1
|
Chicaiza-Ortiz C, Zhang P, Zhang J, Zhang T, Yang Q, He Y. CO₂-enhanced methane production by integration of bamboo biochar during anaerobic co-digestion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123603. [PMID: 39642842 DOI: 10.1016/j.jenvman.2024.123603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/13/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
This study investigates the enhancement of methane production in anaerobic co-digestion (AcoD) through the introduction of exogenous CO₂ and the application of bamboo biochar. Exogenous CO₂ boosts biogas yield by providing an additional carbon source, which requires optimized solubility and pH buffering to ensure effective methanation. Biochar serves as an electron shuttle and pH stabilizer, facilitating CO2 solubility and syntrophic interactions that enhance microbial stability. When combined, biochar and CO₂ (R2) achieved a significant synergistic effect, increasing specific methane production (SMP) by 42.56% compared to the control (R0). Independent additions of biochar (R1) and CO₂ (R3) also improved SMP, with increases of 35.50% and 28.01%, respectively. This enhancement is likely due to the elevated activity of homoacetogenic bacteria and hydrogenotrophic methanogens, with increased acsB gene expression 2.4-fold with biochar + CO₂ and 1.5-fold with CO₂ alone compared to the control. Additionally, biochar facilitated syntrophic metabolism mediated by Cytochrome-C, promoting electron transfer. The study also demonstrated that biochar and CO2 could enhance enzyme activity, including acetyl-CoA synthase, mhpF, and mhpE. Such improvements bolster AcoD efficiency and promote resource recycling within the circular economy framework.
Collapse
Affiliation(s)
- Cristhian Chicaiza-Ortiz
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 200240, China; Biomass to Resources Group, Universidad Regional Amazónica IKIAM, Tena, Napo, 150150, Ecuador.
| | - Pengshuai Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jingxin Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 200240, China; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore.
| | - Tengyu Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Qing Yang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| | - Yiliang He
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
2
|
Zhang Y, Xue B, Mao Y, Chen X, Yan W, Wang Y, Wang Y, Liu L, Yu J, Zhang X, Chao S, Topp E, Zheng W, Zhang T. High-throughput single-cell sequencing of activated sludge microbiome. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2025; 23:100493. [PMID: 39430728 PMCID: PMC11490935 DOI: 10.1016/j.ese.2024.100493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 10/22/2024]
Abstract
Wastewater treatment plants (WWTPs) represent one of biotechnology's largest and most critical applications, playing a pivotal role in environmental protection and public health. In WWTPs, activated sludge (AS) plays a major role in removing contaminants and pathogens from wastewater. While metagenomics has advanced our understanding of microbial communities, it still faces challenges in revealing the genomic heterogeneity of cells, uncovering the microbial dark matter, and establishing precise links between genetic elements and their host cells as a bulk method. These issues could be largely resolved by single-cell sequencing, which can offer unprecedented resolution to show the unique genetic information. Here we show the high-throughput single-cell sequencing to the AS microbiome. The single-amplified genomes (SAGs) of 15,110 individual cells were clustered into 2,454 SAG bins. We find that 27.5% of the genomes in the AS microbial community represent potential novel species, highlighting the presence of microbial dark matter. Furthermore, we identified 1,137 antibiotic resistance genes (ARGs), 10,450 plasmid fragments, and 1,343 phage contigs, with shared plasmid and phage groups broadly distributed among hosts, indicating a high frequency of horizontal gene transfer (HGT) within the AS microbiome. Complementary analysis using 1,529 metagenome-assembled genomes from the AS samples allowed for the taxonomic classification of 98 SAG bins, which were previously unclassified. Our study establishes the feasibility of single-cell sequencing in characterizing the AS microbiome, providing novel insights into its ecological dynamics, and deepening our understanding of HGT processes, particularly those involving ARGs. Additionally, this valuable tool could monitor the distribution, spread, and pathogenic hosts of ARGs both within AS environments and between AS and other environments, which will ultimately contribute to developing a health risk evaluation system for diverse environments within a One Health framework.
