1
|
Zhang H, Zhou Y, Zhang M, Yin H, Hu Y, Yin Z, Ai S. Construction of CdIn 2S 4/MXene-TiO 2 Z-Scheme Heterojunction for High-Gain Organic Photoelectrochemical Transistor to Achieve Maximized Transconductance at Zero Bias. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408470. [PMID: 39692155 DOI: 10.1002/smll.202408470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/15/2024] [Indexed: 12/19/2024]
Abstract
Interfacial charge-carrier complexation is a bottleneck problem governing the gating effect of organic photoelectrochemical transistor (OPECT) biosensors. Therefore, it has long been desired to enhance the OPECT gating effect and realize the maximum transconductance at zero bias. In this study, an in situ engineered heterojunction gating and nano-enzymatic catalytic integration of OPECT-colorimetric dual-mode sensing platform is developed for dibutyl phthalate detection. Specifically, highly efficient photoactive CdIn2S4/MXene-TiO2 Z-scheme heterojunction is constructed by two-step in situ engineering to promote effective separation of electron-hole pairs to achieve sensitive gating of poly(ethylene dioxythiophene):poly(styrene sulfonate)-based OPECT. Target-induced rolling circle amplification is used as the signal amplification unit, and Ag@Carbon Sphere (Ag─CS) is used as the signal conditioning element, which on the one hand causes shunting of photogenerated electrons, leading to energy transfer and reduced gating. At the same time, Ag─CS acts as a peroxidase-mimicking nanozyme to oxidize the TMB discoloration. Importantly, the prepared sensor exhibits good selectivity and high sensitivity for the detection of dibutyl phthalate with a detection limit of 0.08 fM and also shows superior detection ability in real water bodies. Therefore, the sensor provides an ideal choice for toxic molecule detection and has a promising application in environmental monitoring and food analysis.
Collapse
Affiliation(s)
- Haowei Zhang
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, Shandong, 271018, P. R. China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, Shandong, 271018, P. R. China
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Miao Zhang
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, Shandong, 271018, P. R. China
| | - Huanshun Yin
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, Shandong, 271018, P. R. China
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Yixin Hu
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, Shandong, 271018, P. R. China
| | - Zhidong Yin
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, Shandong, 271018, P. R. China
| | - Shiyun Ai
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, Shandong, 271018, P. R. China
| |
Collapse
|
2
|
Zhao M, Guo J, Chen Z, Wang F. A disposable electrochemical magnetic immunosensor for the rapid and sensitive detection of 5-formylcytosine and 5-carboxylcytosine in DNA. Biosens Bioelectron 2024; 262:116547. [PMID: 38968775 DOI: 10.1016/j.bios.2024.116547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
5-formylcytosine (5 fC) and 5-carboxylcytosine (5caC) serve as key intermediates in DNA demethylation process with significant implications for gene regulation and disease progression. In this study, we introduce a novel electrochemical sensing platform specifically designed for the sensitive and selective detection of 5 fC and 5caC in DNA. Protein A-modified magnetic beads (ProtA-MBs) coupled with specific antibodies facilitate the immunorecognition and enrichment of these modified bases. Signal amplification is achieved through several chemical reactions involving the interaction between N3-kethonaxl and guanine, copper-free click chemistry for the attachment of dibenzocyclooctyne (DBCO)-Biotin, and the subsequent recognition by streptavidin-conjugated horseradish peroxidase (SA-HRP). The assay's readout is performed on a disposable laser-induced graphene (LIG) electrode, modified with the bead-antibody-DNA complex in a magnetic field, and analyzed using differential pulse voltammetry in a system employing hydroquinone (HQ) as the redox mediator and H2O2 as the substrate. This immunosensor displayed excellent sensitivity, with detection limits of 14.8 fM for 5 fC across a 0.1-1000 pM linear range and 87.4 fM for 5caC across a 0.5-5000 pM linear range, and maintained high selectivity even in the presence of interferences from other DNA modifications. Successful application in quantifying 5 fC and 5caC in genomic DNA from cell extracts, with recovery rates between 97.7% to 102.9%, underscores its potential for clinical diagnostics. N3-kethoxal was used for the first time in an electrochemical sensor. This work not only broadens the toolkit for detecting DNA modifications but also provides a fresh impetus for the development of point-of-care testing (POCT) technologies.
