1
|
Xu G, Yang C, Zhang H, Li B. Room-temperature synthesis of fluorinated covalent organic framework coupled with liquid chromatography-mass spectrometry for determination of per- and polyfluoroalkyl substances in drinking water. J Chromatogr A 2025; 1739:465541. [PMID: 39577265 DOI: 10.1016/j.chroma.2024.465541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/05/2024] [Accepted: 11/16/2024] [Indexed: 11/24/2024]
Abstract
The routine monitoring of per- and polyfluoroalkyl substances (PFASs) in drinking water has become an important task in the field of public health. In this study, a fluorinated covalent organic framework (COF) was synthesized at room temperature using tetra-(4-aminophenyl) methane (TAM) and 2,3,5, 6-tetrafluoro-terephthalal (TFTA) as building blocks and named as TAM-TFTA-COF. The adsorption characteristics of PFASs on the TAM-TFTA-COF were investigated through adsorption model-fitting and molecular calculation. The TAM-TFTA-COF was served as the solid phase extraction (SPE) cartridge packing for the enrichment of PFASs. Combined with liquid chromatography-tandem mass spectrometry, the proposed method showed good linearity in the range of 1.25-375 ng·L-1, low limits of detection (0.03-0.24 ng·L-1), and excellent intraday and interday precisions with RSD <10.3 %. Furthermore, this analytical method can be utilized for the determination of PFASs in tap water, spring water, and lake water with satisfactory accuracy.
Collapse
Affiliation(s)
- Guiju Xu
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China.
| | - Chunlei Yang
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hongwei Zhang
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China.
| | - Baoyu Li
- Test Center of Shandong Bureau, China Metallurgical Geology Bureau, Jinan, China
| |
Collapse
|
2
|
Ma Y, Yao Y, Deng Z, Zeng C, Liu Y, Ma J, Zhang Z. Hydrothermal N-doping, magnetization and ball milling co-functionalized sludge biochar design and its selective adsorption of trace concentration sulfamethoxazole from waters. CHEMOSPHERE 2024; 363:142855. [PMID: 39019195 DOI: 10.1016/j.chemosphere.2024.142855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/04/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
This study aimed to design an efficient and easily collected/regenerated adsorbent for trace concentration sulfamethoxazole (SMX) removal to eliminate its negative impacts on human health, reduce the risk of adsorbed SMX release and boost the reusability of adsorbent. Various multiple modified sludge-derived biochars (SBC) were synthesized in this work and applied to adsorb trace level SMX. The results demonstrated that hydrothermal N-doping, magnetization coupled with ball milling co-functionalized SBC (BMNSBC) displayed the greater adsorption ability for SMX. The maximum adsorption capacity of BMNSBC for SMX calculated by Langmuir model was 1.02 × 105 μg/g, which was 12.9 times of SBC. Characterization combined with adsorption experiments (e.g., models fitting) and DFT calculation confirmed that π-π conjugation, Lewis acid-base, pore filling and Fe3O4 complexation were the primary forces driving SMX binding to BMNSBC. These diversified physicochemical forces contributed to the fine anti-interference of BMNSBC to background substances (e.g., inorganic compounds and organic matter) and its remarkable adsorption ability for SMX in diverse real waters. The great magnetization strength of BMNSBC was advantage for its collection and efficient regeneration by NaOH desorption. Additionally, BMNSBC exhibited an outstanding security in view of its low leaching levels of iron (Fe) and total nitrogen (TN). The multiple superiority of BMNSBC enable it to be a prospective material for emerging contaminants (e.g., SMX) purification, also offering a feasible disposal approach for municipal waste (e.g., sludge).
Collapse
Affiliation(s)
- Yongfei Ma
- Xianghu Laboratory, Hangzhou, 311231, China; Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Yanlai Yao
- Xianghu Laboratory, Hangzhou, 311231, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | | | | | - Yan Liu
- Xianghu Laboratory, Hangzhou, 311231, China
| | - Junwei Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK.
