1
|
Feng W, Wang C, Liu M, Wang H, Wu Z. A core-shell structured crystalline@amorphous MnO 2 with enhanced plasma catalytic degradation performance for volatile organic sulfur compounds and degradation mechanism exploration. JOURNAL OF HAZARDOUS MATERIALS 2024; 482:136597. [PMID: 39577289 DOI: 10.1016/j.jhazmat.2024.136597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/29/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
A crystalline@amorphous MnO2 (HT@RT) plasma catalyst was successfully constructed in this study to address the problem of odor pollution, especially from volatile organic sulfur compounds (VOSCs) with low olfactory thresholds. Complete conversion of dimethyl sulfide (DMS) at 140 J/L was achieved, and the ozone concentration in the exhaust gas was maintained below 5 ppm. Deeper mineralization of DMS was achieved in the HT@RT sample than in the individual HT and RT samples. A comprehensive analysis of multiple characterization techniques revealed that the HT@RT sample exhibited excellent DMS adsorption capacity, appropriate electric field responsiveness, high oxygen vacancy content, and abundant reactive oxygen species, which play key roles in the degradation of DMS. In addition, the DMS degradation process was investigated using in situ plasma diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. Combined with the results of gas chromatography-mass spectrometry, degradation pathways for DMS were proposed. The HT@RT sample combined the advantages of both amorphous and crystalline materials, significantly enhancing the activity and stability of the catalyst. Therefore, the crystalline@amorphous structured catalysts constructed in this study not only offer new insights for improving the performance of plasma catalysis but also provide an effective solution for eliminating odorous gases.
Collapse
Affiliation(s)
- Wenji Feng
- College of Environmental & Resources Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace, China
| | - Chong Wang
- Hangzhou Chunlai Technology Co., Ltd, Hangzhou 310052, China
| | - Mengyu Liu
- College of Environmental & Resources Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace, China
| | - Haiqiang Wang
- College of Environmental & Resources Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace, China.
| | - Zhongbiao Wu
- College of Environmental & Resources Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace, China
| |
Collapse
|
2
|
Feng W, Wang C, Jia Y, Wang H, Wu Z. Enhanced Removal Performance and Economical Efficiency of Volatile Organic Sulfur Compounds by Silver-Modified ZSM-5 Zeolites under a High-Humidity Environment: A Mechanistic Study of the Adsorption-Plasma Catalytic Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20729-20738. [PMID: 39499125 DOI: 10.1021/acs.est.4c07927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Dimethyl sulfide (DMS) is a harmful volatile organic sulfur compound (VOSC), which must be effectively controlled. The adsorption-plasma catalytic (APC) process is an efficient and economical route for the elimination of low-concentration VOSCs; however, there are still many challenges in humid environment. In this study, a series of zeolites with different Si/Al ratios and Ag loadings were designed, and were performed for DMS removal by APC process. At 80% relative humidity, the DMS adsorption capacity of Ag5-ZSM25 reached 33.9 mg/g, which was 7.9 times that of ZSM25 and nearly 2 times that of Ag5-ZSM200. Analyses via UV-vis, X-ray photoelectron spectroscopy (XPS), and CO-FTIR confirmed that Ag+ was the predominant species for DMS adsorption and degradation in Ag5-ZSM25. DMS-temperature-programmed desorption (TPD) and density functional theory (DFT) calculations indicated that Ag+ significantly enhanced the binding energy with DMS and weakened the competitive adsorption impact of H2O. In the plasma regeneration stage, Ag5-ZSM25 demonstrated an 89% mineralization, with Ag+ being crucial for DMS mineralization. Based on the in situ plasma DRIFT spectra, a possible degradation pathway for DMS was proposed. The APC process achieved an energy efficiency of 1.66 g/kWh, tripling that of the continuous plasma catalytic process and providing guidance for low-concentration DMS elimination.
Collapse
Affiliation(s)
- Wenji Feng
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resources Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou 310027, China
| | - Chong Wang
- Hangzhou Chunlai Technology Co., Ltd., Hangzhou 310052, China
| | - Ying Jia
- College of Missile Engineering, Rocket Force University of Engineering, Xi'an 710025, China
| | - Haiqiang Wang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resources Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou 310027, China
| | - Zhongbiao Wu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resources Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou 310027, China
| |
Collapse
|
3
|
Zheng X, Zhang W, Wu Y, Wu J, Chen Y, Long M. Biodegradation of organosulfur with extra carbon source: Insights into biofilm formation and bacterial metabolic processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175758. [PMID: 39182787 DOI: 10.1016/j.scitotenv.2024.175758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/11/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Organosulfur compounds are prevalent in wastewater, presenting challenges for biodegradation, particularly in low-carbon environments. Supplementing additional carbon sources not only provides essential nutrients for microbial growth but also serves as regulators, influencing adaptive changes in biofilm and enhancing the survival of microorganisms in organosulfur-induced stress bioreactors. This study aims to elucidate the biodegradation of organosulfur under varying carbon source levels, placing specific emphasis on functional bacteria and metabolic processes. It has been observed that higher levels of carbon supplementation led to significantly improved total sulfur (TS) removal efficiencies, exceeding 83 %, and achieve a high organosulfur CH3SH removal efficiency of ~100 %. However, in the reactor with no external carbon source added, the oxidation end-product SO42- accumulated significantly, surpassing 120 mEq/m2-day. Furthermore, the TB-EPS concentration consistently increasedwith the ascending glucose concentration. The analysis of bacterial community reveals the enrichment of functional bacteria involved in sulfur metabolism and biofilm formation (e.g. Ferruginibacter, Rhodopeudomonas, Gordonia, and Thiobacillus). Correspondingly, the gene expressions related to the pathway of organosulfur to SO42- were notably enhanced (e.g. MTO increased by 27.7 %). In contrast, extra carbon source facilitated the transfer of organosulfur into amino acids in sulfur metabolism and promoted assimilation. These metabolic insights, coupled with kinetic transformation results, further validate distinct sulfur pathways under different carbon source conditions. The intricate interplay between bacteria growth regulation, pollutant biodegradation, and microbial metabolites underscores a complex network relationship that significantly contributes to efficient operation of bioreactors.