Collapse
Affiliation(s)
- Mei Zhao
- School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan, 430071, China
| | - Jingyi Guo
- School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan, 430071, China
| | - Zilin Chen
- School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan, 430071, China
| | - Fang Wang
- School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
3
|
Zhang H, Zhang M, Zhou Y, Qiao Z, Gao L, Cao L, Yin H, Wang M. Organic photoelectrochemical transistor aptasensor for dual-mode detection of DEHP with CRISPR-Cas13a assisted signal amplification. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134175. [PMID: 38574662 DOI: 10.1016/j.jhazmat.2024.134175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024]
Abstract
Emerging organic photoelectrochemical transistors (OPECTs) with inherent amplification capabilities, good biocompatibility and even self-powered operation have emerged as a promising detection tool, however, they are still not widely studied for pollutant detection. In this paper, a novel OPECT dual-mode aptasensor was constructed for the ultrasensitive detection of di(2-ethylhexyl) phthalate (DEHP). MXene/In2S3/In2O3 Z-scheme heterojunction was used as a light fuel for ion modulation in sensitive gated OPECT biosensing. A transistor system based on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) converted biological events associated with photosensitive gate achieving nearly a thousand-fold higher current gain at zero bias voltage. This work quantified the target DEHP by aptamer-specific induction of CRISPR-Cas13a trans-cutting activity with target-dependent rolling circle amplification as the signal amplification unit, and incorporated the signal changes strategy of biocatalytic precipitation and TMB color development. Combining OPECT with the auxiliary validation of colorimetry (CM), high sensitivity and accurate detection of DEHP were achieved with a linear range of 0.1 pM to 200 pM and a minimum detection limit of 0.02 pM. This study not only provides a new method for the detection of DEHP, but also offers a promising prospect for the gating and application of the unique OPECT.
Collapse
Affiliation(s)
- Haowei Zhang
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Miao Zhang
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | - Zhen Qiao
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Lanlan Gao
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Lulu Cao
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Huanshun Yin
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | - Minghui Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Science, Nanjing Forestry University, Nanjing 210037, PR China
| |
Collapse
|
4
|
Wang C, Song X, Wang Y, Xu R, Gao X, Shang C, Lei P, Zeng Q, Zhou Y, Chen B, Li P. A Solution-Processable Porphyrin-Based Hydrogen-Bonded Organic Framework for Photoelectrochemical Sensing of Carbon Dioxide. Angew Chem Int Ed Engl 2023; 62:e202311482. [PMID: 37675976 DOI: 10.1002/anie.202311482] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/08/2023]
Abstract
Detecting CO2 in complex gas mixtures is challenging due to the presence of competitive gases in the ambient atmosphere. Photoelectrochemical (PEC) techniques offer a solution, but material selection and specificity remain limiting. Here, we constructed a hydrogen-bonded organic framework material based on a porphyrin tecton decorated with diaminotriazine (DAT) moieties. The DAT moieties on the porphyrin molecules not only facilitate the formation of complementary hydrogen bonds between the tectons but also function as recognition sites in the resulting porous HOF materials for the selective adsorption of CO2 . In addition, the in-plane growth of FDU-HOF-2 into anisotropic molecular sheets with large areas of up to 23000 μm2 and controllable thickness between 0.298 and 2.407 μm were realized in yields of over 89 % by a simple solution-processing method. The FDU-HOF-2 can be directly grown and deposited onto different substrates including silica, carbon, and metal oxides by self-assembly in situ in formic acid. As a proof of concept, a screen-printing electrode deposited with FDU-HOF-2 was fabricate as a label-free photoelectrochemical (PEC) sensor for CO2 detection. Such a signal-off PEC sensor exhibits low detection limit for CO2 (2.3 ppm), reusability (at least 30 cycles), and long-term working stability (at least 30 days).