| |
Collapse
|
3
|
Olomukoro AA, Xie R, Paucar FXF, DeRosa C, Danielson ND, Gionfriddo E. Characterization of a mixed mode fluorocarbon/weak anion exchange sorbent for the separation of perfluoroalkyl substances. J Sep Sci 2024; 47:e2400413. [PMID: 39192716 DOI: 10.1002/jssc.202400413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024]
Abstract
The ubiquitous presence and persistence of per- and polyfluoroalkyl substances (PFAS) in the environment have raised concerns in the scientific community. Current research efforts are prioritizing effective PFAS remediation through novel sorbents with orthogonal interaction mechanisms. Recognized sorption mechanisms between PFAS and sorbents include hydrophobic, electrostatic, and fluorine-fluorine interaction. The interplay of these mechanisms contributes significantly to improved sorption capacity and selectivity in PFAS separations. In this study, a primary/secondary amine-functionalized polystyrene-divinylbenzene (Sepra-WAX) polymer was modified to create a fluorinated WAX resin (Sepra-WAX-KelF-PEI). The synthesis intermediate (Sepra-WAX-KelF) was also tested to assess the improvement of the final product (Sepra-WAX-KelF-PEI). The adsorption capacity of Sepra-WAX, Sepra-WAX-KelF, and Sepra-WAX-KelF-PEI, and their interactions with PFAS were evaluated. The effect of pH, ionic strength, and organic solvents on PFAS sorption in aqueous solution was also investigated. The sorbents showed varied adsorption capacities for perfluorooctanoic acid, perfluoropentanoic acid, perfluoro-n-decanoic acid, and hexafluoropropylene oxide dimer acid, with the average extraction capacity of the four analytes being Sepra-WAX-KelF-PEI (523 mg/g) > Sepra-WAX (353 mg/g) > Sepra-WAX-KelF (220 mg/g). Sepra-WAX-KelF-PEI provided the highest adsorption capacity for all analytes tested, proving that the combination of electrostatic and hydrophobic/fluorophilic interactions is crucial for the effective preconcentration of PFAS and its future applications for PFAS remediation from aqueous solutions.
Collapse
Affiliation(s)
- Aghogho A Olomukoro
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio, USA
- Dr. Nina McClelland Laboratory for Water Chemistry and Environmental Analysis, The University of Toledo, Toledo, Ohio, USA
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Ruichao Xie
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Fabiola X Fernandez Paucar
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio, USA
- Dr. Nina McClelland Laboratory for Water Chemistry and Environmental Analysis, The University of Toledo, Toledo, Ohio, USA
| | - Charlotte DeRosa
- Dr. Nina McClelland Laboratory for Water Chemistry and Environmental Analysis, The University of Toledo, Toledo, Ohio, USA
- Department of Pharmacy Practice, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, Ohio, USA
| | - Neil D Danielson
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Emanuela Gionfriddo
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio, USA
- Dr. Nina McClelland Laboratory for Water Chemistry and Environmental Analysis, The University of Toledo, Toledo, Ohio, USA
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York, USA
| |
Collapse
|
4
|
Saawarn B, Mahanty B, Hait S. Adsorptive removal of perfluorooctanoic acid from aqueous matrices using peanut husk-derived magnetic biochar: Statistical and artificial intelligence approaches, kinetics, isotherm, and thermodynamics. CHEMOSPHERE 2024; 360:142397. [PMID: 38782130 DOI: 10.1016/j.chemosphere.2024.142397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/04/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Removal of perfluorooctanoic acid (PFOA) from water matrices is crucial owing to its pervasiveness and adverse ecological and human health effects. This study investigates the adsorptive removal of PFOA using magnetic biochar (MBC) derived from FeCl3-treated peanut husk at different temperatures (300, 600, and 900 °C). Preliminary experiments demonstrated that MBC600 exhibited superior performance, with its characterization confirming the presence of γ-Fe2O3. However, efficient PFOA removal from water matrices depends on determining the optimum combination of inputs in the treatment approaches. Therefore, optimization and predictive modeling of the PFOA adsorption were investigated using the response surface methodology (RSM) and the artificial intelligence (AI) models, respectively. The central composite design (CCD) of RSM was employed as the design matrix. Further, three AI models, viz. artificial neural network (ANN), support vector machine (SVM), and adaptive neuro-fuzzy inference system (ANFIS) were selected to predict PFOA adsorption. The RSM-CCD model applied to optimize three input process parameters, namely, adsorbent dose (100-400 mg/L), pH (3-10), and contact time (20-60 min), showed a statistically significant (p < 0.05) effect on PFOA removal. Maximum PFOA removal of about 98.3% was attained at the optimized conditions: adsorbent dose: 400 mg/L, pH: 3.4, and contact time: 60 min. Non-linear analysis showed PFOA adsorption was best fitted by pseudo-second-order kinetics (R2 = 0.9997). PFOA adsorption followed Freundlich isotherm (R2 = 0.9951) with a maximum adsorption capacity of ∼307 mg/g. Thermodynamics and spectroscopic analyses revealed that PFOA adsorption is a spontaneous, exothermic, and physical phenomenon, with electrostatic interaction, hydrophobic interaction, and hydrogen bonding governing the process. A comparative analysis of the statistical and AI models for PFOA adsorption demonstrated high R2 (>0.99) for RSM-CCD, ANN, and ANFIS. This research demonstrates the applicability of the statistical and AI models for efficient prediction of PFOA adsorption from water matrices using MBC (MBC600).
