1
|
Sun Y, Cheng Y, Wang X, Dong R, Yu Y, Shi J, Lu J, Li Y, Bao M, Li H. The vertical transport and fate of MPs-oil composite pollutants in nearshore environment. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136661. [PMID: 39612882 DOI: 10.1016/j.jhazmat.2024.136661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/17/2024] [Accepted: 11/24/2024] [Indexed: 12/01/2024]
Abstract
MPs-oil composite pollutants interact with particles to form MPs-oil-particles aggregates (MOPAs) in nearshore environment. In this study, we investigated vertical transport and fate of MPs-oil composite pollutants mediated by particles under various time scales, proposed and elucidated associated mechanisms. Majority of MPs with -CH2 suspended in water columns and particles with Si-O and O-H adsorbed MPs-oil composite pollutants in sediment phase, which caused differences in morphology structure and composition. The MOPAs with spherical or irregular three-dimensional in water columns can transport to sediment phase, resulting in more than 79 % lamellar MOPAs and more than 63 % oil in sediment phase. Besides, we demonstrated that degraded small-sized MPs-oil composite pollutants can resuspend into water columns. The mass of n-alkanes in sediment phase (< 45 μg) was lower than in water columns (< 120 μg) during degradation process. More importantly, during the intermediate stage of degradation, the size of oil droplets on surface of MPs decreased and particles trapped them to sediment phase, resulting in a V-shaped curve of mass changes of C14-C35 in water columns. Our research fills the gap in the field of MPs-oil composite pollutants in water columns and sediment phase, which can provide theoretical support for their disposal.
Collapse
Affiliation(s)
- Yuxiang Sun
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Frontiers Science Center for Deep Ocean Multiphasers and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yuan Cheng
- Frontiers Science Center for Deep Ocean Multiphasers and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Xinping Wang
- North China Sea Ecological Center, Ministry of Natural Resources, Qingdao 266033, China
| | - Ranran Dong
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Frontiers Science Center for Deep Ocean Multiphasers and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yaqiu Yu
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Frontiers Science Center for Deep Ocean Multiphasers and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Jiaoxia Shi
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
| | - Jinren Lu
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yiming Li
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Frontiers Science Center for Deep Ocean Multiphasers and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Mutai Bao
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Frontiers Science Center for Deep Ocean Multiphasers and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Haoshuai Li
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Frontiers Science Center for Deep Ocean Multiphasers and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
2
|
Wang L, Lu Y, Wang M, Zhao W, Lv H, Song S, Wang Y, Chen Y, Zhan W, Ju W. Mapping of oil spills in China Seas using optical satellite data and deep learning. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135809. [PMID: 39278029 DOI: 10.1016/j.jhazmat.2024.135809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Oils spilled into the ocean can form various weathered oils (non-emulsified oil slicks (NEOS), oil emulsions (OE)) which threaten the oceanic and coastal environments and ecosystems. Optical remote sensing has the unique ability to discriminate oil types and quantify oil volumes as their spectral contrasts with oil-free seawater. Here, a deep learning-based model is developed for identification, classification, and quantification of various oil types. Based on the oil-contained datasets collected from 7 satellite sensors from April 2019 to August 2023, the origin, quantity, and spatial distribution of oils spilled from ships and rigs in the China Seas are mapped in detail. We found that oil spill incidents are primarily from ship discharges (85.8 %), while platform leaks lead to more oil emulsions (58.6 % compared to 13.1 % from ships), which illuminates that the drilling oils are the main source of oil spill pollution in China Seas. The spilled oils correlate with major port locations, including offshore Qingdao and Rongcheng, Bohai Bay, the adjacent areas of Beihai, and Hue and Danang in Vietnam. This study provides new insights into the assessment and management of offshore and marine oil spills.
Collapse
Affiliation(s)
- Lifeng Wang
- International Institute for Earth System Science, Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210023, China
| | - Yingcheng Lu
- International Institute for Earth System Science, Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210023, China.