Collapse
Affiliation(s)
- Chen Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Xiyu Song
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Yao Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Rui Xu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Xiangyu Gao
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Cheng Shang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Peng Lei
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, Department of Chemistry and International Institute of Nanotechnology, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, Department of Chemistry and International Institute of Nanotechnology, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Yaming Zhou
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Peng Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| |
Collapse
|
5
|
Kusuma SAF, Harmonis JA, Pratiwi R, Hasanah AN. Gold Nanoparticle-Based Colorimetric Sensors: Properties and Application in Detection of Heavy Metals and Biological Molecules. SENSORS (BASEL, SWITZERLAND) 2023; 23:8172. [PMID: 37837002 PMCID: PMC10575141 DOI: 10.3390/s23198172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
During the last decade, advances have been made in nanotechnology using nanomaterials, leading to improvements in their performance. Gold nanoparticles (AuNPs) have been widely used in the field of sensor analysis and are also combined with certain materials to obtain the desired characteristics. AuNPs are commonly used as colorimetric sensors in detection methods. In developing an ideal sensor, there are certain characteristics that must be met such as selectivity, sensitivity, accuracy, precision, and linearity, among others. Various methods for the synthesis of AuNPs and conjugation with other components have been carried out in order to obtain good characteristics for their application. AuNPs can be applied in the detection of both heavy metals and biological molecules. This review aimed at observing the role of AuNPs in its application. The synthesis of AuNPs for sensors will also be revealed, along with their characteristics suitable for this role. In the application method, the size and shape of the particles must be considered. AuNPs used in heavy metal detection have a particle size of around 15-50 nm; in the detection of biological molecules, the particle size of AuNPs used is 6-35 nm whereas in pharmaceutical compounds for cancer treatment and the detection of other drugs, the particle size used is 12-30 nm. The particle sizes did not correlate with the type of molecules regardless of whether it was a heavy metal, biological molecule, or pharmaceutical compound but depended on the properties of the molecule itself. In general, the best morphology for application in the detection process is a spherical shape to obtain good sensitivity and selectivity based on previous studies. Functionalization of AuNPs with conjugates/receptors can be carried out to increase the stability, sensitivity, selectivity, solubility, and plays a role in detecting biological compounds through conjugating AuNPs with biological molecules.
Collapse
Affiliation(s)
- Sri Agung Fitri Kusuma
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang KM 21 Jatinangor, Bandung 45363, Indonesia
| | - Jacko Abiwaqash Harmonis
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang KM 21 Jatinangor, Bandung 45363, Indonesia; (J.A.H.); (R.P.)
| | - Rimadani Pratiwi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang KM 21 Jatinangor, Bandung 45363, Indonesia; (J.A.H.); (R.P.)
| | - Aliya Nur Hasanah
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang KM 21 Jatinangor, Bandung 45363, Indonesia; (J.A.H.); (R.P.)
| |
Collapse
|
6
|
Yang J, Zeng H, Chai Y, Yuan R, Liu H. Ultrasensitive photoelectrochemical biosensor amplified by target induced assembly of cruciform DNA nanostructure for the detection of dibutyl phthalate. Anal Chim Acta 2023; 1262:341242. [PMID: 37179065 DOI: 10.1016/j.aca.2023.341242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
In this work, an ultra-sensitive signal quenched photoelectrochemical (PEC) aptasensor for dibutyl phthalate (DBP) detection was constructed by using a target induced cruciform DNA structure as signal amplifier and g-C3N4/SnO2 composite as signal indicator. Impressively, the designed cruciform DNA structure shows high signal amplification efficiency due to the reduced reaction steric hindrance because of its mutually separated and repelled tails, multiple recognition domains, and a fixed direction for the sequential identification of the target. Therefore, the fabricated PEC biosensor demonstrated a low detection limit of 0.3 fM for DBP in a wide linear range of 1 fM to 1 nM. This work offered a novel nucleic acid signal amplification approach for enhancing the sensitivity of PEC sensing platforms for the detection of phthalates (PAEs)-based plasticizer, laying the foundation for its utilization in the determine of real environmental pollutants.
Collapse
Affiliation(s)
- Jie Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Hongmei Zeng
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yaqin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Hongyan Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
7
|
Jiang Y, Ding Q, Yuan R, Liu G, Yuan Y. Photoactive conjugated microporous polymer@C 60 with quencher on tailed Y-triangular DNA structure for high-performance signal-off photoelectrochemical biosensing. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131724. [PMID: 37257386 DOI: 10.1016/j.jhazmat.2023.131724] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023]
Abstract
Herein, we synthesized a conjugated microporous polymer (CMP) decorated C60 (CMP@C60) with high photoelectric conversion efficiency, in which continuously repeated donor-acceptor (D-A) π electron unit within one molecule of CMP on C60 could not only effectively increase the mobility of photogenerated carriers with improved electron transmission, but also constitute the cascade energy band matching with reduced electron-hole recombination. Based on the high-performance of CMP@C60 for producing exciting initial photoelectrochemical (PEC) signal, a sensitive signal-off sensing platform was designed for lead ion (Pb2+) assay by coupling with quencher methylene blue (MB) interacting on efficient long tailed Y-triangular DNA structure (LYTD). The proposed LYTD with a tripod structure could generate six long tails in situ on its side at the same time via a simple hybridization chain reaction (HCR), providing notably grooves on electrode to accommodate quencher MB to significantly depress the signal for sensitive detection of Pb2+. As a result, the proposed PEC biosensor revealed excellent analysis capability with a low detection limit of 0.3 fM (S/N = 3). Additionally, it also showed satisfactory stability in the detection of tap water samples, lake water samples and clinical serum samples, manifesting great application prospect in the areas of environmental pollutant detection.