Collapse
Affiliation(s)
- Bhavini Saawarn
- Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Bihar, 801 106, India
| | - Byomkesh Mahanty
- Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Bihar, 801 106, India
| | - Subrata Hait
- Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Bihar, 801 106, India.
| |
Collapse
|
5
|
Wei X, Liu P, Bai D, Zhang L, Mao H, Zhang W, Chen T, Yin D, Sun T, Zhang Y, Zhang W. Industrializable and pH-tolerant electropositive imidazolium chloride polymer for high-efficiency removal of perfluoroalkyl carboxylic acids from aqueous solution. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133095. [PMID: 38056270 DOI: 10.1016/j.jhazmat.2023.133095] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/23/2023] [Accepted: 11/23/2023] [Indexed: 12/08/2023]
Abstract
In recent years, various materials have been used to adsorb and remove perfluoroalkyl compounds from water. However, most of these materials have limited applications due to their high cost, complex synthesis, inadequate selectivity and sensitivity, and, even worse, the possibility of introducing secondary pollution. Here, under mild conditions, we prepared an inexpensive imidazolium chloride and nitrogen-rich polymer (TAGX-Cl) with a high cationic loading rate and a high yield (>82%). The adsorbent exhibits excellent pH tolerance (pH=1-9) and achieves nearly 99.9% removal of nine perfluoroalkyl carboxylic acids (PFCAs) within 120 min. Experimental data and theoretical simulations confirmed that synergistic electrostatic interactions, hydrogen bonds, and P-π interactions control the adsorptive ability of TAGX-Cl. This work provides a practical strategy for PFCAs removal.
Collapse
Affiliation(s)
- Xiaohui Wei
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China
| | - Pingping Liu
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, PR China
| | - Danyang Bai
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China
| | - Luyuan Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Hongyan Mao
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China
| | - Wenjing Zhang
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China
| | - Tianqi Chen
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China
| | - Dan Yin
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Tianhua Sun
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China
| | - Yanhao Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Wenfen Zhang
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China; Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, PR China; Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
6
|
Mofijur M, Hasan MM, Ahmed SF, Djavanroodi F, Fattah IMR, Silitonga AS, Kalam MA, Zhou JL, Khan TMY. Advances in identifying and managing emerging contaminants in aquatic ecosystems: Analytical approaches, toxicity assessment, transformation pathways, environmental fate, and remediation strategies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122889. [PMID: 37972679 DOI: 10.1016/j.envpol.2023.122889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Emerging contaminants (ECs) are increasingly recognized as threats to human health and ecosystems. This review evaluates advanced analytical methods, particularly mass spectrometry, for detecting ECs and understanding their toxicity, transformation pathways, and environmental distribution. Our findings underscore the reliability of current techniques and the potential of upcoming methods. The adverse effects of ECs on aquatic life necessitate both in vitro and in vivo toxicity assessments. Evaluating the distribution and degradation of ECs reveals that they undergo physical, chemical, and biological transformations. Remediation strategies such as advanced oxidation, adsorption, and membrane bioreactors effectively treat EC-contaminated waters, with combinations of these techniques showing the highest efficacy. To minimize the impact of ECs, a proactive approach involving monitoring, regulations, and public education is vital. Future research should prioritize the refining of detection methods and formulation of robust policies for EC management.
