1
|
Beggel S, Kalis EJJ, Geist J. Towards harmonized ecotoxicological effect assessment of micro- and nanoplastics in aquatic systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125504. [PMID: 39662584 DOI: 10.1016/j.envpol.2024.125504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Micro- and nanoplastics are globally important environmental pollutants. Although research in this field is continuously improving, there are a number of uncertainties, inconsistencies and methodological challenges in the effect assessment of micro- and nanoparticles in freshwater systems. The current understanding of adverse effects is partly biased by the use of non-relevant particle types, unsuitable test setups and environmentally unrealistic dose metrics, which does not take into account realistic processes in particle uptake and consequent effects. Here we summarize the current state of the art by compiling the most recent research with the aim to highlight research gaps and further necessary steps towards more harmonized testing systems. In particular, ecotoxicological scenarios need to mirror environmentally realistic particle diversity and bioavailability. Harmonized test setups should include different uptake pathways, exposures and comparisons with natural reference particles. Effect assessments need to differentiate direct physical particle effects, such as lesions and toxicity caused by the polymer, from indirect effects, such as alterations of ambient environmental conditions by leaching, change of turbidity, food dilution and organisms' behavior. Implementation of these suggestions can contribute to harmonization and more effective, evidence-based assessments of the ecotoxicological effects of micro- and nanoplastics.
Collapse
Affiliation(s)
- Sebastian Beggel
- Aquatic Systems Biology Unit, TUM School of Life Sciences, Technical University of Munich, Mühlenweg 22, 85354, Freising, Germany
| | - Erwin J J Kalis
- Aquatic Systems Biology Unit, TUM School of Life Sciences, Technical University of Munich, Mühlenweg 22, 85354, Freising, Germany
| | - Juergen Geist
- Aquatic Systems Biology Unit, TUM School of Life Sciences, Technical University of Munich, Mühlenweg 22, 85354, Freising, Germany.
| |
Collapse
|
2
|
Dong Z, Wang WX. Modeling the differential functional responses and selectivity of a marine copepod to nano/microplastics in mixture. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135805. [PMID: 39265392 DOI: 10.1016/j.jhazmat.2024.135805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Nano- and microplastics (NMPs) pollution is widespread in the oceans, posing potential risks to marine species. This study examined the accumulation capacity and selectivity potentials of NMPs by a marine copepod Parvocalanus crassirostris under different food mixtures by modeling the combined biokinetic and functional response. We investigated two sizes of NMPs (200 nm and 5 µm) across a concentration gradient (0 - 5000 µg/L) and varying diatom abundances (0, 104, 105 cells/mL). Fluorescence imaging and quantification revealed that P. crassirostris actively ingested NMPs at low concentration. Accumulation increased with NMPs concentration but eventually saturated due to gut capacity limits, following a Holling type II functional response (i.e., hyperbolic curve). Our novel functional response model estimated the key parameters and demonstrated that the maximum accumulation reached 5.3 % of dry weight with averaged half-saturation constants of 229 µg/L. The size of NMPs did not significantly affect the total accumulation or satiety levels. The presence of diatoms influenced the feeding selectivity and decreased the microplastic accumulation by 73 % at 105 cells/mL, while facilitating nanoplastic accumulation by 81 % at 104 cells/mL. This study enhanced our understanding of NMPs bioavailability and environmental fate in marine ecosystems.
Collapse
Affiliation(s)
- Zipei Dong
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
3
|
Torronteras R, Díaz-de-Alba M, Granado-Castro MD, Espada-Bellido E, Córdoba García F, Canalejo A, Galindo-Riaño MD. Induction of Oxidative Stress by Waterborne Copper and Arsenic in Larvae of European Seabass ( Dicentrarchus labrax L.): A Comparison with Their Effects as Nanoparticles. TOXICS 2024; 12:141. [PMID: 38393236 PMCID: PMC10892995 DOI: 10.3390/toxics12020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
The aim of this work was to compare the potential induction of oxidative stress and the antioxidant enzymatic response after a short-term waterborne exposure to copper (Cu) and arsenic (As) with that of the nanoparticles (NPs) of these elements (Cu-NPs and As-NPs) in fish larvae of the species Dicentrarchus labrax. Larvae were grouped in several tanks and exposed to different concentrations of contaminants (0 to 10 mg/L) for 24 or 96 h under laboratory conditions. Copper and arsenic concentrations were analysed in larval tissues using ICP-MS. A set of oxidative stress biomarkers, including the levels of hydroperoxides (HPs), and superoxide dismutase (SOD) and catalase (CAT) activities were assessed. The trace element concentrations (mg/kg d.w.) in larvae ranged as follows: 3.28-6.67 (Cu at 24 h) and 2.76-3.42 (Cu at 96 h); 3.03-8.31 (Cu-NPs at 24 h) and 2.50-4.86 (Cu-NPs at 96 h); 1.92-3.45 (As at 24 h) and 2.22-4.71 (As at 96 h); and 2.19-8.56 (As-NPs at 24 h) and 1.75-9.90 (As-NPs at 96 h). In Cu tests, the oxidative damage (ROOH levels) was induced from 0.1 mg/L at both exposure times, while for Cu-NPs, this damage was not observed until 1 mg/L, which was paralleled by concomitant increases in SOD activity. The CAT activity was also increased but at lower metal concentrations (0.01 mg/L and 0.1 mg/L for both chemical forms). No oxidative damage was observed for As or As-NPs after 24 h, but it was observed for As after 96 h of treatment with 0.01 mg/L. A decrease in SOD activity was observed for As after 24 h, but it turned out to be increased after 96 h. However, As-NPs did not alter SOD activity. The CAT activity was stimulated only at 96 h by As and at 24 h by As-NPs. Therefore, the two chemical forms of Cu exhibited a higher bioaccumulation and toxicity potential as compared to those of As. Importantly, the association of both Cu and As in NPs reduced the respective trace metal bioaccumulation, resulting also in a reduction in the toxic effects (mortality and biochemical). Furthermore, the assessment of oxidative stress-related biomarkers in seabass larvae appears to be a useful tool for biomonitoring environmental-occurring trace elements.
