1
|
Rojas SD, Rafaela G, Espinoza-Villalobos N, Diaz-Droguett DE, Salazar-González R, Caceres-Jensen L, Escalona N, Barrientos L. Role of Nb 2O 5 Crystal Phases on the Photocatalytic Conversion of Lignin Model Molecules and Selectivity for Value-Added Products. CHEMSUSCHEM 2024; 17:e202301594. [PMID: 38452280 DOI: 10.1002/cssc.202301594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/02/2024] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
The photocatalytic conversion in aqueous media of phenol and guaiacol as a lignin model compound using Nb2O5 with different crystal phases was studied. Nb2O5 particles were synthesized using hydrothermal methods, where it was observed that changes in the solvent control their morphology and crystal phase. Different photocatalytic behavior of Nb2O5 was observed with the selected model compounds, indicating that its selection directly impacts the resulting conversion and selectivity rates as well as the reaction pathway, highlighting the relevance of model molecule selection. Photocatalytic conversion of phenol showed conversion rate (C%) up to 25 % after 2 h irradiation and high selectivity (S%) to pyrogallol (up to 50 %). Orthorhombic Nb2O5 spheres favored conversion through free hydroxyl radicals while monoclinic rods did not convert phenol. Guaiacol photocatalytic oxidation showed high conversion rate but lower selectivity. Orthorhombic and monoclinic Nb2O5 favored the formation of resorcinol with S % ~0.43 % (C % ~33 %) and ~13 % (C % ~27 %) respectively. The mixture of both phases enhanced the guaiacol conversion rate to ~55 % with ~17 % of selectivity to salicylaldehyde. The use of radical scavengers provided information to elucidate the reaction pathway for these model compounds, showing that different reaction pathways may be obtained for the same photocatalyst if the model compound is changed.
Collapse
Affiliation(s)
- Susana D Rojas
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
- Current Address: Escuela de Ingeniería Industrial, Facultad de Ingeniería, Universidad de Valparaíso, Avenida Brasil 1786, Valparaíso, Chile
- Gran Avenida 4160, San Miguel, Santiago, Chile
| | - Gabriela Rafaela
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Nicole Espinoza-Villalobos
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Donovan E Diaz-Droguett
- Instituto de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile
- Centro de investigación en Nanotecnología y Materiales CIEN-UC, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
- Centro de Energía UC, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Ricardo Salazar-González
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Lizethly Caceres-Jensen
- Laboratorio de Fisicoquímica & Analítica (PachemLab), Nucleus of Computational Thinking and Education for Sustainable Development (NuCES), Center for Research in Education (CIE-UMCE), Departamento de Química, Universidad Metropolitana de Ciencias de la Educación, Avenida José Pedro Alessandri 774, Ñuñoa, Santiago, 776019, Chile
| | - Néstor Escalona
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
- Centro de investigación en Nanotecnología y Materiales CIEN-UC, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
- Millennium Nuclei on Catalytic Processes Towards Sustainable Chemistry (CSC), Santiago, Chile
- Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Lorena Barrientos
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
- Centro de investigación en Nanotecnología y Materiales CIEN-UC, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
- Millennium Nuclei on Catalytic Processes Towards Sustainable Chemistry (CSC), Santiago, Chile
| |
Collapse
|
2
|
Chen Y, Lv G, Zou X, Su S, Wang J, Zhou C, Shen J, Shen Y, Liu Z. High-electrophilic (SiO) 2Nb(OH)(=O) sites confined in silanol defects over Nb-Beta zeolite for efficient cyclic alkene epoxidation reactions. J Colloid Interface Sci 2024; 664:626-639. [PMID: 38490038 DOI: 10.1016/j.jcis.2024.03.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/03/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Dealuminated Beta zeolite has a large amount of silanol defects on its interface, which provides an ideal place for embedding metal species and creating metal active sites in a confined microenvironment. The confined metal sites as well as their surroundings are closely related to the reactant activation and transient state achievement. Hence, unraveling the confined metal sites is of great significance for the catalytic reaction process. Herein, niobium species were incorporated into the silanol defects over dealuminated Beta zeolite with a facile dry impregnation method, co-grinding the niobium precursor with dealuminated Beta zeolite support. The successful incorporation of niobium into the silanol defects for 30Nb-Beta zeolite was verified by DRIFT, 1H MAS NMR, UV-Vis and UV-Raman characterizations. XAS characterization and DFT calculations further disclosed that the confined Nb species existed as (SiO)2Nb(OH)(=O), containing two Si-O-Nb bonds, one Nb=O bond as well as one Nb-OH bond. The synthesized 30Nb-Beta zeolite catalyst displayed a superior cyclohexene conversion of 51.1%, cyclohexene oxide selectivity of 83.1% as well as TOF value of 188.2 h-1 ascribed to the inherent electrophilicity of Nb(V) for confined (SiO)2Nb(OH)(=O) species as well as the low oxygen transfer energy barrier for NbV-OOH species. Furthermore, the prepared 30Nb-Beta zeolite can be effectively employed to other cyclic alkene epoxidation reactions.
