1
|
Zhang H, Liu Q, Zhou P, Zhang H, Xu L, Sun X, Xu J. Co/SH-based MOFs incorporated nanofiltration membranes for efficient selenium uptake in water purification. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136836. [PMID: 39672069 DOI: 10.1016/j.jhazmat.2024.136836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/23/2024] [Accepted: 12/08/2024] [Indexed: 12/15/2024]
Abstract
Metal-Organic Frameworks (MOFs) with high adsorption capacity have shown potential in removing pollutants from water, particularly the toxic selenium (Se). However, MOFs face two challenges in the application of Se removal, that is low removal efficiency and unfavorable powder properties for recovery. In this study, a Co-MOF-74-SH with dual active adsorption sites was synthesized and subsequently immobilized into membrane to fabricate a multi-functional nanofiltration (NF) membrane for efficient Se removal and salt-salt separation. The strong cooperative interaction between the dual active Co/S sites and Se resulted in an impressive Se removal efficiency of 94.1 % for Co-MOF-74-SH. The adsorption energy and isosurface of electron density from DFT simulations showed the strong interaction between SeO32- and S sites in Co-MOF-74-SH. NF membrane with Co-MOF-74-SH incorporation was fabricated. This membrane showed Se removal of ∼99.6 %, surpassing original membrane of ∼74.4 %, which was attributed to synergetic mechanism of adsorption and separation. Simultaneously, the membrane exhibited excellent separation performance, with divalent/monovalent salt selectivity up to more than 80 as well as high water permeance of 15.80 L m-2 h-1 bar-1. This work not only broadens efficient adsorbents for Se removal, but also paves the way for membrane material for water purification and wastewater resource utilization.
Collapse
Affiliation(s)
- Hansi Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Qingzhi Liu
- College of Chemistry and Pharmaceutical Science, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109, China
| | - Peilei Zhou
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Huiting Zhang
- College of Chemistry and Pharmaceutical Science, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109, China
| | - Lishan Xu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Xiaoxia Sun
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, China; College of Chemistry and Pharmaceutical Science, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109, China
| | - Jia Xu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, China.
| |
Collapse
|
2
|
Zhou S, Ban T, Li T, Gao H, He T, Cheng S, Li H, Yi J, Zhao F, Qu W. Defect Engineering in Ce-Based Metal-Organic Frameworks toward Enhanced Catalytic Performance for Hydrogenation of Dicyclopentadiene. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38177-38187. [PMID: 39011741 DOI: 10.1021/acsami.4c08040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Defective metal-organic frameworks (MOFs) have shown great potential for catalysis due to abundant active sites and adjustable physical and chemical properties. A series of Ce-based MOFs with different defect contents were synthesized via a modulator-induced defect engineering strategy with the aid of the cell pulverization technique. The effects of modulators on the pore structure, morphology, valence distribution of Ce, and Lewis acidity of Ce-MOF-801 were systematically investigated. Among the different samples studied, the optimal Ce-MOF-801-50eq sample exhibited remarkable catalytic activity for DCPD hydrogenation, achieving a conversion rate of 100%, which is significantly higher compared to other Ce-MOF-801-neq samples as well as the Zr-MOF-801-50eq and Hf-MOF-801-50eq samples. The enhanced catalytic performance of Ce-MOF-801-50eq can be attributed to advantages provided by defect engineering, such as the high specific surface area, proper pore size distribution, abundant unsaturated metal sites, and Ce3+/Ce4+ atom ratio, which have been supported by various characterizations. This study provides important insights into the rational design of Ce-MOFs in the field of catalytic DCPD hydrogenation.
