1
|
Yoo SB, Song YS, Seo S, Kim BG. Effects of Supplemental Benzoic Acid, Bromelain, Adipic Acid, and Humic Substances on Nitrogen Utilization, Urine pH, Slurry pH, and Manure Odorous Compounds in Pigs. Animals (Basel) 2023; 14:82. [PMID: 38200813 PMCID: PMC10778150 DOI: 10.3390/ani14010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
The objective was to evaluate the effects of benzoic acid, bromelain, adipic acid, and humic substance supplementation on nitrogen balance, urinary pH, slurry pH, and manure odorous compounds in pigs. Fifteen castrated male pigs with an initial body weight of 37.9 kg (standard deviation = 4.1) were individually housed in metabolism crates. The animals were allocated to a triplicated 5 × 2 incomplete Latin square design with 15 animals, 5 experimental diets, and 2 periods. The basal diet mainly consisted of corn, soybean meal, and rapeseed meal. Four experimental diets were prepared by supplementing each additive at a concentration of 10 g/kg at the expense of corn starch to the basal diet. Each period consisted of a 4-day adaptation period, a 24 h collection period for slurry sampling, and a 4-day collection period for feces and urine. The feces and urine collected for 24 h on day 5 were mixed at a ratio of fecal weight and urine weight to obtain slurry samples. The apparent total tract digestibility N in pigs fed the humic substance diet was the least (p < 0.05) compared to the other groups. The daily retained N and N retention as % ingested tended (p < 0.10) to be the lowest in the adipic acid group among the treatments. The urinary pH in pigs fed the adipic acid diet was less (p < 0.05) than that in other groups except the benzoic acid group. The slurry pH tended to differ among the treatment groups (p = 0.074) with the lowest value in the pigs fed the adipic acid diet. The concentrations of indole in slurry (p = 0.084) and isovalerate in feces (p = 0.062) tended to differ among the groups with the lowest values in the pigs fed the humic substance diet. In conclusion, adipic acid supplementation in pig diets can decrease urinary pH and slurry pH. Although benzoic acid and adipic acid have limited effects in reducing odorous compounds, humic substances have the potential to reduce some odorous compounds.
Collapse
Affiliation(s)
- Seung Bin Yoo
- Department of Animal Science, Konkuk University, Seoul 05029, Republic of Korea; (S.B.Y.); (Y.S.S.)
| | - Yoon Soo Song
- Department of Animal Science, Konkuk University, Seoul 05029, Republic of Korea; (S.B.Y.); (Y.S.S.)
| | - Siyoung Seo
- Animal Environmental Division, National Institute of Animal Science, Wanju 55365, Republic of Korea;
| | - Beob Gyun Kim
- Department of Animal Science, Konkuk University, Seoul 05029, Republic of Korea; (S.B.Y.); (Y.S.S.)
| |
Collapse
|
2
|
Deng JJ, Hu JY, Han XY, Li Y, Luo XC, Wang ZL, Li JZ. Degradation of indole via a two-component indole oxygenase system from Enterococcus hirae GDIAS-5. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131707. [PMID: 37379596 DOI: 10.1016/j.jhazmat.2023.131707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/30/2023]
Abstract
Animal farming copiously generates indoles, which contribute to odor and pose a challenge for deodorization. While biodegradation is widely accepted, there is a lack of suitable indole-degrading bacteria for animal husbandry. In this study, we aimed to construct genetically engineered strains with indole-degrading abilities. Enterococcus hirae GDIAS-5 is a highly efficient indole-degrading bacterium, which functions via a monooxygenase YcnE presumably contributes to indole oxidation. However, the efficiency of engineered Escherichia coli expressing YcnE for indole degradation is lower than that of GDIAS-5. To improve its efficacy, the underlying indole-degradation mechanisms in GDIAS-5 were analyzed. An ido operon that responds to a two-component indole oxygenase system was identified. In vitro experiments showed that the reductase component of YcnE, YdgI, can improve the catalytic efficiency. The reconstruction of the two-component system in E. coli exhibited higher indole removal efficiency than GDIAS-5. Furthermore, isatin, the key intermediate metabolite in indole degradation, might be degraded via a novel isatin-acetaminophen-aminophenol pathway involving an amidase whose coding gene is located near the ido operon. The two-component anaerobic oxidation system, upstream degradation pathway, and engineering strains investigated in this study provide important insights into indole degradation metabolism and offer efficient resources for achieving bacterial odor elimination.
Collapse
Affiliation(s)
- Jun-Jin Deng
- Agro-Biological Gene Research Center, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangdong Academy of Agricultural Sciences, No. 20 Jinying Road, Tianhe, Guangzhou, Guangdong 510640, China; Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, No. 1 Dafeng Street, Wushan Road, Tianhe, Guangzhou, Guangdong 510640, China
| | - Jing-Yi Hu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou, Guangdong 510006, China
| | - Xue-Ying Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou, Guangdong 510006, China
| | - Yang Li
- Agro-Biological Gene Research Center, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangdong Academy of Agricultural Sciences, No. 20 Jinying Road, Tianhe, Guangzhou, Guangdong 510640, China
| | - Xiao-Chun Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou, Guangdong 510006, China
| | - Zhi-Lin Wang
- Agro-Biological Gene Research Center, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangdong Academy of Agricultural Sciences, No. 20 Jinying Road, Tianhe, Guangzhou, Guangdong 510640, China.
| | - Jia-Zhou Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, No. 1 Dafeng Street, Wushan Road, Tianhe, Guangzhou, Guangdong 510640, China; Guangdong Laboratory for Lingnan Modern Agriculture Heyuan Sub-center, Heyuan, Guangdong 517000, China.
| |
Collapse
|
3
|
Regar RK, Singh D, Gaur VK, Thakur RS, Manickam N. Functional genomic analysis of an efficient indole degrading bacteria strain Alcaligenes faecalis IITR89 and its biodegradation characteristics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51770-51781. [PMID: 36820967 DOI: 10.1007/s11356-023-25955-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Indole is a nitrogenous heterocyclic aromatic pollutant often detected in various environments. An efficient indole degrading bacterium strain IITR89 was isolated from River Cauvery, India, and identified as Alcaligenes faecalis subsp. phenolicus. The bacterium was found to degrade ~ 95% of 2.5 mM (293.75 mg/L) of indole within 18 h utilizing it as a sole carbon and energy source. Based on metabolite identification, the metabolic route of indole degradation is indole → (indoxyl) → isatin → (anthranilate) → salicylic acid → (catechol) → (Acetyl-CoA) → and further entering into TCA cycle. Genome sequencing of IITR89 revealed the presence of gene cluster dmpKLMNOP, encoding multicomponent phenol hydroxylase; andAbcd gene cluster, encoding anthranilate 1,2-dioxygenase ferredoxin subunit (andAb), anthranilate 1,2-dioxygenase large subunit (andAc), and anthranilate 1,2-dioxygenase small subunit (andAd); nahG, salicylate hydroxylase; catA, catechol 1,2-dioxygenase; catB, cis, cis-muconate cycloisomerase; and catC, muconolactone D-isomerase which play an active role in indole degradation. The findings strongly support the degradation potential of strain IITR89 and its possible application for indole biodegradation.
Collapse
Affiliation(s)
- Raj Kumar Regar
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Drug Standardisation Unit, Dr. D.P. Rastogi Central Research Institute for Homoeopathy, Noida, 201301, Uttar Pradesh, India
| | - Deeksha Singh
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Vivek Kumar Gaur
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Korea
| | - Ravindra Singh Thakur
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Natesan Manickam
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|