Collapse
Affiliation(s)
- Yan Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Guojun Lv
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China.
| | - Xuyang Zou
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Shihao Su
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Jiangzhang Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Chaoyi Zhou
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Jialing Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Yangbin Shen
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Zhongmin Liu
- School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, PR China
| |
Collapse
|
3
|
Rozmyślak M, Walkowiak A, Frankowski M, Wolski L. Copper(II) phosphate as a promising catalyst for the degradation of ciprofloxacin via photo-assisted Fenton-like process. Sci Rep 2024; 14:7007. [PMID: 38523152 PMCID: PMC10961321 DOI: 10.1038/s41598-024-57542-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/19/2024] [Indexed: 03/26/2024] Open
Abstract
This work aims to unravel the potential of copper(II) phosphate as a new promising heterogenous catalyst for the degradation of ciprofloxacin (CIP) in the presence of H2O2 and/or visible light (λ > 400 nm). For this purpose, copper(II) phosphate was prepared by a facile precipitation method and fully characterized. Of our particular interest was the elucidation of the kinetics of CIP degradation on the surface of this heterogeneous catalyst, identification of the main reactive oxygen species responsible for the oxidative degradation of CIP, and the evaluation of the degradation pathways of this model antibiotic pollutant. It was found that the degradation of the antibiotic proceeded according to the pseudo-first-order kinetics. Copper(II) phosphate exhibited ca. 7 times higher CIP degradation rate in a Fenton-like process than commercial CuO (0.00155 vs. 0.00023 min-1, respectively). Furthermore, the activity of this metal phosphate could be significantly improved upon exposure of the reaction medium to visible light (reaction rate = 0.00445 min-1). In a photo-assisted Fenton-like process, copper(II) phosphate exhibited the highest activity in CIP degradation from among all reference samples used in this study, including CuO, Fe2O3, CeO2 and other metal phosphates. The main active species responsible for the degradation of CIP were hydroxyl radicals.
Collapse
Affiliation(s)
- Mateusz Rozmyślak
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Adrian Walkowiak
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Marcin Frankowski
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Lukasz Wolski
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland.
| |
Collapse
|
4
|
Boukoufi C, Boudier A, Clarot I. Increased Range of Catalytic Activities of Immobilized Compared to Colloidal Gold Nanoparticles. Molecules 2023; 28:7558. [PMID: 38005280 PMCID: PMC10673133 DOI: 10.3390/molecules28227558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Gold nanoparticles (AuNPs) can be described as nanozymes, species that are able to mimic the catalytic activities of several enzymes, such as oxidase/peroxidase, reductase, or catalase. Most studies in the literature focus on the colloidal suspension of AuNPs, and it is obvious that their immobilization could open the doors to new applications thanks to their increased stability in this state. This work aimed to investigate the behavior of surfaces covered by immobilized AuNPs (iAuNPs). Citrate-stabilized AuNPs (AuNPs-cit) were synthesized and immobilized on glass slides using a simple dip coating method. The resulting iAuNPs were characterized (surface plasmon resonance, microscopy, quantification of immobilized AuNPs), and their multi-enzymatic-like activities (oxidase-, peroxidase-, and catalase-like activity) were evaluated. The comparison of their activities versus AuNPs-cit highlighted their added value, especially the preservation of their activity in some reaction media, and their ease of reuse. The huge potential of iAuNPs for heterogeneous catalysis was then applied to the degradation of two model molecules of hospital pollutants: metronidazole and methylene blue.
