1
|
Yang S, Liu B, Wang L, Duran R. Dispatched microbial community assembly processes driving ecological succession during phytostabilization of mercury-rich tailings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 365:125376. [PMID: 39581369 DOI: 10.1016/j.envpol.2024.125376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/05/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
Phytostabilization is an important way for the remediation of mine tailings, but the associated microbial processes and community succession remain largely unknown. In this study, we investigated the assembly mechanisms maintaining the core and satellite subcommunities diversity during phytostabilizaion of a mercury-rich mine tailings. The contents of total Hg and methylmercury decreased with a concomitant increase of total and available phosphorus content along the successive remediation stages. Microbial community composition, profiled by 16S rRNA gene sequencing, revealed amplicon sequence variants (ASVs) that were separated according to their abundance within either the core community or the satellite community. Community dynamics analysis showed that alpha diversity indices increased for the core community while decreased for the satellite community. Both satellite and core communities were mainly driven by stochastic drift process, and homogeneous selection was relatively higher in shaping the core community organization. The core community included ASVs affiliated to Proteobacteria, Crenarchaeota, Bacteroidota, Verrucomicrobiota, Acidobacteriota, and Myxococcota phyla, which were driven primarily by heterogeneous selection and drift. The satellite community included ASVs affiliated to Acidobacteriota, Ktedonobacteria, Anaerolineae and Verrucomicrobiota phyla, which were mainly influenced by heterogeneous selection. Nineteen taxa and one taxon were identified as keystone taxa for the satellite and core communities respectively. This study provides important insights on the assemble rules within the core and satellite communities, and theoretical guidance for further ecological restoration and management during microbial remediation of metal-mined derelict land.
Collapse
Affiliation(s)
- Shengxiang Yang
- College of Resources and Environment, Zunyi Normal University, Pingan Road, Xinpunew District, Zunyi, China
| | - Bang Liu
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France.
| | - Lu Wang
- College of Resources and Environment, Zunyi Normal University, Pingan Road, Xinpunew District, Zunyi, China
| | - Robert Duran
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| |
Collapse
|
2
|
Yi X, Liang JL, Wen P, Jia P, Feng SW, Liu SY, Zhuang YY, Guo YQ, Lu JL, Zhong SJ, Liao B, Wang Z, Shu WS, Li JT. Giant viruses as reservoirs of antibiotic resistance genes. Nat Commun 2024; 15:7536. [PMID: 39214976 PMCID: PMC11364636 DOI: 10.1038/s41467-024-51936-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Nucleocytoplasmic large DNA viruses (NCLDVs; also called giant viruses), constituting the phylum Nucleocytoviricota, can infect a wide range of eukaryotes and exchange genetic material with not only their hosts but also prokaryotes and phages. A few NCLDVs were reported to encode genes conferring resistance to beta‑lactam, trimethoprim, or pyrimethamine, suggesting that they are potential vehicles for the transmission of antibiotic resistance genes (ARGs) in the biome. However, the incidence of ARGs across the phylum Nucleocytoviricota, their evolutionary characteristics, their dissemination potential, and their association with virulence factors remain unexplored. Here, we systematically investigated ARGs of 1416 NCLDV genomes including those of almost all currently available cultured isolates and high-quality metagenome-assembled genomes from diverse habitats across the globe. We reveal that 39.5% of them carry ARGs, which is approximately 37 times higher than that for phage genomes. A total of 12 ARG types are encoded by NCLDVs. Phylogenies of the three most abundant NCLDV-encoded ARGs hint that NCLDVs acquire ARGs from not only eukaryotes but also prokaryotes and phages. Two NCLDV-encoded trimethoprim resistance genes are demonstrated to confer trimethoprim resistance in Escherichia coli. The presence of ARGs in NCLDV genomes is significantly correlated with mobile genetic elements and virulence factors.
Collapse
Affiliation(s)
- Xinzhu Yi
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, PR China
| | - Jie-Liang Liang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, PR China
| | - Ping Wen
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, PR China
| | - Pu Jia
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, PR China
| | - Shi-Wei Feng
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, PR China
| | - Shen-Yan Liu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, PR China
| | - Yuan-Yue Zhuang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, PR China
| | - Yu-Qian Guo
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, PR China
| | - Jing-Li Lu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, PR China
| | - Sheng-Ji Zhong
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, PR China
| | - Bin Liao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Zhang Wang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, PR China
| | - Wen-Sheng Shu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, PR China
| | - Jin-Tian Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, PR China.