Collapse
Affiliation(s)
- Yulin Zhang
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Bingjie Xue
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
- School of Public Health, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, Guangdong, China
| | - Yanping Mao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, Guangdong, China
| | - Xi Chen
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Weifu Yan
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Yanren Wang
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Yulin Wang
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Lei Liu
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Jiale Yu
- MobiDrop (Zhejiang) Company Limited, Jiaxing, 314000, Zhejiang, China
| | - Xiaojin Zhang
- MobiDrop (Zhejiang) Company Limited, Jiaxing, 314000, Zhejiang, China
| | - Shan Chao
- MobiDrop (Zhejiang) Company Limited, Jiaxing, 314000, Zhejiang, China
| | - Edward Topp
- Agroecology Research unit, Bourgogne Franche-Comté Research Centre, National Research Institute for Agriculture, Food and the Environment, 35000, France
| | - Wenshan Zheng
- MobiDrop (Zhejiang) Company Limited, Jiaxing, 314000, Zhejiang, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
- School of Public Health, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| |
Collapse
|
3
|
Liao R, Song Z, Zhang X, Xiong X, Zhang Z, Zhao Z, Sun F. Versatile enhancement for anaerobic moving bed biofilm (AnMBBR) treating pretreated landfill leachate by hydrochar: Energy recovery, greenhouse gas emission reduction and underlying microbial mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175161. [PMID: 39111435 DOI: 10.1016/j.scitotenv.2024.175161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/08/2024] [Accepted: 07/28/2024] [Indexed: 08/19/2024]
Abstract
Hydrochars were prepared from fruit peels (HC-1) and vegetable waste (HC-2), and combined with fiber spheres, respectively, to form homogeneous biocompatible carriers, which were used for anaerobic moving bed biofilm reactor (AnMBBR) to enhance anaerobic digestion (AD) performance and energy recovery of landfill leachate treatment. Compared with the control AnMBBR with conventional fiber spheres as carriers, the chemical oxygen demand (COD) removal efficiency of the AnMBBR with HC-2 increased from 75 % to 88 %, methane yield increased from 77.7 mL/g-COD to 155.3 mL/g-COD, and achieved greenhouse gases (GHG) emission reductions of 1.74 t CO2 eq/a during long-term operation. HC-2-fiber sphere biocarriers provided more sites for attached-growth biomass (AGBS) and significantly enhanced the abundance of functional microbial community, with the relative abundance of methanogenic bacteria Methanothrix increased from 0.03 % to over 24.4 %. Moreover, the gene abundance of most the key enzymes encoding the hydrolysis, acidogenesis and methanogenesis pathways were up-regulated with the assistance of HC-2. Consequently, hydrochar-assisted AnMBBR were effective to enhance methanogenesis performance, energy recovery and carbon reduction for high-strength landfill leachate treatment.
Collapse
Affiliation(s)
- Runfeng Liao
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Zi Song
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Xiangyun Xiong
- Shenzhen Ecological and Environmental Monitoring Center of Guangdong Province, Shenzhen 518049, China.
| | - Zumin Zhang
- College of Architecture and Environment, Ningxia Institute of Science and Technology, Shizuishan 753000, China
| | - Zilong Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Feiyun Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Joint Laboratory of Urban High Strength Wastewater Treatment and Resource Utilization, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
4
|
Pang C, Wang S, He C, Zheng M, Wang W. Anaerobic membrane bioreactor coupled with polyaluminum chloride for high-strength phenolic wastewater treatment: Robust performance and potential mechanisms. ENVIRONMENTAL RESEARCH 2024; 252:118777. [PMID: 38527723 DOI: 10.1016/j.envres.2024.118777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
Anaerobic digestion of phenolic wastewater by anaerobic membrane bioreactor (AnMBR) has revealed increasing attractiveness, but the application of AnMBRs for treating high-strength phenolic wastewater faces challenges related to elevated phenol stress and membrane fouling. In this study, the coupling of AnMBR and polyaluminum chloride (PAC) was developed for efficient treatment of high-strength phenolic wastewater. The system achieved robust removal efficiencies of phenol (99%) and quinoline (98%) at a gradual increase of phenol concentration from 1000 to 5000 mg/L and a constant quinoline concentration of 100 mg/L. The dosing of PAC could effectively control the membrane fouling rate with the transmembrane pressure (TMP) increasing rate as low as 0.17 kPa/d. The robust performances were mainly attributed to the favorable retention of functional microbes through membrane interception, while pulse cross flow buffered against phenol stress and facilitated cake layer removal. Meanwhile, the enriched core functional microbes, such as Syntrophorhabdus, Syntrophus, Mesotoga and Methanolinea, played a crucial role in further reduction of phenol stress. Notably, the significant presence of biomacromolecule degrader, such as Levilinea, contributed to membrane fouling mitigation through extracellular polymer degradation. Moreover, the enlargement of particle size distribution (PSD) by PAC was expected to mitigate membrane fouling. This study provided a promising avenue for sustainable treatment of high-strength phenolic wastewater.