Collapse
Affiliation(s)
- Célia Boukoufi
- Université de Lorraine, CITHEFOR, F-54000 Nancy, France
- Pharmacy Department, University Hospital, F-54511 Vandoeuvre-Lès-Nancy, France
| | - Ariane Boudier
- Université de Lorraine, CITHEFOR, F-54000 Nancy, France
- Institut Universitaire de France (IUF), F-75231 Paris, France
| | - Igor Clarot
- Université de Lorraine, CITHEFOR, F-54000 Nancy, France
| |
Collapse
|
5
|
Peng X, Bao Z, Zhang S, Li Y, Ding L, Shi H, Liu J, Zhong X, Li X, Wang J. Modulation of Lewis and Brønsted Acid Centers with Oxygen Vacancies for Nb2O5 Electrocatalysts: Towards Highly Efficient Simultaneously Electrochemical Ozone and Hydrogen Peroxide Production. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
6
|
Kaya MT, Calimli MH, Nas MS. Degradation of methylene blue with a novel Fe3O4/Mn3O4/CuO nanomaterial under sonocatalytic conditions. RESEARCH ON CHEMICAL INTERMEDIATES 2023. [DOI: 10.1007/s11164-023-04964-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
7
|
Bornas B, Faraji AR, Ashouri F. Fabrication of a magnetic Mn( ii) cross-linked chitosan-amine/glutaraldehyde nanocomposite for the rapid degradation of dyes and aerobic selective oxidation of ethylbenzene †. RSC Adv 2023; 13:9846-9863. [PMID: 36998520 PMCID: PMC10043731 DOI: 10.1039/d2ra07102a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/11/2023] [Indexed: 03/30/2023] Open
Abstract
Owing to the great demand for using sustainable, renewable, and widely available materials in catalytic systems for the conversion of waste/toxic material to high value-added and harmless products, biopolymers derived from natural sources have demonstrated great promise as an alternative to state-of-the-art materials that suffer from high costs and limitations. These have encouraged us to design and fabricate a new super magnetization of Mn–Fe3O4–SiO2/amine-glutaraldehyde/chitosan bio-composite (MIOSC-N-et-NH2@CS-Mn) for advanced/aerobic oxidation process. The morphological and chemical characterization of the as-prepared magnetic bio-composite was assessed using ICP-OES, DR UV-vis, BET, FT-IR, XRD, FE-SEM, HR-TEM, EDS, and XPS techniques. The PMS + MIOSC-N-et-NH2@CS-Mn system was capable of degrading methylene orange (98.9% of removal efficiency) and selectively oxidizing ethylbenzene to acetophenone (conversion 93.70%, selectivity 95.10% and TOF 214.1 (103 h−1) within 8.0 min and 5.0 h, respectively. Moreover, MO was efficiently mineralized (TOC removal of ∼56.61) by MIOSC-N-et-NH2@CS-Mn with 60.4%, 5.20, 0.03 and 86.02% of the synergistic index, reaction stoichiometric efficiency, specific oxidant efficiency, and oxidant utilization ratio in wide pH ranges, respectively. An understanding of its vital parameters and relationship of catalytic activity with structural, environmental factors, leaching/heterogenicity test, long-term stability, inhibitory effect of anions in water matrix, economic study and response surface method (RSM) were evaluated in detail. Overall, the prepared catalyst could be employed as an environmentally friendly and low-cost candidate for the enhanced activation of PMS/O2 as an oxidant. Additionally, MIOSC-N-et-NH2@CS-Mn exhibited great stability, high recovery efficiency, and low metal leaching, which eliminated the harsh condition reaction and supplied practical application performance for water purification and selective aerobic oxidation of organic compounds. Optimization of the catalytic degradation of dyes and aerobic oxidation of ethylbenzene by Mn@Cross-linked Magnetic Chitosan-Amin-Glutaraldehyde.![]()
Collapse
Affiliation(s)
- Behzad Bornas
- Department of Nano Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad UniversityTehranIran
| | - Ali Reza Faraji
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad UniversityTehranIran+98 21 22600099+98 21 22640051
- Nutrition and Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad UniversityTehranIran
| | - Fatemeh Ashouri
- Department of Applied Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad UniversityTehranIran
| |
Collapse
|