Collapse
Affiliation(s)
- M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - M M Hasan
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Engineering and Technology, Central Queensland University, QLD, 4701, Australia
| | - Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh
| | - F Djavanroodi
- Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - I M R Fattah
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - A S Silitonga
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - M A Kalam
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - John L Zhou
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - T M Yunus Khan
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
7
|
Leung SCE, Wanninayake D, Chen D, Nguyen NT, Li Q. Physicochemical properties and interactions of perfluoroalkyl substances (PFAS) - Challenges and opportunities in sensing and remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166764. [PMID: 37660805 DOI: 10.1016/j.scitotenv.2023.166764] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) is a class of persistent organic pollutants that presents health and environmental risks. PFAS are ubiquitously present in the environment, but current remediation technologies are ineffective in degrading them into innocuous chemicals, especially high energy degradation processes often generate toxic short chain intermediates. Therefore, the best remediation strategy is to first detect the source of pollution, followed by capturing and mineralising or recycling of the compounds. The main objective of this article is to summarise the unique physicochemical properties and to critically review the intermolecular and intramolecular physicochemical interactions of PFAS, and how these interactions can become obstacles; and at the same time, how they can be applied to the PFAS sensing, capturing, and recycling process. The physicochemical interactions of PFAS chemicals are being reviewed in this paper includes, (1) fluorophilic interactions, (2) hydrophobic interactions, (3) electrostatic interactions and cation bridging, (4) ionic exchange and (5) hydrogen bond. Moreover, all the different influential factors to these interactions have also been reported. Finally, properties of these interactions are compared against one another, and the recommendations for future designs of affinity materials for PFAS have been given.
Collapse
Affiliation(s)
- Shui Cheung Edgar Leung
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia; School of Engineering and Built Environment, Griffith University, Nathan, QLD 4111, Australia
| | - Dushanthi Wanninayake
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia; School of Engineering and Built Environment, Griffith University, Nathan, QLD 4111, Australia
| | - Dechao Chen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia
| | - Qin Li
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia; School of Engineering and Built Environment, Griffith University, Nathan, QLD 4111, Australia.
| |
Collapse
|
8
|
Qin Y, Zhou C, Yu S, Pang H, Guo J, Wei J, Wang L, Xing Y, An Y, Zhou Z. Optimization of a compact on-site stormwater runoff treatment system: Process performance and reactor design. CHEMOSPHERE 2023; 315:137767. [PMID: 36610516 DOI: 10.1016/j.chemosphere.2023.137767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/26/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Stormwater runoff has become a major anthropogenic urban pollution source that threatens water quality. In this study, coagulation-sedimentation, and ammonium ion exchange and regeneration (AIR) modules were coupled as a CAIR system to efficiently treat stormwater runoff. In the coagulation module, 99.3%, 91.7%, and 97.0% of turbidity, total phosphorus, and chemical oxygen demand could be removed at an optimized poly-aluminum ferric chloride dosage of 30 mg/L, and the continuous experiment confirmed that the full load mode was more suitable for its rapid start-up. In the AIR module, dynamic ammonium removal indicated that the breakthrough time decreased with the rising initial concentration and superficial velocity. The Modified Dose Response (MDR) model described the ammonium exchange behavior better than the Thomas and the Bohart-Adams models. Then, a design flow of the ion exchange reactor was constructed by correlating constants in the MDR model with engineering parameters, and the ion exchange reactor was designed for continuous operation of the CAIR system. The average concentrations of chemical oxygen demand, total phosphorus, ammonium nitrogen, and total nitrogen in the effluent of the CAIR system were 7.22 ± 2.26, 0.17 ± 0.05, 1.49 ± 0.01, and 1.62 ± 0.02 mg/L, respectively. The almost unchanged exchange capacity and physicochemical properties after the multicycle operation confirmed the durability of zeolite for ion exchange. Techno-economic analysis suggested that the CAIR system is practically promising for stormwater management with efficient pollutants removal, small footprint, and acceptable operating cost.
Collapse
Affiliation(s)
- Yangjie Qin
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Chuanting Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Urban Construction Design and Research Institute, Shanghai, 200125, China
| | - Siqi Yu
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Hongjian Pang
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Jiaming Guo
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Jun Wei
- Huadong Engineering Corporation, Hangzhou, 311122, China
| | - Libing Wang
- Huadong Engineering Corporation, Hangzhou, 311122, China
| | - Yunxin Xing
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Ying An
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Zhen Zhou
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
9
|
Liu Y, Chen Z, Yin X, Chen Y, Liu Y, Yang W. Selective and efficient removal of As(V) and As(III) from water by resin-based hydrated iron oxide. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Zhang M, Wang W, Lv Z, Wang S. Effects of particle size on the adsorption behavior and antifouling performance of magnetic resins. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:11926-11935. [PMID: 36097309 DOI: 10.1007/s11356-022-22961-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Adequately choosing the physicochemical characteristics of adsorbent is crucial in improving its adsorption performance. This work investigated the effect of particle size of magnetic resins on adsorption behaviors of tetracycline (TC) and their antifouling performance. Smaller particle size resin Q150 (10-30 μm) shows notably faster TC adsorption kinetics when compared resins with hundreds of microns (Q100 and Q1). Simulated by Weber-Morris equation, the film diffusion time of Q150 was only 20 min, 2-25 times faster than that of other resins. At this adsorption time, Q150 can reach more than 80% of the maximum adsorption, and the ring-like fluorescence images indicate that the molecules are accumulated on the external surface. Q150 also shows better reusability and antifouling performance over Q100 and Q1. After 20 adsorption-desorption cycles, the adsorption capacity of Q150 at 20 min only decreases 9.7%. The presence of tannic acid also only slightly decreases the adsorption capacity. The faster adsorption kinetics and the superior antifouling performance of Q150 make it a promising adsorbent in future use.