Collapse
Affiliation(s)
- Rafael Torronteras
- Department of Integrated Sciences/Research Center RENSMA, Faculty of Experimental Sciences, University of Huelva, Avda, Tres de Marzo, s/n. Campus de El Carmen, 21007 Huelva, Spain; (F.C.G.); (A.C.)
| | - Margarita Díaz-de-Alba
- Department of Analytical Chemistry, Institute of Biomolecules (INBIO), Faculty of Sciences, CEI-MAR, University of Cadiz, Campus Rio San Pedro, ES-11510 Puerto Real, Spain; (M.D.-d.-A.); (M.D.G.-C.); (E.E.-B.); (M.D.G.-R.)
| | - María Dolores Granado-Castro
- Department of Analytical Chemistry, Institute of Biomolecules (INBIO), Faculty of Sciences, CEI-MAR, University of Cadiz, Campus Rio San Pedro, ES-11510 Puerto Real, Spain; (M.D.-d.-A.); (M.D.G.-C.); (E.E.-B.); (M.D.G.-R.)
| | - Estrella Espada-Bellido
- Department of Analytical Chemistry, Institute of Biomolecules (INBIO), Faculty of Sciences, CEI-MAR, University of Cadiz, Campus Rio San Pedro, ES-11510 Puerto Real, Spain; (M.D.-d.-A.); (M.D.G.-C.); (E.E.-B.); (M.D.G.-R.)
| | - Francisco Córdoba García
- Department of Integrated Sciences/Research Center RENSMA, Faculty of Experimental Sciences, University of Huelva, Avda, Tres de Marzo, s/n. Campus de El Carmen, 21007 Huelva, Spain; (F.C.G.); (A.C.)
| | - Antonio Canalejo
- Department of Integrated Sciences/Research Center RENSMA, Faculty of Experimental Sciences, University of Huelva, Avda, Tres de Marzo, s/n. Campus de El Carmen, 21007 Huelva, Spain; (F.C.G.); (A.C.)
| | - María Dolores Galindo-Riaño
- Department of Analytical Chemistry, Institute of Biomolecules (INBIO), Faculty of Sciences, CEI-MAR, University of Cadiz, Campus Rio San Pedro, ES-11510 Puerto Real, Spain; (M.D.-d.-A.); (M.D.G.-C.); (E.E.-B.); (M.D.G.-R.)
| |
Collapse
|
4
|
Song H, Li Y, Zou X, Hu P, Liu T. Elite male table tennis matches diagnosis using SHAP and a hybrid LSTM-BPNN algorithm. Sci Rep 2023; 13:11533. [PMID: 37460573 PMCID: PMC10352295 DOI: 10.1038/s41598-023-37746-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023] Open
Abstract
This study adopts a new approach, SHapley Additive exPlanation (SHAP), to diagnose the table tennis matches based on a hybrid algorithm, namely Long Short-Term Memory-Back Propagation Neural Network (LSTM-BPNN). 100 male singles competitions (8535 rallies) from 2019 to 2022 are analyzed by a hybrid technical-tactical analysis theory, which hybridizes the double three-phase and four-phase evaluation theories. A k-means cluster analysis is conducted to classify 59 players' winning rates into three levels (high, medium, and low). The results show that LSTM-BPNN has excellent performance (MSE = 0.000355, MAE = 0.014237, RMSE = 0.018853, and [Formula: see text] = 0.988311) compared with six typical artificial intelligence algorithms. Using LSTM-BPNN to calculate the SHAP value of each feature, the global results find that the receive-attack and serve-attack phases of the ending match have essential impacts on the mutual winning probabilities. Finally, case applications show that the SHAP can directly obtain each feature importance on one or more matches, which is more objective and reliable than the traditional simulation method. This research explores an innovative way to understand and analyze matches, and these results have implications for the performance analysis of table tennis and related racket sports.
Collapse
Affiliation(s)
- Honglin Song
- College of Physical Education and Sports, Beijing Normal University, Beijing, 100084, China
| | - Yutao Li
- College of Physical Education and Sports, Beijing Normal University, Beijing, 100084, China
| | - Xiaofeng Zou
- School of Physical Education, Jilin University, Jilin, 130015, China
| | - Ping Hu
- Microsoft, Beijing, 100080, China
| | - Tianbiao Liu
- College of Physical Education and Sports, Beijing Normal University, Beijing, 100084, China.
| |
Collapse
|