Collapse
Affiliation(s)
- Shenglan Zhou
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Functional Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Tao Ban
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Functional Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Tian Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Functional Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Hongyi Gao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Functional Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
- Shunde Innovation School, University of Science and Technology Beijing, Shunde 528399, P.R. China
| | - Tao He
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Functional Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Shanshan Cheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Functional Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Haijian Li
- National Key Laboratory of Energetic Materials, Xi'an Modern Chemistry Research Institute, Xi'an 710065, China
| | - Jianhua Yi
- National Key Laboratory of Energetic Materials, Xi'an Modern Chemistry Research Institute, Xi'an 710065, China
| | - Fengqi Zhao
- National Key Laboratory of Energetic Materials, Xi'an Modern Chemistry Research Institute, Xi'an 710065, China
| | - Wengang Qu
- National Key Laboratory of Energetic Materials, Xi'an Modern Chemistry Research Institute, Xi'an 710065, China
| |
Collapse
|
3
|
Alam R, Roy SC, Islam T, Feng R, Zhu X, Donley CL, Islam SM. Molybdenum-Oxysulfide-Functionalized MgAl-Layered Double Hydroxides─A Sorbent for Selenium Oxoanions. Inorg Chem 2024; 63:10997-11005. [PMID: 38833549 DOI: 10.1021/acs.inorgchem.4c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Effective removal of chemically toxic selenium oxoanions at high-capacity and trace levels from contaminated water remains a challenge in current scientific pursuits. Here, we report the functionalization of the MgAl layered double hydroxide with molybdenum-oxysulfide (MoO2S2) anion, referred to as LDH-MoO2S2, and its potential to sequester SeVIO42- and SeIVO32- from aqueous solution. LDH-MoO2S2 nanosheets were synthesized by an ion exchange method in solution. Synchrotron X-ray pair distribution function (PDF) and extended X-ray absorption fine structure (EXAFS) revealed an unexpected transformation of the MoO2S22- to Mo2O2S62- like species during the intercalation process. LDH-MoO2S2 is remarkably efficient in removing SeO42- and SeO32- ions from the ppm to trace level (≤10 ppb), with distribution constant (Kd) ranging from 104 to 105 mL/g. This material showed exceptionally high sorption capacities of 237 and 358 mg/g for SeO42- and SeO32-, respectively. Furthermore, LDH-MoO2S2 demonstrates substantial affinity and efficiency to remove SeO32-/SeO42- even in the presence of competitive ions from contaminated water. Hence, the removal of selenium (VI/IV) oxoanions collectively occurs through reductive precipitation and ion exchange mechanisms. This work provides significant insights into the chemical structure of the MoO2S2 anion into LDH and emphasizes its exceptional potential for high-capacity selenium removal and positioning it as a premier sorbent for selenium oxoanions.
Collapse
Affiliation(s)
- Robiul Alam
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| | - Subrata Chandra Roy
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| | - Taohedul Islam
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| | - Renfei Feng
- Canadian Light Source, Saskatoon, Saskatchewan S7N 2 V3, Canada
| | - Xianchun Zhu
- Department of Civil Engineering, Jackson State University, Jackson, Mississippi 39217, United States
| | - Carrie L Donley
- Department of Chemistry, and Chapel Hill Analytical and Nanofabrication Laboratory (CHANL), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Saiful M Islam
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| |
Collapse
|
4
|
Zhang S, Lin H, Sun P, Zhou Y, Zhang Q, Sang T, Tuo A, Xiong K, Gai Y. Cationic Europium-Organic Framework for Chromatographic Column Separation of Ionic Dyes and Stimuli-Responsive Chromic Properties. Inorg Chem 2024; 63:9288-9296. [PMID: 38724469 DOI: 10.1021/acs.inorgchem.4c01035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
A novel 3D europium-based cationic framework (Eu-CMOF) has been constructed solvothermally by employing a viologen derivative as an organic functional building unit. Notably, Eu-CMOF demonstrates its capability as a proficient aqueous-phase ion-exchange host, facilitating the remarkable rapid chromatographic column separation of new coccine and malachite green (NC3-/MG+), as well as new coccine and methylene blue (NC3-/MLB+), in mere 2 to 4 min. Adsorption thermodynamics and kinetics of anionic dyes demonstrate that Eu-CMOF exhibits a higher adsorption capacity for NC3-, as evaluated by the Langmuir model, reaching a value of 173 mg·g-1. The pseudo-second-order rate constant is determined to be 3.84 × 10-3 mg-1·g·min-1. Additionally, Eu-CMOF displays reversible photochromic and amine- and ammonia-induced vapochromic behaviors. Further mechanistic studies reveal that these chromic behaviors are primarily attributed to the generation of free viologen radical stimulated by Xe-light or electron-rich amine/ammonia. This research contributes to the development of advanced materials with applications in rapid chromatographic separation and stimuli-responsive chromic properties, showcasing the potential of Eu-CMOF as a versatile platform for practical applications.
Collapse
Affiliation(s)
- Shi Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Haoran Lin
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Peng Sun
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Yudie Zhou
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Qingfu Zhang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, P. R. China
| | - Tingting Sang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Anna Tuo
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Kecai Xiong
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Yanli Gai
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| |
Collapse
|
5
|
Obeso JL, López-Cervantes VB, Flores CV, Martínez A, Amador-Sánchez YA, Portillo-Velez NS, Lara-García HA, Leyva C, Solis-Ibarra D, Peralta RA. CYCU-3: an Al(III)-based MOF for SO 2 capture and detection. Dalton Trans 2024; 53:4790-4796. [PMID: 38372055 DOI: 10.1039/d3dt04073a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The Al(III)-based MOF CYCU-3 exhibits a relevant SO2 adsorption performance with a total uptake of 11.03 mmol g-1 at 1 bar and 298 K. CYCU-3 displays high chemical stability towards dry and wet SO2 exposure. DRIFTS experiments and computational calculations demonstrated that hydrogen bonding between SO2 molecules and bridging Al(III)-OH groups are the preferential adsorption sites. In addition, photoluminescence experiments demonstrated the relevance of CYCU-3 for application in SO2 detection with good selectivity for SO2 over CO2 and H2O. The change in fluorescence performance demonstrates a clear turn-on effect after SO2 interaction. Finally, the suppression of ligand-metal energy transfer along with the enhancement of ligand-centered π* → π electronic transition was proposed as a plausible fluorescence mechanism.