| | - Mingxiu Wang
- International Institute for Earth System Science, Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210023, China
| | - Wei Zhao
- National Satellite Ocean Application Service, Ministry of Natural Resources, Beijing 100081, China
| | - Hang Lv
- International Institute for Earth System Science, Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210023, China
| | - Shuxian Song
- International Institute for Earth System Science, Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210023, China
| | - Yuntao Wang
- Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Yanlong Chen
- National Marine Environmental Monitoring Center, Ministry of Ecology and Environment, Dalian 116023, China
| | - Wenfeng Zhan
- International Institute for Earth System Science, Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210023, China
| | - Weimin Ju
- International Institute for Earth System Science, Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Fu H, Liu W, Sun X, Zhang F, Wei J, Li Y, Li Y, Lu J, Bao M. Assessment of spilled oil dispersion affected by dispersant: Characteristic, stability, and related mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120888. [PMID: 38615399 DOI: 10.1016/j.jenvman.2024.120888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/26/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Oil dispersion, a crucial process in oil transport, involves the detachment of oil droplets from slicks and their introduction into the water column, influencing subsequent oil migration and transformation. This study examines oil dispersion, considering characteristics, stability, and mechanisms, while evaluating the impact of dispersants and salinity. Results show the significant role of surfactant type in dispersants on oil dispersion characteristics, with anionic surfactants exhibiting higher sensitivity to salinity changes compared to nonionic surfactants. The dispersion efficiency varies with salinity, with anionic surfactants performing better in low salinity (<20‰) and nonionic surfactants showing superior performance at 30-35‰ salinities. Rheological analysis illustrates the breakup and coalescence of oil droplets within the shear rates of breaking waves. An increase in interfacial film rigidity impedes the coalescence of oil droplets, contributing to the dynamic stability of the oil-water hybrid system. The use of GM-2, a nonionic dispersant, results in the formation of a solid-like interface, characterized by increased elastic modulus, notably at 20‰ salinity. However, stable droplet size distribution (DSD) at 35‰ salinity for 60 h suggests droplets can remain dispersed in seawater. The enhancement of stability of oil dispersion is interpreted as the result of two mechanisms: stabilizing DSD and developing the strength of viscoelastic interfacial film. These findings offer insights into oil dispersion dynamics, highlighting the importance of surfactant selection and salinity in governing dispersion behavior, and elucidating mechanisms underlying dispersion stability.
Collapse
Affiliation(s)
- Hongrui Fu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Wei Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiaojun Sun
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Feifei Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jing Wei
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yang Li
- China Petrochemical Corporation (Sinopec Group), Beijing, 100728, China
| | - Yiming Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jinren Lu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
4
|
Yu L, Xia W, Du H. The toxic effects of petroleum pollutants to microalgae in marine environment. MARINE POLLUTION BULLETIN 2024; 201:116235. [PMID: 38508122 DOI: 10.1016/j.marpolbul.2024.116235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024]
Abstract
Marine oil pollution is one of the major global environmental pollution problems. Marine microalgae are the foundation of the marine food chain, providing the main primary productivity of the ocean. They not only maintain the energy flow and material cycle of the entire marine ecosystem, but also play an important role in regulating global climate change. Exploring the impact of petroleum pollutants on marine microalgae is extremely important for studying marine environmental pollution. This review first introduced the sources, compositions, and forms of petroleum pollutants and their migration and transformation processes in the ocean. Then, the toxic effects of petroleum pollutants on marine microalgae were summarized. The growth of marine microalgae showed low-concentration promotion and high-concentration inhibition. The population growth and interspecific relationships of marine microalga was changed and the photosynthesis of marine microalgae was influenced. Finally, potential research directions and suggestions for marine microalgae in the future were proposed.
Collapse
Affiliation(s)
- Lili Yu
- College of Education, Zhejiang Normal University, Jinhua 321004, China
| | - Wei Xia
- Faculty of Education, Henan Normal University, Xinxiang 453007, China
| | - Hao Du
- Schol of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
5
|
Fu H, Kang Q, Sun X, Liu W, Li Y, Chen B, Zhang B, Bao M. Mechanism of nearshore sediment-facilitated oil transport: New insights from causal inference analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133187. [PMID: 38104519 DOI: 10.1016/j.jhazmat.2023.133187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/12/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
A quantitative understanding of spilled oil transport in a nearshore environment is challenging due to the complex physicochemical processes in aqueous conditions. The physicochemical processes involved in oil sinking mainly include oil dispersion, sediment settling, and oil-sediment interaction. For the first time, this work attempts to address the sinking mechanism in petroleum contaminant transport using structural causal models based on observed data. The effects of nearshore salinity distribution from the estuary to the ocean on those three processes are examined. The causal inference reveals sediment settling is the crucial process for oil sinking. Salinity indirectly affects oil sinking by promoting sediment settling rather than directly affecting oil-sediment interaction. The increase of salinity from 0‰ to 35‰ provides a natural enhancement for sediment settling. Notably, unbiased causal effect estimates demonstrate the strongest positive causal effect on the settling efficiency of sediments is posed by increasing oil dispersion effectiveness, with a normalized value of 1.023. The highest strength of the causal relationship between oil dispersion and sediment settling highlights the importance of the dispersing characteristics of spilled oil to sediment-facilitated oil transport. The employed logic, a data-driven method, will shed light on adopting advanced causal inference tools to unravel the complicated contaminants' transport.
Collapse
Affiliation(s)
- Hongrui Fu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Qiao Kang
- The Northern Region Persistent Organic Pollution (NRPOP) Control Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3×5, Canada
| | - Xiaojun Sun
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Wei Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yang Li
- China Petrochemical Corporation (Sinopec Group), Beijing 100728, China
| | - Bing Chen
- The Northern Region Persistent Organic Pollution (NRPOP) Control Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3×5, Canada
| | - Baiyu Zhang
- The Northern Region Persistent Organic Pollution (NRPOP) Control Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3×5, Canada
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
6
|
Li W, Wang W, Qi Y, Qi Z, Xiong D. Combined effects of chemical dispersant and suspended minerals on the dispersion process of spilled oil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:118110. [PMID: 37150165 DOI: 10.1016/j.jenvman.2023.118110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/25/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
The dispersion process of spilled oil is an important concern for the effective disposal of oil spills. The dispersed oil concentration and oil droplets size distribution were studied through a wave tank test under the application of chemical dispersant and suspended minerals. The results indicated that dispersant and minerals increased the dispersed oil concentration and the effect of dispersant was more significant, and they had a synergistic effect on oil dispersion. When dispersant and minerals were applied together, the volume mean diameter of oil droplets decreased in the first 30 min, then increased and reached a maximum value at 90-120 min, and decreased again. Moreover, suspended minerals could inhibit the coalescence of oil droplets. This study can afford data support for oil spill emergency response that occurs in inshore or estuaries.