Collapse
Affiliation(s)
- Mancheng Zhang
- Jiangsu Province Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, People's Republic of China.
- Jiangsu Province Engineering Research Center of Soil and Groundwater Pollution Prevention and Control, Nanjing, 210036, People's Republic of China.
| | - Wei Wang
- Jiangsu Province Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, People's Republic of China
| | - Zongxiang Lv
- Jiangsu Province Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, People's Republic of China
- Jiangsu Province Engineering Research Center of Soil and Groundwater Pollution Prevention and Control, Nanjing, 210036, People's Republic of China
| | - Shui Wang
- Jiangsu Province Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, People's Republic of China
- Jiangsu Province Engineering Research Center of Soil and Groundwater Pollution Prevention and Control, Nanjing, 210036, People's Republic of China
| |
Collapse
|
11
|
Tian R, Liu Y, Cao D, Gai L, Du N, Yin J, Hu D, Lu H, Li W, Li K. Preparation of highly efficient p-doped porous camellia shell-based activated carbon and its adsorption of carotenoids in camellia oil. Front Nutr 2022; 9:1058025. [DOI: 10.3389/fnut.2022.1058025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
The vegetable oil industry is limited by the high cost of the refining process, and the camellia shells (CS) are beneficial to the development of the industry as a biomass raw material for camellia oil decolorization. In this study, CS-based p-doped porous activated carbon (CSHAC) obtained after the pyrolysis of H3PO4-laden CS-hydrochar (CSH) was used for the adsorption of carotenoids in camellia oil. The results showed that the adsorption efficiency of CSHAC for carotenoids was 96.5% compared to 67–87% for commercial decolorizers, and exhibited a fast adsorption rate (20 min). The results of adsorption isotherms indicated that the adsorption of carotenoids on CSHAC occurred through a multi-layer process. Furthermore, the analysis of adsorption kinetics showed that the adsorption of carotenoids by CSHAC was a complex process involving physical and chemical reactions, and chemisorption was the dominant kinetic mechanism. This superior performance of CSHAC in adsorbing carotenoids was attributed to its micro-mesoporous structure, hydrophobicity, and numerous active sites.
Collapse
|
12
|
Liang D, Yu F, Zhu K, Zhang Z, Tang J, Xie Q, Liu J, Xie F. Quaternary ammonium salts targeted regulate the surface charge distribution of activated carbon: A study of their binding modes and modification effects. ENVIRONMENTAL RESEARCH 2022; 214:114103. [PMID: 35987375 DOI: 10.1016/j.envres.2022.114103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Activated carbon (AC) is negatively charged in aqueous solution, which seriously restricts its application range. Quaternary ammonium salt as a common cationic surfactant was utilized to modify the surface charge distribution of materials. The evolution of the surface charge distribution of AC modified by benzalkonium chloride (BAC), diallyl dimethyl ammonium chloride (DDA) and 3-chloro-2-hydroxypropyl tri-methyl ammonium chloride (CTA) was investigated. Results showed that the surface charge of AC modified by CTA does not change significantly. BAC has a high molecular weight, low surface electrostatic potential and large steric hindrance due to its hydrophobic long-chain alkyl. The diffusion of BAC molecules from solution to AC changed its charge distribution. But these molecules were difficult to combine with AC surface, and most of them were adsorbed into the pores of AC to form aggregates, resulting in a significant reduction in the surface area. BAC modified AC could enhance the adsorption capacity of F- in aqueous solution through electrostatic attraction, but the improvement effect was limited due to the reduction of surface area, and the maximum adsorption capacity was only increased from 1.18 to 3.31 mg/g. DDA has a small molecular weight and high surface electrostatic potential and easily binds to the surface of AC. Some CC bonds in DDA combined with the ionized hydrogen ions derived from phenolic hydroxyl groups in AC to form carbonium-ions. Then, they could react with AC to form ether bonds, causing DDA to be closely bonded with the surface of AC. DDA realizes the targeted regulation of the surface charge distribution of AC, it has little effect on the porous structure of AC. The modified AC still maintained strong adsorption capacity, and the maximum adsorption capacity for F- was 54.98 mg/g. Meanwhile, a large number of zeolites were loaded on the modified AC and formed coating structures.