Collapse
Affiliation(s)
- Ying Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Qiao Ding
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Guangpeng Liu
- Chongqing Key Laboratory of Karst Environment, College of Geographical Sciences, Southwest University, Chongqing 400715, China
| | - Yali Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
8
|
Cao L, Zhou Y, Gao L, Zheng Y, Cui X, Yin H, Wang S, Zhang M, Zhang H, Ai S. Photoelectrochemical biosensor for DNA demethylase detection based on enzymatically induced double-stranded DNA digestion by endonuclease-exonuclease system and Bi 4O 5Br 2-Au/CdS photoactive material. Talanta 2023; 262:124670. [PMID: 37245429 DOI: 10.1016/j.talanta.2023.124670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/22/2023] [Accepted: 05/12/2023] [Indexed: 05/30/2023]
Abstract
A novel photoelectrochemical (PEC) biosensor for the detection of DNA demethylase MBD2 was developed based on Bi4O5Br2-Au/CdS photosensitive material. Bi4O5Br2 was firstly modified with gold nanoparticles (AuNPs), following with the modification onto the ITO electrode with CdS to realize the strong photocurrent response as a result of AuNPs had good conductibility and the matched energy between CdS and Bi4O5Br2. In the presence of MBD2, double-stranded DNA (dsDNA) on the electrode surface was demethylated, which triggered the digestion activity of endonuclease HpaII to cleave dsDNA and induced the further cleavage of the dsDNA fragment by exonuclease III (Exo III), causing the release of biotin labeled dsDNA and inhibiting the immobilization of streptavidin (SA) onto the electrode surface. As a results, the photocurrent was increased greatly. However, in the absence of MBD2, HpaII digestion activity was inhibited by DNA methylation modification, which further caused the failure in the release of biotin, leading to the successful immobilization of SA onto the electrode to realize a low photocurrent. The sensor had a detection of 0.3-200 ng/mL and a detection limit was 0.09 ng/mL (3σ). The applicability of this PEC strategy was assessed by studying the effect of environmental pollutants on MBD2 activity.
Collapse
Affiliation(s)
- LuLu Cao
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China.
| | - Lanlan Gao
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Yulin Zheng
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Xiaoting Cui
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Huanshun Yin
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China.
| | - Suo Wang
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Miao Zhang
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Haowei Zhang
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Shiyun Ai
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| |
Collapse
|
9
|
Zhou Y, Yin H, Ai S. Recent advances and applications of Bi2S3-based composites in photoelectrochemical sensors and biosensors. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2022.116876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Gao L, Zhou Y, Cao L, Cui X, Zheng Y, Yin H, Ai S. Photoelectrochemical Biosensor for Histone Deacetylase Sirt1 Detection Based on Polyaspartic Acid-Engaged and Triggered Redox Cycling Amplification and Enhanced Photoactivity of BiVO 4 by Gold Nanoparticles and SnS 2. Anal Chem 2022; 94:16936-16944. [PMID: 36416225 DOI: 10.1021/acs.analchem.2c04380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A photoelectrochemical (PEC) biosensor was established for histone deacetylase Sirt1 detection based on the polyaspartic acid (PASP)-mediated redox cycling amplification and Sirt1 catalysis deacetylation-triggered recognition of the deacetylated substrate peptide, using PASP as the recognition reagent. After BiVO4 was composited with gold nanoparticles and SnS2, the photoactivity of the composite was greatly enhanced due to the matched energy band structure. Under the catalysis of Sirt1 enzyme, the acetylated substrate peptide was deacetylated to obtain a positive peptide, which was recognized by negative PASP. In addition to the recognition function, PASP also played other triple roles. First, PASP interacted with the positive peptide to form a double-stranded structure, which led to the electrode interface changing from irregular to regular, resulting in an improved PEC response. Second, PASP was involved into redox cycle amplification due to its reduction to dehydroascorbic acid. Further, it was used for repeated preparation of ascorbic acid to provide electron donors. This process enhanced the PEC response. Third, based on the matched energy band with BiVO4, PASP effectively improved the photoactivity of BiVO4. With multiplex signal amplification, the PEC biosensor showed a wide linear range (1.83-1830 pM) and high detection sensitivity with a low detection limit of 0.732 pM (S/N = 3). The applicability of this method was evaluated by studying the effects of a known inhibitor of nicotinamide and the heavy metal ions of Cd2+ and Pb2+ on Sirt1 enzyme activity, and the results showed that this method not only provided a new platform for screening Sirt1 enzyme inhibitors but also provided new biomarkers for evaluating the ecotoxicological effects of environmental pollutants.