Collapse
Affiliation(s)
- Chao Pang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, Anhui Province, China
| | - Shun Wang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, Anhui Province, China; Southwest Municipal Engineering Design & Research Institute of China, Chengdu, 610213, China
| | - Chunhua He
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, Anhui Province, China
| | - Mengqi Zheng
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, Anhui Province, China; Key Laboratory of Urban Pollutant Conversion, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, 230009, Anhui Province, China.
| | - Wei Wang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, Anhui Province, China; Key Laboratory of Urban Pollutant Conversion, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, 230009, Anhui Province, China.
| |
Collapse
|
5
|
Barragán-Trinidad M, Buitrón G. Pretreatment of agave bagasse with ruminal fluid to improve methane recovery. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 175:52-61. [PMID: 38159368 DOI: 10.1016/j.wasman.2023.12.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Agave bagasse, a lignocellulosic waste that results from the milling and juice extraction of Agave tequilana var azul pineapples, is a suitable substrate for the production of methane through anaerobic digestion. However, it is necessary to apply a pretreatment to convert the bagasse into energy. In this context, this paper proposes using ruminal microorganisms to hydrolyze agave bagasse. This study evaluated the effect of the initial agave bagasse to ruminal fluid (S0/X0) ratio (0.33, 0.5, 1, and 2) on the hydrolysis efficiency. Subsequently, the supernatant was used for methane production. The hydrolysis efficiency increased as the S0/X0 ratio decreased. A hydrolysis efficiency of 60 % was achieved using an S0/X0 ratio of 0.33. The S0/X0 ratio of 0.33 optimally improved the specific methane production and energy recovery (155 ± 2 mL CH4/g TS and 6.1 ± 0.1 kJ/g TS) compared to raw biomass. The most abundant hydrolytic bacteria were Prevotella, Ruminococcus and Fibrobacter, and Engyodontium was the most abundant proteolytic fungus.
Collapse
Affiliation(s)
- Martín Barragán-Trinidad
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230, Mexico.
| | - Germán Buitrón
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230, Mexico.
| |
Collapse
|
6
|
Chen Z, Shi Z, Zhang Y, Shi Y, Sun M, Cui Y, Zhang S, Luo G. Metagenomic analysis towards understanding the effects of ammonia on chain elongation process for medium chain fatty acids production. BIORESOURCE TECHNOLOGY 2024; 395:130413. [PMID: 38310979 DOI: 10.1016/j.biortech.2024.130413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
The production of medium chain fatty acids (MCFAs) through chain elongation (CE) from organic wastes/wastewater has attracted much attention, while the effects of a common inhibitor-ammonia has not been elucidated. The mechanism of ammonia affecting CE was studied by metagenomic. The lag phase duration of caproate production was increased, and the maximum caproate production rate was decreased by 43.4 % at 4 g-N/L, as compared to 0 g-N/L. And hydrochar (HC) alleviated the inhibition of ammonia at 4 g-N/L. Metagenomic analysis indicated that ammonia induced UBA4085 sp.FDU78 as the dominant microorganism, and metabolic reconstruction revealed its potential CE ability. Furthermore, ammonia inhibited the reverse β oxidation pathway and Acetyl-CoA production pathway. The tolerance of UBA4085 sp.FDU78 to ammonia was associated with the uptake of inorganic ions, energy conservation, and synthesis of osmoprotectants. The present study provided a deep-insight on the ammonia tolerance mechanism on the CE process.