Collapse
Affiliation(s)
- Dingcheng Liang
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, PR China.
| | - Fengqin Yu
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, PR China
| | - Keping Zhu
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, PR China
| | - Zhijun Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, PR China
| | - Jiawei Tang
- State Key Laboratory of Water Resource Protection and Utilization in Coal Mining, Beijing, 102299, PR China
| | - Qiang Xie
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, PR China
| | - Jinchang Liu
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, PR China
| | - Fei Xie
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui Province, 230029, PR China
| |
Collapse
|
13
|
Wang Y, Bao L, Sun J, Ding Y, Shi J, Duan Z, Chen Z. Superhydrophobic fluorinated microspheres for fluorous affinity chromatography. J Chromatogr A 2022; 1680:463428. [PMID: 36001909 DOI: 10.1016/j.chroma.2022.463428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022]
Abstract
Fluorous affinity chromatography has received growing attention in separation and purification of fluoro compounds, but the wettability of the fluorinated stationary phases is seldom noticed. Here, we construct a series of micro-sized fluorine-containing microspheres by solvothermal precipitation polymerization. The fluorinated microspheres could be obtained with narrow size distribution at even high monomer loading of 15 wt%. Through alternating fluoro monomer, both the particle size and the wettability of the microsphere array could be tuned. Among them, the poly(divinylbenzene -dodecafluoroheptyl methacrylate), P(DVB-DFHMA), microsphere (6.1 μm) arrays displays superhydrophobicity with 153.2° water contact angle. The P(DVB-DFHMA) fluorinated microspheres (7.58% fluorine content) can be packed into steel-less columns as stationary phase for high-performance liquid chromatography. The retention mechanism of the fluorinated column is proven to be the specific fluorine-fluorine interaction. Compared to the commercial C18 silica column, the fluorinated column can completely separate fluorine-containing compounds under high water content mobile phase, including small fluoro molecules and fluoro macromolecules, at much lower back pressure by fluorous affinity.
Collapse
Affiliation(s)
- Yanyan Wang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Liuqian Bao
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Jiajing Sun
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yuanyuan Ding
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Jiasheng Shi
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Zhengyu Duan
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Zhiyong Chen
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| |
Collapse
|
14
|
Li F, Wang S, Zhao X, Shao L, Pan Y. Durable Superoleophobic Janus Fabric with Oil Repellence and Anisotropic Water-Transport Integration toward Energetic-Efficient Oil-Water Separation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37170-37181. [PMID: 35938401 DOI: 10.1021/acsami.2c09545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Porous materials with opposing superwettability toward oil and water have aroused widespread interest for their selective-wetting advantage in oil-water separation. The separation process, however, requires constant energy input to maintain the driving force. Further reducing the external energy consumption or accelerating the liquid transport during separation is still a challenge. The Janus membrane is an emerging porous material with opposing wettability toward a specific liquid on each side. The asymmetric wettability distribution leads to a surface energy gradient-driven liquid-transport behavior through the thickness, which significantly facilitates liquid transportation. It is conceived that porous materials possessing both Janus features and selective superwettability would reduce energy consumption and strengthen the efficiency in oil-water separation. Herein, a novel durable superoleophobic (SOHB) Janus fabric which possesses oil-repellent and surface energy gradient-driven water-transport properties was developed through one-side superoleophobic/superhydrophilic modification of the superamphiphobic fabric. The SOHB Janus fabric exhibits high mechanical durability and significant superior capacity than the homogeneous superoleophobic/superhydrophilic fabric in separating various oil-water mixtures. Moreover, the SOHB Janus fabric repels oil contaminants and pumps perspiration from the human skin, exhibiting prospects in physical moisture regulation and comfort improvement. Our novel Janus fabric, along with the fabrication principle, provides a feasible solution for energetic-efficient oil-water remediations and would have implications for the fabrication of advanced separation membranes and intelligent functional clothing.
Collapse
Affiliation(s)
- Feiran Li
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education and School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Shuai Wang
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education and School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xuezeng Zhao
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education and School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Lu Shao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yunlu Pan
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education and School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|