1
|
Wang MH, Wu XM, Lai ACK. Experimental study on the effect of light source arrangements on the disinfection performance of upper-room 222 nm Far-UVC. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135571. [PMID: 39197280 DOI: 10.1016/j.jhazmat.2024.135571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024]
Abstract
The air disinfection efficacy of upper-room 222 nm Far-UVC was experimentally investigated in a real-size chamber under well-mixed air conditions. Two bacteria (Escherichia coli, Staphylococcus epidermidis) and two bacteriophages (MS2, and P22) were selected for the test. The study considered different lamp source arrangements, including single and double sources, stationary and rotating operating modes, and an overlapping mode with a 45° irradiation angle. A numerical view-factor model was developed to analyze the irradiance distributions. Four irradiation angles, 30°, 45°, 60°, and 90°, were chosen. The results show that the lamps operating with an irradiation angle of 45° provide the highest chamber-averaged irradiance. This suggests an optimal irradiance level for a given room dimension, as inferred from the view factor model. Experimental results indicated that the overlapping mode with a 45° irradiation angle consistently outperformed both the stationary mode and rotating mode in disinfection. This can be attributed to the higher chamber-averaged irradiance, which is also supported by the numerical model predictions. The increment ratios ranged from 14.9 % to 42.9 % compared to the stationary mode. The susceptibility constants of Escherichia coli, Staphylococcus epidermidis, MS2, and P22 were measured as 0.572 m2/J, 0.099 m2/J, 0.060 m2/J, and 0.081 m2/J respectively.
Collapse
Affiliation(s)
- M H Wang
- Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong
| | - X M Wu
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Hong Kong
| | - A C K Lai
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Hong Kong.
| |
Collapse
|
2
|
Alhussain H, Ghani S, Eltai NO. Breathing Clean Air: Navigating Indoor Air Purification Techniques and Finding the Ideal Solution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1107. [PMID: 39200716 PMCID: PMC11354768 DOI: 10.3390/ijerph21081107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024]
Abstract
The prevalence of airborne pathogens in indoor environments presents significant health risks due to prolonged human occupancy. This review addresses diverse air purification systems to combat airborne pathogens and the factors influencing their efficacy. Indoor aerosols, including bioaerosols, harbor biological contaminants from respiratory emissions, highlighting the need for efficient air disinfection strategies. The COVID-19 pandemic has emphasized the dangers of airborne transmission, highlighting the importance of comprehending how pathogens spread indoors. Various pathogens, from viruses like SARS-CoV-2 to bacteria like Mycobacterium (My) tuberculosis, exploit unique respiratory microenvironments for transmission, necessitating targeted air purification solutions. Air disinfection methods encompass strategies to reduce aerosol concentration and inactivate viable bioaerosols. Techniques like ultraviolet germicidal irradiation (UVGI), photocatalytic oxidation (PCO), filters, and unipolar ion emission are explored for their specific roles in mitigating airborne pathogens. This review examines air purification systems, detailing their operational principles, advantages, and limitations. Moreover, it elucidates key factors influencing system performance. In conclusion, this review aims to provide practical knowledge to professionals involved in indoor air quality management, enabling informed decisions for deploying efficient air purification strategies to safeguard public health in indoor environments.