Collapse
Affiliation(s)
- Wenxin Li
- Dalian Maritime Univ, Coll Environm Sci & Engn, Dalian, 116026, China
| | - Wei Wang
- Dalian Maritime Univ, Coll Environm Sci & Engn, Dalian, 116026, China
| | - Yajing Qi
- Dalian Maritime Univ, Coll Environm Sci & Engn, Dalian, 116026, China
| | - Zhixin Qi
- Dalian Maritime Univ, Coll Environm Sci & Engn, Dalian, 116026, China.
| | - Deqi Xiong
- Dalian Maritime Univ, Coll Environm Sci & Engn, Dalian, 116026, China.
| |
Collapse
|
7
|
Dong R, Wan Z, Wang X, Bai Y, Bao M, Li H. The Role of Bacteria in the Formation and Migration of Oil-Particle Aggregates (OPAs) after Marine Oil Spills and the Associated Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7018-7028. [PMID: 37083415 DOI: 10.1021/acs.est.3c00647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Oil spills interact with mineral particles to form oil-particle aggregates (OPAs), which promotes the oil's natural diffusion and biodegradation. We investigated the effect of bacteria on the formation and vertical migration of OPAs under different concentrations and types of particles and proposed and elucidated an oil-particle-bacteria coupling mechanism. The depth of particle penetration into oil droplets (13-17 μm) was more than twice that of the nonbacterial group. Oil that remained in the water column and deposited to the bottom decreased from 87% to 49% and increased from 14% to 15% at high/low concentration, respectively. Interestingly, the median droplet diameter showed a negative correlation (R2 = 0.83) and positive correlation (R2 = 0.60) at high/low concentration, respectively, with the relative penetration depth first proposed. We further demonstrated that bacteria increased the penetrating depth by a combination of reducing/increasing the interfacial tension, reducing the oil amount (C17-C38) in the OPAs, and increasing the particle width. These effects reduced the droplet size and ultimately changed the vertical migration of OPAs. Finally, we provided a simple assessment of the vertical distribution of OPAs in nearshore environments based on experimental data and suggested that the role of bacteria in increasing the depth of particles penetrating into the oil droplets should not be ignored. These findings will broaden the research perspective of marine oil spill migration.
Collapse
Affiliation(s)
- Ranran Dong
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, People's Republic of China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, People's Republic of China
| | - Zhifeng Wan
- School of Marine Sciences, Sun Yat-sen University/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, People's Republic of China
| | - Xinping Wang
- North China Sea Environmental Monitoring Center, State Oceanic Administration, Qingdao 266033, People's Republic of China
| | - Yan Bai
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, People's Republic of China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, People's Republic of China
| | - Haoshuai Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, People's Republic of China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, People's Republic of China
| |
Collapse
|
8
|
Montas L, Ferguson AC, Mena KD, Solo-Gabriele HM, Paris CB. PAH depletion in weathered oil slicks estimated from modeled age-at-sea during the Deepwater Horizon oil spill. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129767. [PMID: 35988486 DOI: 10.1016/j.jhazmat.2022.129767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/15/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
During time-periods oil slicks are in the marine environment (age-at-sea), weathering causes significant changes in composition and mass loss (depletion) of oil spill chemicals including the more toxic polycyclic aromatic hydrocarbons (PAHs). The goal of this study was to estimate the age-at-sea of weathered oil slicks using the oil spill module of the Connectivity Modeling System and to use this age to interpret PAH concentration measurements. Percent depletion (PD) for each measurement was computed as the percentage difference between the original and measured PAH concentration in the crude oil and weathered oil slicks, normalized upon the mass losses relative to hopane. Mean PD increased with estimated age-at-sea for all PAHs. Less PD was observed for alkylated than for parent PAHs, likely due to decreasing vapor pressure with increasing degree of alkylation. We conclude that estimated age-at-sea can be used to explain PAH depletion in weathered oil slicks. We propose PAH vapor pressure can be coupled with the model to expand capacity for predicting concentration distributions of individual parent and alkylated PAHs in weathered oil along the coastline. This new module will advance the science supporting oil spill response by providing more certain estimates of health risks from oil spills.
Collapse
Affiliation(s)
- Larissa Montas
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Alesia C Ferguson
- Department of Built Environment, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Kristina D Mena
- School of Public Health, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Helena M Solo-Gabriele
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146, USA.
| | - Claire B Paris
- Department of Ocean Sciences, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL 33149, USA
| |
Collapse
|