| |
Collapse
|
3
|
Liu JL, Yao J, Tang C, Ma B, Liu X, Bashir S, Sunahara G, Duran R. A critical review on bioremediation technologies of metal(loid) tailings: Practice and policy. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121003. [PMID: 38692032 DOI: 10.1016/j.jenvman.2024.121003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/10/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024]
Abstract
Globally, most high-grade ores have already been exploited. Contemporary mining tends to focus on the extraction of lower-grade ores thereby leaving large stored tailings open to the environment. As a result, current mines have emerged as hotspots for the migration of metal(loid)s and resistance genes, thereby potentially contributing to a looming public health crisis. Therefore, the management and remediation of tailings are the most challenging issues in environmental ecology. Bioremediation, a cost-effective solution for the treatment of multi-element mixed pollution (co-contamination), shows promise for the restoration of mine tailings. This review focuses on the bioremediation technologies developed to untangle the issues of non-ferrous metal mine tailings. These technologies address the environmental risks of multi-element exposure to the ecosystem and human health risks. It provides a review and comparison of current bioremediation technologies used to mineralize metal(loid)s. The role of plant-microorganisms and their mechanisms in the remediation of tailings are also discussed. The importance of "treating waste with wastes" is crucial for advancing bioremediation technologies. This approach underscores the potential for waste materials to contribute to environmental cleanup processes. The concept of a circular economy is pertinent in this context, emphasizing recycling and reuse. There's an immediate need for international collaboration. Collaboration is needed in policy-making, funding, and data accessibility. Sharing data is essential for the growth of bioremediation globally.
Collapse
Affiliation(s)
- Jian-Li Liu
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China.
| | - Jun Yao
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Chuiyun Tang
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Bo Ma
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Xingyu Liu
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Safdar Bashir
- Department of Soil and Water Systems, University of Idaho, Moscow, ID, 83844, USA
| | - Geoffrey Sunahara
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China; Department of Natural Resource Sciences, McGill University, Montreal, Quebec, H9X3V9, Canada
| | - Robert Duran
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China; Université de Pau et des Pays de l'Adour/E2S UPPA, IPREM UMR CNRS 5254, BP 1155, 64013, Pau Cedex, France
| |
Collapse
|
4
|
Zhang S, Cao J, Yang P, Xie Y, Wang H, Mao Y, Ning K, Zhang Q. Adsorption and aggregation of Cu 2+ on carboxymethylated sugarcane bagasse: Adsorption behavior and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133297. [PMID: 38141295 DOI: 10.1016/j.jhazmat.2023.133297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023]
Abstract
Abundant biomass resources provide us with sufficient material basis, while a large amount of bio-waste is also produced and the high-value utilization of bio-waste is still highly desirable. Herein, we reported a facile one-pot fabrication approach towards efficient utilization of sugarcane bagasse via carboxymethylation to adsorb and recycle Cu2+ ions. The modified sugarcane bagasse possessed outstanding adsorption efficiency, with a maximum capacity of 263.7 mg g-1, owing to the functional groups such as carboxyl and hydroxyl groups, as well as aromatic structure. It was noted that the carboxymethylated sugarcane bagasse (MSB40) swelled rapidly when suffering Cu2+ ions solution, and more adsorption sites were available since the physical diffusion barrier was removed, thereby enhancing the absorption capacity. Interestingly, Cu2+ ions could induce the aggregation of MSB40 due to the Cu2+ ions compress colloid double layer, neutralizes surface charges, which benefited the following separation process. Ultimately, copper oxide was recovered and the purity reached 97.9%. Additionally, in the presence of both Ca2+ and Mg2+ ions, MSB40 exhibited excellent selectivity for the adsorption of Cu2+ ions. This strategy offers a facile and novel clue for the high-value utilization of bio-waste and the recovery of copper for biomaterial and environmental applications.
Collapse
Affiliation(s)
- Shiping Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Jinyan Cao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Peng Yang
- Department of Health Products Technical Research and Development Center, Yunnan Baiyao Group Co. Ltd, Kunming 650500, PR China
| | - Yu Xie
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Huiming Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Yufeng Mao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Kegong Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China; Department of Health Products Technical Research and Development Center, Yunnan Baiyao Group Co. Ltd, Kunming 650500, PR China.
| | - Qiulin Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, PR China.
| |
Collapse
|
5
|
Plant–Microbe Interactions under the Action of Heavy Metals and under the Conditions of Flooding. DIVERSITY 2023. [DOI: 10.3390/d15020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Heavy metals and flooding are among the primary environmental factors affecting plants and microorganisms. This review separately considers the impact of heavy metal contamination of soils on microorganisms and plants, on plant and microbial biodiversity, and on plant–microorganism interactions. The use of beneficial microorganisms is considered one of the most promising methods of increasing stress tolerance since plant-associated microbes reduce metal accumulation, so the review focuses on plant–microorganism interactions and their practical application in phytoremediation. The impact of flooding as an adverse environmental factor is outlined. It has been shown that plants and bacteria under flooding conditions primarily suffer from a lack of oxygen and activation of anaerobic microflora. The combined effects of heavy metals and flooding on microorganisms and plants are also discussed. In conclusion, we summarize the combined effects of heavy metals and flooding on microorganisms and plants.
Collapse
|