Collapse
Affiliation(s)
- Zheng Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Zhijian Shi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yalei Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Shanghai 200092, China
| | - Yan Shi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Meichen Sun
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yong Cui
- Shanghai Wujiaochang Environmental Technology Co., Ltd, Shanghai 200438, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
7
|
Liu Q, Li Y, Sun Y, Xie K, Zeng Q, Hao Y, Yang Q, Pu Y, Shi S, Gong Z. Deterioration of sludge characteristics and promotion of antibiotic resistance genes spread with the co-existing of polyvinylchloride microplastics and tetracycline in the sequencing batch reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167544. [PMID: 37797771 DOI: 10.1016/j.scitotenv.2023.167544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 09/30/2023] [Indexed: 10/07/2023]
Abstract
With the continuous increase in microplastics (MPs) and tetracycline (TC) entering wastewater treatment plants (WWTPs) along with sewage, the co-existence of MPs and TC in the biological treatment of wastewater has attracted extensive attention. This study investigated the effect of 1 mg/L polyvinyl chloride (PVC) MPs and 100 ng/L TC co-existing on sequencing batch reactors (SBRs) (S2) treating phenol wastewater in contrast to the control with TC alone (S1). The phenol removal efficiency was significantly inhibited by the co-existence of PVC MPs and TC. Sludge characteristics were also distinctively influenced. The decreased zone sludge velocity (ZSV) and increased sludge volume index (SVI) indicated that the combined effect of PVC MPs and TC deteriorated sludge settleability, which had positive and negative linear correlations with extracellular polymeric substances (EPS) content and the protein (PN)/polysaccharide (PS) ratio, respectively. Moreover, the decreased and increased relative abundances of potential phenol-degraders and antibiotic resistance gene (ARG) carriers may elucidate the inhibition of phenol removal and promotion of ARGs propagation with the co-occurrence of PVC MPs and TC. In addition, the enhanced potential ARGs hosts, loss of the EPS protective effect, and increased membrane permeability induced by reactive oxygen species (ROS) jointly promoted ARGs dissemination in the co-existence of PVC MPs and TC. Notably, the co-occurrence of ARGs and mobile genetic element (MGEs) indicated that the co-existence of PVC MPs and TC promoted the spread of some transposase-associated ARGs mediated by horizontal gene transfer (HGT).
Collapse
Affiliation(s)
- Qiangwei Liu
- School of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Yuxin Li
- School of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Yanan Sun
- School of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Kunpeng Xie
- School of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Qianzhi Zeng
- School of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Yiming Hao
- School of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Qing Yang
- School of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Yunhong Pu
- School of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Shengnan Shi
- School of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China..
| | - Zheng Gong
- School of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China..
| |
Collapse
|
8
|
Yang T, Wang X, Hui X, Jiang L, Bi X, Ng HY, Zheng X, Huang S, Jiang B, Zhou X. Antibiotic resistome associated with inhalable bioaerosols from wastewater to atmosphere: Mobility, bacterial hosts, source contributions and resistome risk. WATER RESEARCH 2023; 243:120403. [PMID: 37506636 DOI: 10.1016/j.watres.2023.120403] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/12/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
Antibiotic resistome can be carried by the bioaerosols and propagate from wastewater treatment plants (WWTPs) to the atmosphere, but questions remain regarding their mobility, bacterial hosts, source, and resistome risk. Here, fine particulate matter (PM2.5) was collected within and around a large WWTP and analyzed by the metagenomic assembly and binning. PM2.5 was discovered with increasing enrichment of total antibiotic resistance genes (ARGs), potentially mobile ARGs, and antibiotic-resistant bacteria (ARB) along the WWTP-downwind-upwind gradient. Some ARGs were found to be flanked by certain mobile genetic elements and generally mediated by plasmids in WWTP-PM2.5. Totally, 198 metagenome assembled genomes assigning to seven phyla were identified as the ARB, and a contig-based analysis indicated that 32 pathogens were revealed harboring at least two ARGs. Despite disparate aerosolization potentials of ARGs or ARB at different WWTP units, high resistome risks were found, along with the dominant contribution of wastewater for airborne ARGs (44.79-62.82%) and ARB (35.03-40.10%). Among the detected WWTP matrices, the sludge dewatering room was characterized by the highest resistome risk associated with PM2.5. This study underscores the dispersion of ARGs and ARB from WWTPs to the atmosphere and provides a reference for managing risks of antibiotic resistance.