Collapse
Affiliation(s)
- Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Min Long
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
4
|
Xu Q, Chen Z, Xian S, Wu Y, Li M. Sulfur release behavior and sulfur fixation mechanism during biomass microwave co-pyrolysis of Ascophyllum and rice straw. BIORESOURCE TECHNOLOGY 2024; 407:131073. [PMID: 38996848 DOI: 10.1016/j.biortech.2024.131073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
Co-pyrolysis with low-sulfur biomass is expected to improve the yield and quality of bio-fuels, without the usage of calcium-based desulfurizer. Sulfur transformation during microwave fluidized-bed co-pyrolysis between terrestrial and marine biomass (Ascophyllum, AS; Rice straw, RS) was investigated. Sulfur release was promoted during biomass co-pyrolysis, but it was inhibited during pyrolysis between AS and low-sulfur char. Thermal cracking of biomass was promoted during co-pyrolysis between biomass, accelerating the combination of H atoms and -SH radicals. Introduction of low-sulfur bio-char (CA) inhibited the generation of bio-char and the release of sulfur. Released sulfur was captured by -OH/C = C functional groups on bio-char through dehydration reactions/addition reactions, forming mercaptan in bio-char. Furthermore, introduction of microwave and bio-char promoted the cyclization and aromatization reaction, converting mercaptan to thiophene and improving the thermal stability of solid sulfur, and thus increasing in-situ sulfur fixation rate.
Collapse
Affiliation(s)
- Qing Xu
- College of Ocean Engineering and Energy, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zijian Chen
- College of Ocean Engineering and Energy, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shengxian Xian
- College of Ocean Engineering and Energy, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Yujian Wu
- College of Ocean Engineering and Energy, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ming Li
- College of Ocean Engineering and Energy, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
5
|
Bayout A, Cammarano C, Costa IM, Veryasov G, Hulea V. Management of methyl mercaptan contained in waste gases - an overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44669-44690. [PMID: 38963632 DOI: 10.1007/s11356-024-34112-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 06/20/2024] [Indexed: 07/05/2024]
Abstract
Methyl mercaptan is a typical volatile organosulfur pollutant contained in many gases emitted by urban waste treatment, various industries, natural gas handling, refining processes, and energy production. This work is a comprehensive overview of the scientific and practical aspects related to the management of methyl mercaptan pollution. The main techniques, including absorption, adsorption, oxidation, and biological treatments, are examined in detail. For each method, its capability as well as the technical advantages and drawbacks have been highlighted. The emerging methods developed for the removal of methyl mercaptan from natural gas are also reviewed. These methods are based on the catalytic conversion of CH3SH to hydrocarbons and H2S.
Collapse
Affiliation(s)
- Abdelilah Bayout
- Charles Gerhardt Institute of Montpellier, University of Montpellier, CNRS, ENSCM, 1919 Rte de Mende, 34293, Montpellier Cedex 5, France
- TotalEnergies, One Tech, Zone Industrielle C, 7181, Feluy, Belgium
| | - Claudia Cammarano
- Charles Gerhardt Institute of Montpellier, University of Montpellier, CNRS, ENSCM, 1919 Rte de Mende, 34293, Montpellier Cedex 5, France
- TotalEnergies, One Tech, Zone Industrielle C, 7181, Feluy, Belgium
| | - Izabel Medeiros Costa
- Charles Gerhardt Institute of Montpellier, University of Montpellier, CNRS, ENSCM, 1919 Rte de Mende, 34293, Montpellier Cedex 5, France
- TotalEnergies, One Tech, Zone Industrielle C, 7181, Feluy, Belgium
| | - Gleb Veryasov
- Charles Gerhardt Institute of Montpellier, University of Montpellier, CNRS, ENSCM, 1919 Rte de Mende, 34293, Montpellier Cedex 5, France
- TotalEnergies, One Tech, Zone Industrielle C, 7181, Feluy, Belgium
| | - Vasile Hulea
- Charles Gerhardt Institute of Montpellier, University of Montpellier, CNRS, ENSCM, 1919 Rte de Mende, 34293, Montpellier Cedex 5, France.