Collapse
Affiliation(s)
- Hashim Alhussain
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Saud Ghani
- Department of Industrial and Mechanical Engineering, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Nahla O. Eltai
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar;
| |
Collapse
|
3
|
Rocha-Melogno L, Xi J, Deshusses MA. Experimental evaluation of a full-scale in-duct UV germicidal irradiation system for bioaerosols inactivation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174432. [PMID: 38960181 DOI: 10.1016/j.scitotenv.2024.174432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 06/03/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Bioaerosols control techniques, especially ultraviolet germicidal irradiation (UVGI) are gaining attention due to increasing needs for controlling of health risk caused by airborne biocontaminants. The effectiveness of a full-scale in-duct UVGI air disinfection system was investigated. One bacterium, a wild type Escherichia coli, and three fungal spores, Penicillium aragonense, Rhodotorula glutinis, and Cladosporium sp., were selected as test organisms and their inactivation under different conditions representative of a real application in HVAC systems were investigated. The results demonstrated that inactivation of airborne E. coli by the UVGI system was extremely effective, with >99.5 % of the input E. coli inactivated at a residence time lower than 0.36 s in the disinfection section. Airborne fungal spores were less susceptible to UV irradiation than E. coli. Under same conditions, viable counts reduction of P. aragonense, R. glutinis, and Cladosporium sp. spores were 53 %, 63 % and 73 %, respectively. The effect of UV light intensity, air flowrate and relative humidity were analyzed separately. A simplified model based on redefinition of the parameters in the classical inactivation kinetic equation was used to simulate the inactivation of airborne contaminants in the in-duct system under different conditions. The results showed that the simplified model was adequate to estimate disinfection efficacy of different bioaerosols by the UVGI system which could be useful for system design. Overall, this study shows that such in-duct UVGI systems can provide significant control of bioaerosols.
Collapse
Affiliation(s)
| | - Jinying Xi
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China
| | - Marc A Deshusses
- Department of Civil and Environmental Engineering, Box 90287, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
4
|
Lu YH, Wang RX, Liu HL, Lai ACK. Evaluating the Performance of UV Disinfection across the 222-365 nm Spectrum against Aerosolized Bacteria and Viruses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6868-6877. [PMID: 38593035 DOI: 10.1021/acs.est.3c08675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Bioaerosols play a significant role in the transmission of many infectious diseases, especially in enclosed indoor environments. Ultraviolet (UV) disinfection has demonstrated a high efficacy in inactivating microorganisms suspended in the air. To develop more effective and efficient UV disinfection protocols, it is necessary to evaluate and optimize the effectiveness of UV disinfection against aerosolized bacteria and viruses across the entire UV spectrum. In this study, we evaluated the performance of UV disinfection across the UV spectrum, ranging from 222 to 365 nm, against aerosolized bacteria and viruses, including Escherichia coli, Staphylococcus epidermidis, Salmonella enterica, MS2, P22, and Phi6. Six commonly available UV sources, including gas discharge tubes and light-emitting diodes with different emission spectra, were utilized, and their performance in terms of inactivation efficacy, action spectrum, and energy efficiency was determined. Among these UV sources, the krypton chloride excilamp emitting at a peak wavelength of 222 nm was the most efficient in inactivating viral bioaerosols. A low-pressure mercury lamp emitting at 254 nm performed well on both inactivation efficacy and energy efficiency. A UV light-emitting diode emitting at 268 nm demonstrated the highest bacterial inactivation efficacy, but required approximately 10 times more energy to achieve an equivalent inactivation level compared with that of the krypton chloride excilamp and low-pressure mercury lamp. This study provides insights into UV inactivation on bioaerosols, which can guide the development of effective wavelength-targeted UV air disinfection technologies and may significantly help reduce bioaerosol transmission in public areas.
Collapse
Affiliation(s)
- Y H Lu
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - R X Wang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - H L Liu
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - A C K Lai
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| |
Collapse
|
5
|
Liu Z, Li H, Chu J, Huang Z, Xiao X, Wang Y, He J. The impact of high background particle concentration on the spatiotemporal distribution of Serratia marcescens bioaerosol. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131863. [PMID: 37354722 DOI: 10.1016/j.jhazmat.2023.131863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023]
Abstract
Airborne transmission is a well-established mode of dissemination for infectious diseases, particularly in closed environments. However, previous research has often overlooked the potential impact of background particle concentration on bioaerosol characteristics. We compared the spatial and temporal distributions of bioaerosols under two levels of background particle concentration: heavily polluted (150-250 μg/m3) and excellent (0-35 μg/m3) in a typical ward. Serratia marcescens bioaerosol was adopted as a bioaerosol tracer, and the bioaerosol concentrations were quantified using six-stage Andersen cascade impactors. The results showed a significant reduction (over at least 62.9%) in bioaerosol concentration under heavily polluted levels compared to excellent levels at all sampling points. The temporal analysis also revealed that the decay rate of bioaerosols was higher (at least 0.654 min-1) under heavily polluted levels compared to excellent levels. These findings suggest that background particles can facilitate bioaerosol removal, contradicting the assumption made in previous research that background particle has no effect on bioaerosol characteristics. Furthermore, we observed differences in the size distribution of bioaerosols between the two levels of background particle concentration. The average bioaerosols size under heavily polluted levels was found to be higher than that under excellent levels, and the average particle size under heavily polluted levels gradually increased with time. In conclusion, these results highlight the importance of considering background particle concentration in future research on bioaerosol characteristics.