Collapse
Affiliation(s)
- Tang Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China.
| | - Xuyi Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Xiaoliang Hui
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Lu Jiang
- College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, PR China
| | - Xuejun Bi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - How Yong Ng
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087, PR China
| | - Xiang Zheng
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, PR China
| | - Shujuan Huang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Bo Jiang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Xiaolin Zhou
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| |
Collapse
|
9
|
Xu Q, Yang G, Liu X, Wong JWC, Zhao J. Hydrochar mediated anaerobic digestion of bio-wastes: Advances, mechanisms and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163829. [PMID: 37121315 DOI: 10.1016/j.scitotenv.2023.163829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
Bio-wastes treatment and disposal has become a challenge because of their increasing output. Given the abundant organic matter in bio-wastes, its related resource treatment methods have received more and more attention. As a promising strategy, anaerobic digestion (AD) has been widely used in the treatment of bio-wastes, during which not only methane as energy can be recovered but also their reduction can be achieved. However, AD process is generally disturbed by some internal factors (e.g., low hydrolysis efficiency and accumulated ammonia) and external factors (e.g., input pollutants), resulting in unstable AD operation performance. Recently, hydrochar was wildly found to improve AD performance when added to AD systems. This review comprehensively summarizes the research progress on the performance of hydrochar-mediated AD, such as increased methane yield, improved operation efficiency and digestate dewatering, and reduced heavy metals in digestate. Subsequently, the underlying mechanisms of hydrochar promoting AD were systematically elucidated and discussed, including regulation of electron transfer (ET) mode, microbial community structure, bio-processes involved in AD, and reaction conditions. Moreover, the effects of properties of hydrochar (e.g., feedstock, hydrothermal carbonization (HTC) temperature, HTC time, modification and dosage) on the improvement of AD performance are systematically concluded. Finally, the relevant knowledge gaps and opportunities to be studied are presented to improve the progress and application of the hydrochar-mediated AD technology. This review aims to offer some references and directions for the hydrochar-mediated AD technology in improving bio-wastes resource recovery.
Collapse
Affiliation(s)
- Qiuxiang Xu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, China; College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Guojing Yang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Xuran Liu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jonathan W C Wong
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Jun Zhao
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
10
|
Kachel M, Stryjecka M, Ślusarczyk L, Matwijczuk A, Budziak-Wieczorek I, Gładyszewski G. Impact of Metal Nanoparticles on the Phytochemical and Antioxidative Properties of Rapeseed Oil. MATERIALS (BASEL, SWITZERLAND) 2023; 16:694. [PMID: 36676430 PMCID: PMC9862958 DOI: 10.3390/ma16020694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
The agricultural uses of nanoparticles continue to be considered as innovative methods that require more in-depth research into their impact on product quality. In our study, we investigated the effects of fertilizers containing metal nanoparticles (silver AgNPs and copper CuNPs) during the plant growth stage of winter rape cultivation, and in most experimental variants, with the exception of the (x2) application of AgNPs, we observed a decrease in the mass of one thousand seeds (MTS). The obtained result was 11.55% higher relative to the control sample in 2019, and also increased after the (x1) 4.36% and (x2) 11.11% application of CuNPS in 2020. The analyzed oxidative stability of the oil increased in both experimental years (2019-2020), with the highest values recorded after the (x1) and (x2) application of CuNPS-4.94% and 8.31%, respectively, in the first year of cultivation, and after the (x2) application of CuNPS-12.07% in the subsequent year. It was also observed that the content of polyphenols, flavonoids, squalene, tocopherols α and δ, chlorophylls, and carotenoids increased in the oil. Moreover, spectral FTIR analysis was performed on the oil samples obtained from cultivations sprayed with solutions containing Ag or Cu nanoparticles and revealed changes in several spectral regions with the maxima at ~1740, 1370, 1230, and ~1090 cm-1. Additionally, a FTIR analysis conducted in combination with multivariate analysis allowed us to classify the studied oils into the most similar groups and to study the structure of data variability. The conducted analyses revealed that the use of nanoparticles resulted in decreased size of the produced seeds and improved antioxidative properties of rapeseed oil.
Collapse
Affiliation(s)
- Magdalena Kachel
- Department of Machinery Exploitation and Management of Production Processes, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| | - Małgorzata Stryjecka
- Institute of Human Nutrition and Agriculture, State Academy of Applied Sciences in Chełm, 22-100 Chełm, Poland
| | - Lidia Ślusarczyk
- Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Arkadiusz Matwijczuk
- Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
- Ecotech Complex Analytical and Programme Centre for Advanced Environmentally-Friendly Technologies, Maria Curie-Sklodowska University, 20-612 Lublin, Poland
| | - Iwona Budziak-Wieczorek
- Department of Chemistry, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
| | - Grzegorz Gładyszewski
- Department of Applied Physics, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
| |
Collapse
|