11 NFs was dominated by the PSO model with the highest fitted determination coefficients of 0.9999. Compared with the other three isotherm models, the Langmuir model described defluoridation characteristics well with larger correlation coefficients of 0.9997, 0.9990, 0.9987 and 0.9976 at 15 °C, 25 °C, 35 °C and 45 °C, respectively. The optimized LMF11 NFs exhibited superior monolayer defluoridation capacities for 173.30-199.60 mg F-/g at pH 3 at 15-45 °C according to the Langmuir isotherm model. A thermodynamic study proved that the defluoridation by LMF11 NFs is a spontaneous, endothermic along with entropy increase process. In addition, the LMF11 NFs still showed high defluoridation performance after three reused cycles. These findings unveil that the synthesized LMF11 NFs adsorbent is a good adsorbent for fluoride remediation from wastewater owing to its low cost, high defluoridation performance and easy operation.
Collapse
Affiliation(s)
- Shaoju Jian
- Fujian Key Laboratory of Eco-Industrial Green Technology, Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
| | - Yuhuang Chen
- Fujian Key Laboratory of Eco-Industrial Green Technology, Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
| | - Fengshuo Shi
- Fujian Key Laboratory of Eco-Industrial Green Technology, Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
| | - Yifei Liu
- Fujian Key Laboratory of Eco-Industrial Green Technology, Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
| | - Wenlong Jiang
- Fujian Key Laboratory of Eco-Industrial Green Technology, Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
| | - Jiapeng Hu
- Fujian Key Laboratory of Eco-Industrial Green Technology, Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
- Correspondence: (J.H.); (S.J.); (W.Y.)
| | - Xiaoshuai Han
- Fujian Key Laboratory of Eco-Industrial Green Technology, Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shaohua Jiang
- Fujian Key Laboratory of Eco-Industrial Green Technology, Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: (J.H.); (S.J.); (W.Y.)
| | - Weisen Yang
- Fujian Key Laboratory of Eco-Industrial Green Technology, Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
- Correspondence: (J.H.); (S.J.); (W.Y.)
| |
Collapse
|
12
|
Cu-Y2O3 Catalyst Derived from Cu2Y2O5 Perovskite for Water Gas Shift Reaction: The Effect of Reduction Temperature. Catalysts 2022. [DOI: 10.3390/catal12050481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cu2Y2O5 perovskite was reduced at different temperatures under H2 atmosphere to prepare two Cu-Y2O3 catalysts. The results of the activity test indicated that the Cu-Y2O3 catalyst after H2-reduction at 500 °C (RCYO-500) exhibited the best performance in the temperature range from 100 to 180 °C for water gas shift (WGS) reaction, with a CO conversion of 57.30% and H2 production of 30.67 μmol·gcat−1·min−1 at 160 °C and a gas hourly space velocity (GHSV) of 6000 mL·gcat−1·h−1. The catalyst reduced at 320 °C (RCYO-320) performed best at the temperature range from 180 to 250 °C, which achieved 86.44% CO conversion and 54.73 μmol·gcat−1·min−1 H2 production at 250 °C. Both of the Cu-Y2O3 catalysts had similar structures including Cu°, Cu+, oxygen vacancies (Vo) on the Cu°-Cu+ interface and Y2O3 support. RCYO-500, with a mainly exposed Cu° (100) facet, was active in the low-temperature WGS reaction, while the WGS activity of RCYO-320, which mainly exposed the Cu° (111) facet, was greatly enhanced above 180 °C. Different Cu° facets have different abilities to absorb H2O and then dissociate it to form hydroxyl groups, which is the main step affecting the catalytic rate of the WGS reaction.
Collapse
|
13
|
Jeyaseelan A, Aswin Kumar I, Naushad M, Viswanathan N. Defluoridation using hydroxyapatite implanted lanthanum organic framework-based bio-hybrid beads. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00161f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present study reports on biopolymer based material namely HAp–La-BTC MOFs@Alg–CS hybrid beads were developed and it was potentially employed for fluoride removal.
Collapse
Affiliation(s)
- Antonysamy Jeyaseelan
- Department of Chemistry, Anna University, University College of Engineering – Dindigul, Reddiyarchatram, Dindigul – 624 622, Tamilnadu, India
| | - Ilango Aswin Kumar
- Faculty of Civil Engineering, Department of Landscape and Water Conservation, Czech Technical University in Prague, Thakurova 7, 166 29, Prague 6, Czech Republic
| | - Mu. Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh-11451, Saudi Arabia
| | - Natrayasamy Viswanathan
- Department of Chemistry, Anna University, University College of Engineering – Dindigul, Reddiyarchatram, Dindigul – 624 622, Tamilnadu, India
| |
Collapse
|
14
|
Yang W, Shi F, Jiang W, Chen Y, Zhang K, Jian S, Jiang S, Zhang C, Hu J. Outstanding fluoride removal from aqueous solution by a La-based adsorbent †. RSC Adv 2022; 12:30522-30528. [PMID: 36337969 PMCID: PMC9597601 DOI: 10.1039/d2ra06284d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022] Open
Abstract
A La-based adsorbent was prepared with La(NO3)3·6H2O, 2-methylimidazole and DMF via amide-hydrolysis and used for fluoride decontamination from aqueous water. The obtained adsorbent was lanthanum methanoate (La(COOH)3). The effects of pH value, initial F− concentration and interfering ions on defluoridation properties of as-prepared La(COOH)3 were assessed through batch adsorption tests. The adsorption kinetics, isotherm models and thermodynamics were employed to verify the order, nature and feasibility of La(COOH)3 towards fluoride removal. The results imply that La(COOH)3 is preferable for defluoridation over a wide pH range of 2 to 9 without interference. Simultaneously, the defluoridation process of La(HCOO)3 accords to the pseudo-second order model and Langmuir isotherm, revealing chemical adsorption is the main control step. The maximum fluoride capture capacities of La(COOH)3 at 30, 40 and 50 °C are 245.02, 260.40 and 268.99 mg g−1, respectively. The mechanism for defluoridation by La(COOH)3 was revealed by PXRD and XPS. To summarize, the as-synthesized La based adsorbent could serve as a promising adsorbent for defluoridation from complex fluoride-rich water. A La-based adsorbent was prepared with La(NO3)3·6H2O, 2-methylimidazole and DMF via amide-hydrolysis and used for fluoride decontamination from aqueous water.![]()
Collapse
Affiliation(s)
- Weisen Yang
- Fujian Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi UniversityWuyishan 354300China
| | - Fengshuo Shi
- Fujian Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi UniversityWuyishan 354300China
| | - Wenlong Jiang
- Fujian Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi UniversityWuyishan 354300China
| | - Yuhuang Chen
- Fujian Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi UniversityWuyishan 354300China
| | - Kaiyin Zhang
- College of Mechanical and Electrical Engineering, Wuyi UniversityWuyishan 354300China
| | - Shaoju Jian
- Fujian Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi UniversityWuyishan 354300China
| | - Shaohua Jiang
- Fujian Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi UniversityWuyishan 354300China,Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry UniversityNanjing 210037China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and TechnologySuzhou 215009China
| | - Jiapeng Hu
- Fujian Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi UniversityWuyishan 354300China
| |
Collapse
|