Collapse
Affiliation(s)
- Zhijian Liu
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
| | - Haochuan Li
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
| | - Jiaqi Chu
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
| | - Zhenzhe Huang
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
| | - Xia Xiao
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
| | - Yongxin Wang
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
| | - Junzhou He
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China.
| |
Collapse
|
6
|
Song C, Wen R, Zhou J, Zeng X, Kou Z, Li Y, Yun F, Wu R. UV C Light from a Light-Emitting Diode at 275 Nanometers Shortens Wound Healing Time in Bacterium- and Fungus-Infected Skin in Mice. Microbiol Spectr 2022; 10:e0342422. [PMID: 36453911 PMCID: PMC9769979 DOI: 10.1128/spectrum.03424-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022] Open
Abstract
Due to the changes in pathogenic species and the absence of research on topical skin antibiotics, the therapy of skin and soft tissue infections (SSTIs) is facing more and more severe challenges. It is particularly urgent to look for alternative therapies without induction of drug resistance. UV C (UVC) light within the range of 200 to 280 nm is one of the most common techniques used to kill and/or inactivate pathogenic microorganisms. However, the traditional most commonly used wavelength of 254 nm irradiated from a low-pressure mercury lamp is hazardous to human health, being both carcinogenic and damaging to eye tissues, which limits its applications in vivo. This research aimed to investigate the antimicrobial properties and influence of 275-nm UVC light from a light-emitting diode (UVC-LED light) on wound healing time. Five bacteria, three fungi, and scalded-mouse models combined with SSTIs were used to evaluate the antimicrobial effect in vitro and in vivo. 275-nm UVC-LED light inactivated both bacteria and fungi with a very short irradiation time in vitro and induced neither DNA damage nor epidermal lesions in the mice's skin. Furthermore, in mouse models of SSTIs induced by either methicillin-resistant Staphylococcus aureus (MRSA) or Candida albicans, the 275-nm UVC-LED light showed significant antimicrobial effects and shortened the wound healing time compared with that in the no-irradiation group. UVC-LED light at 275 nm has the potential to be a new form of physical therapy for SSTIs. IMPORTANCE As a common clinical problem, the therapy of SSTIs is facing growing challenges due to an increase in the number of drug-resistant bacteria and fungi. UV C (UVC) light sterilization has been widely used in all aspects of daily life, but there are very few reports about in vivo therapy using UVC light. It is well known that prolonged exposure to UVC light increases the possibility of skin cancer. In addition, it is also very harmful for eyes. UV irradiation with 254-nm UVC light can cause corneal damage, like thinning of the corneal epithelial layer, superficial punctate keratitis, corneal erosion, etc. In this study, we focused on looking for a more accessible light source and safer UVC wavelength, and 275-nm UVC LED light was chosen. We investigated its applicability for SSTIs therapy with relative skin safety and expected that it could be used as a new physical therapy method for SSTIs.
Collapse
Affiliation(s)
- Chenghua Song
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ruichao Wen
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jiaxuan Zhou
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoyan Zeng
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zi Kou
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yufeng Li
- Solid-State Lighting Engineering Research Center, Xi’an Jiaotong University, Xi’an, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Feng Yun
- Solid-State Lighting Engineering Research Center, Xi’an Jiaotong University, Xi’an, China
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|