Collapse
Affiliation(s)
- Juan L Obeso
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694, Irrigación, 11500, Miguel Hidalgo, CDMX, Mexico
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - Valeria B López-Cervantes
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694, Irrigación, 11500, Miguel Hidalgo, CDMX, Mexico
| | - Catalina V Flores
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694, Irrigación, 11500, Miguel Hidalgo, CDMX, Mexico
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - Ana Martínez
- Departamento de Materiales de baja Dimensionalidad. Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México. Circuito Interior SN, Ciudad Universitaria, CP 04510, Coyoacán, CDMX, Mexico
| | - Yoarhy A Amador-Sánchez
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - N S Portillo-Velez
- Departamento de Química, División de Ciencias Básicas e Ingeniería. Universidad Autónoma Metropolitana (UAM-I), 09340, Mexico.
| | - Hugo A Lara-García
- Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, Mexico City 0100, Mexico
| | - Carolina Leyva
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694, Irrigación, 11500, Miguel Hidalgo, CDMX, Mexico
| | - Diego Solis-Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - Ricardo A Peralta
- Departamento de Química, División de Ciencias Básicas e Ingeniería. Universidad Autónoma Metropolitana (UAM-I), 09340, Mexico.
| |
Collapse
|
6
|
Hu JJ, Xie KL, Xiong TZ, Wang MM, Wen HR, Peng Y, Liu SJ. Stable Europium(III) Metal-Organic Framework Demonstrating High Proton Conductivity and Fluorescence Detection of Tetracyclines. Inorg Chem 2023. [PMID: 37452746 DOI: 10.1021/acs.inorgchem.3c01468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
A europium(III) metal-organic framework (MOF), namely, {[[(CH3)2NH2]3Eu2(DTTP-2OH)2(HCOO)(H2O)]·4H2O}n (Eu-MOF, H4DTTP-2OH = 2',5'-dihydroxy-[1,1':4',1″-terphenyl]-3,3″,5,5″-tetracarboxylic acid) has been assembled through solvothermal method. The Eu-MOF is a three-dimensional (3D) (4,4,8)-connected topological framework with binuclear Eu(III) clusters as secondary building units, in which a richly ordered hydrogen bonding network formed among the free H2O molecules, dimethylamine cations, and phenolic hydroxyl groups provides a potential pathway for proton conduction. The proton conductivity reaches the category of superionic conductors (σ > 10-4 S cm-1) at room temperature with a maximum conductivity of 1.91 × 10-3 S cm-1 at 60 °C and 98% RH. Moreover, it also can be used as a fluorescence sensor in aqueous solution with detection limits of 0.14 μM for tetracycline, 0.13 μM for oxytetracycline and 0.11 μM for doxycycline. These results pave new methods for constructing MOFs with high proton conductivity and responsive fluorescence.
Collapse
Affiliation(s)
- Jun-Jie Hu
- School of Chemistry and Chemical Engineering, Jiangxi Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Kang-Le Xie
- School of Chemistry and Chemical Engineering, Jiangxi Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Tian-Zheng Xiong
- School of Chemistry and Chemical Engineering, Jiangxi Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Miao-Miao Wang
- School of Chemistry and Chemical Engineering, Jiangxi Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Yan Peng
- School of Chemistry and Chemical Engineering, Jiangxi Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China
| |
Collapse
|
7
|
Wang T, Zhao H, Zhao X, Liu D. Construction of defective zirconium-based metal-organic frameworks for enhanced removal of toxic selenite: performance and mechanism studies. J Colloid Interface Sci 2023; 647:488-498. [PMID: 37271093 DOI: 10.1016/j.jcis.2023.05.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/12/2023] [Accepted: 05/24/2023] [Indexed: 06/06/2023]
Abstract
The development of effective adsorbents for the adsorption and removal of toxic selenite (SeO32-) from wastewater is urgently required but challenging. Herein, formic acid (FA), a monocarboxylic acid, was used as a template to construct serial defective Zr-Fumarate (Fum) -FA based on a green and facile preparation method. Physicochemical characterization shows that the defect degree of Zr-Fum-FA can be flexibly controlled by regulating the amount of FA to be added. Owing to rich defect units, the diffusion and mass transfer of guest SeO32- into the channel can be boosted. Particularly, Zr-Fum-FA-6 with the most defects exhibits superior adsorption capacity (519.6 mg g-1) and rapid adsorption equilibrium (∼200 min). The adsorption isotherms and kinetics can be well described by the Langmuir and pseudo-second-order kinetic models. Moreover, this adsorbent possesses excellent resistance towards co-existing ions, high chemical stability and good applicability in a broad pH range of 3-10. Thus, our study provides a promising adsorbent for SeO32-, and more importantly, it proposes a strategy for rationally tailoring the adsorption behavior of adsorbents via defect construction.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huifang Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xudong Zhao
- College of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan 030012, China.