- TotalEnergies, One Tech, Zone Industrielle C, 7181, Feluy, Belgium.
| |
Collapse
|
6
|
Awasthi MK, Amobonye A, Bhagwat P, Ashokkumar V, Gowd SC, Dregulo AM, Rajendran K, Flora G, Kumar V, Pillai S, Zhang Z, Sindhu R, Taherzadeh MJ. Biochemical engineering for elemental sulfur from flue gases through multi-enzymatic based approaches - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169857. [PMID: 38190912 DOI: 10.1016/j.scitotenv.2023.169857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 01/10/2024]
Abstract
Flue gases are the gases which are produced from industries related to chemical manufacturing, petrol refineries, power plants and ore processing plants. Along with other pollutants, sulfur present in the flue gas is detrimental to the environment. Therefore, environmentalists are concerned about its removal and recovery of resources from flue gases due to its activation ability in the atmosphere to transform into toxic substances. This review is aimed at a critical assessment of the techniques developed for resource recovery from flue gases. The manuscript discusses various bioreactors used in resource recovery such as hollow fibre membrane reactor, rotating biological contractor, sequential batch reactor, fluidized bed reactor, entrapped cell bioreactor and hybrid reactors. In conclusion, this manuscript provides a comprehensive analysis of the potential of thermotolerant and thermophilic microbes in sulfur removal. Additionally, it evaluates the efficacy of a multi-enzyme engineered bioreactor in this process. Furthermore, the study introduces a groundbreaking sustainable model for elemental sulfur recovery, offering promising prospects for environmentally-friendly and economically viable sulfur removal techniques in various industrial applications.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| | - Ayodeji Amobonye
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P O Box 1334, Durban 4000, South Africa
| | - Prashant Bhagwat
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P O Box 1334, Durban 4000, South Africa
| | - Veeramuthu Ashokkumar
- Center for Waste Management and Renewable Energy, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Sarath C Gowd
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University, Andhra Pradesh, India
| | - Andrei Mikhailovich Dregulo
- National Research University "Higher School of Economics", 17 Promyshlennaya str, 198095, Saint-Petersburg, Russia
| | - Karthik Rajendran
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University, Andhra Pradesh, India
| | - G Flora
- Department of Botany, St. Mary's College (Autonomous), Tamil Nadu, India
| | - Vinay Kumar
- Bioconversion and Tissue Engineering (BITE) Laboratory, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam-602105, India
| | - Santhosh Pillai
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P O Box 1334, Durban 4000, South Africa
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691 505, Kerala, India
| | | |
Collapse
|
7
|
Xie Y, Li Y, Zeng Z, Ning P, Sun X, Wang F, Li K, Wang L. Mechanism Study of Organic Sulfur Hydrogenation over Pt- and Pd-Loaded Alumina-Based Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17553-17565. [PMID: 37917662 DOI: 10.1021/acs.est.3c04245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
The hydrogenation of organic sulfur (CS2) present in industrial off-gases to produce sulfur-free hydrocarbons and H2S can be achieved by using noble-metal catalysts. However, there has been a lack of comprehensive investigation into the underlying reaction mechanisms associated with this process. In this study, we have conducted an in-depth examination of the activity and selectivity of Pt- and Pd-loaded alumina-based catalysts, revealing significant disparities between them. Notably, Pd/Al2O3 catalysts exhibit an enhanced performance at low temperatures. Furthermore, we have observed that CS2 displays a higher propensity for conversion to methane when employing Pt/Al2O3 catalysts, while Pd/Al2O3 catalysts demonstrate a greater tendency for coke deposition. By combining experimental observations with theoretical calculations, we revealed that the capability of H2 spillover along with the adsorption capacity of CS2, play pivotal roles in determining the observed differences. Moreover, the key intermediate species involved in the methanation and coke pathways were identified. The intermediate CH2S* is found to be crucial in the methanation pathway, while the intermediate CSH* is identified as significant in the coke pathway.
Collapse
Affiliation(s)
- Yuxuan Xie
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuan Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Ziruo Zeng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming 650500, China
| | - Xin Sun
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming 650500, China
| | - Fei Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming 650500, China
| | - Kai Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming 650500, China
| | - Lidong Wang
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| |
Collapse
|
8
|
Gao Y, Xia B. Microdroplet accelerated reaction for high-efficiency carbon disulfide conversion. Chem Commun (Camb) 2023; 59:10773-10776. [PMID: 37593766 DOI: 10.1039/d3cc03503d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Carbon disulfide (CS2) negatively impacts male sexual function and sperm quality. We propose an efficient method to convert CS2 into dithiocarbamic acid using electrospray ionization, achieving up to 96.7% conversion. Protonated CS2 intermediates (SCSH+) contribute to capturing CO2 in amine reactions. Moreover, the reaction efficiently converts CS2 from ethanol solution using microbubble bursting. This study lays the groundwork for accurate CS2 detection.
Collapse
Affiliation(s)
- Yuanji Gao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P.R. China.
| | - Bing Xia
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P.R. China.
| |
Collapse
|