Collapse
Affiliation(s)
- Lanlan Gao
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Taian, Shandong271018, People’s Republic of China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Taian, Shandong271018, People’s Republic of China
| | - Lulu Cao
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Taian, Shandong271018, People’s Republic of China
| | - Xiaoting Cui
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Taian, Shandong271018, People’s Republic of China
| | - Yulin Zheng
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Taian, Shandong271018, People’s Republic of China
| | - Huanshun Yin
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Taian, Shandong271018, People’s Republic of China
| | - Shiyun Ai
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Taian, Shandong271018, People’s Republic of China
| |
Collapse
|
11
|
Wang S, Yin H, Li P, Ding J, Wang L, Zhou Y, Wang J. Controlled preparation of Bi/BiOCl with enhanced catalytic activity for organic pollutant under visible light using one-pot hydrothermal technology. CHEMOSPHERE 2022; 307:136188. [PMID: 36037955 DOI: 10.1016/j.chemosphere.2022.136188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Flowerlike Bi/BiOCl was prepared by one-pot hydrothermal method, where Bi(NO3)3 was used as Bi source, NiCl2 was used as employed as Cl source and co-catalyst, DMF was adopted as cosolvent and reducing agent. In the presence of NiCl2, the reduction of Bi(NO3)3 was accelerated. The prepared conditions were optimized. The prepared Bi/BiOCl showed high photocatalytic activity for rhodamine B (RhB) degradation within 200 s under visible light irradiation. The degradation efficiency and degradation reaction rate for Bi/BiOCl were 98.7% and 1.194 min -1, which was significantly better than that of BiOCl (6.6% and 0.0240 min -1). The improvement of photocatalytic activity was attributed to the successful in-situ formation of Bi metal in the sample, which greatly improved the visible light activity of BiOCl, increased the transfer rate of the photogenerated electron, and inhibited the recombination of photogenerated electron-hole pairs. The prepared Bi/BiOCl presented high cyclic stability and low Bi element leakage of 1.2 ng L-1. The conversion of N element in RhB was preliminarily studied, and the results showed that N element was effectively converted into ammonium. Moreover, the decreased toxicity after RhB degradation was investigated and confirmed by mung bean cultivation with RhB solution before and after degradation.
Collapse
Affiliation(s)
- Suo Wang
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, PR China
| | - Huanshun Yin
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, PR China.
| | - Penghui Li
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, PR China
| | - Jia Ding
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, PR China
| | - Lingsong Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 PR China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, PR China.
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Tai'an, 271018, PR China.
| |
Collapse
|
12
|
Zheng Y, Cui X, Zhou Y, Zhang H, Cao L, Gao L, Yin H, Ai S. MXene Enhanced Photoactivity of Bi 2O 3/Bi 2S 3 Heterojunction with G-wire Superstructure for Photoelectrochemical Detection of TET1 Protein. ACS Sens 2022; 7:3116-3125. [PMID: 36205635 DOI: 10.1021/acssensors.2c01600] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ten-eleven translocation 1 (TET1) protein has the potential to accelerate the oxygenation of 5-methylcytosine to 5-hydroxymethylcytosine (5hmC); then the -CH2OH of 5hmC can further covalently react with -SH catalyzed by M.HhaI methyltransferase. A brand-new photoelectrochemical (PEC) detection technique for the TET1 protein was created in light of this. For this objective, the Bi2O3/Bi2S3 heterojunction was first prepared by a one-pot hydrothermal method and served for photosensitive materials. For further enhancing the photoactivity, Bi2O3/Bi2S3 was blended with MXene to form an energy band-matched structure, thus improving the migration kinetics of photogenerated carriers. For achieving a high sensitivity of detection, a DNA Walker incorporated with the nicking endonuclease (Nb.BbvCI enzyme)-assisted signal amplification strategy was presented to output exponential G-quadruplex fragments. Self-assembly of the free G-quadruplex sequence into a G-wire superstructure with the assistance of Mg2+ provided more loading sites for MB and amplified the PEC signal. The linear range of the biosensor was 0.1-10 μg/mL with a detection limit of 0.024 μg/mL (S/N = 3) for TET1 protein under optimal experimental conditions. The suitability of the proposed method was evaluated by inhibitor screening experiments and the influence of environmental degradation on the activity of TET1 protein.
Collapse
Affiliation(s)
- Yulin Zheng
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Xiaoting Cui
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Haowei Zhang
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Lulu Cao
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Lanlan Gao
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Huanshun Yin
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Shiyun Ai
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| |
Collapse
|