| | - Dahuan Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; College of Chemical Engineering, Qinghai University, Xining 810016, China.
| |
Collapse
|
8
|
Yang L, Tian M, Qin J, Lu Y, Yu Q, Han J. A Luminescent Metal‐Organic Framework with Boosted Picric Acid Fluorescence Detection Performance via a Complementary Capture‐Quench Mechanism. Eur J Inorg Chem 2023. [DOI: 10.1002/ejic.202300089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Li Yang
- State Key Laboratory of Explosion Science and Technology of China Explosion Protection and Emergency Disposal Technology Engineering Research Center of the Ministry of Education Beijing Institute of Technology 5 Zhongguancun South Street, Haidian District Beijing 100081 China
| | - Momang Tian
- State Key Laboratory of Explosion Science and Technology of China Explosion Protection and Emergency Disposal Technology Engineering Research Center of the Ministry of Education Beijing Institute of Technology 5 Zhongguancun South Street, Haidian District Beijing 100081 China
| | - Jian Qin
- State Key Laboratory of Explosion Science and Technology of China Explosion Protection and Emergency Disposal Technology Engineering Research Center of the Ministry of Education Beijing Institute of Technology 5 Zhongguancun South Street, Haidian District Beijing 100081 China
| | - Yuewen Lu
- State Key Laboratory of Explosion Science and Technology of China Explosion Protection and Emergency Disposal Technology Engineering Research Center of the Ministry of Education Beijing Institute of Technology 5 Zhongguancun South Street, Haidian District Beijing 100081 China
| | - Qian Yu
- State Key Laboratory of Explosion Science and Technology of China Explosion Protection and Emergency Disposal Technology Engineering Research Center of the Ministry of Education Beijing Institute of Technology 5 Zhongguancun South Street, Haidian District Beijing 100081 China
| | - Ji‐Min Han
- State Key Laboratory of Explosion Science and Technology of China Explosion Protection and Emergency Disposal Technology Engineering Research Center of the Ministry of Education Beijing Institute of Technology 5 Zhongguancun South Street, Haidian District Beijing 100081 China
| |
Collapse
|
9
|
Sheybani S, Abbas M, Firouzi HR, Xiao Z, Zhou HC, Balkus KJ. Synthesis of Fluoro-Bridged Ho 3+ and Gd 3+ 1,3,5-Tris(4-carboxyphenyl)benzene Metal-Organic Frameworks from Perfluoroalkyl Substances. Inorg Chem 2023; 62:4314-4321. [PMID: 36857778 DOI: 10.1021/acs.inorgchem.2c04470] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
A new fluoro-bridged rare-earth (RE) metal-organic framework consisting of 15-connected nonanuclear and 9-connected trinuclear clusters {[RE9-(μ3-F)14(H2O)6][RE3(μ3-F)(H2O)3](HCO2)3-(BTB)6}·(solvent)x 2 (RE = Ho3+ and Gd3+) was synthesized through the transformation of a dimeric complex formulated as bis(2,2'-bipyridine)tetrakis(μ-2-fluorobenzoato-O,O')-bis(2-fluorobenzoato)diRE(III) 1 with the bridging linker 1,3,5-tris(4-carboxyphenyl)benzene (H3BTB). The rare-earth metal ions Ho3+ and Gd3+ were also found to remove fluorine from other organo-fluorine compounds such as perfluorohexanoic acid (PFHxA) and perfluorooctanoic acid (PFOA), resulting in the new fluoro-bridged RE-MOFs.
Collapse
Affiliation(s)
- Simin Sheybani
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Muhammad Abbas
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Hamid R Firouzi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Zhifeng Xiao
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Kenneth J Balkus
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| |
Collapse
|
10
|
Chen Y, Wang Z, Liu S, Zhang G, Dong L, Gu P, Hou L. Layered metal sulfide NMTS for rapid removal of radioactive strontium ions from aqueous solution. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|